JPS61105870A - Manufacture of thin film transistor - Google Patents

Manufacture of thin film transistor

Info

Publication number
JPS61105870A
JPS61105870A JP22828584A JP22828584A JPS61105870A JP S61105870 A JPS61105870 A JP S61105870A JP 22828584 A JP22828584 A JP 22828584A JP 22828584 A JP22828584 A JP 22828584A JP S61105870 A JPS61105870 A JP S61105870A
Authority
JP
Japan
Prior art keywords
polycrystalline silicon
deposited
film
resist
interface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22828584A
Other languages
Japanese (ja)
Inventor
Satoshi Takenaka
敏 竹中
Mutsumi Matsuo
睦 松尾
Hiroyuki Oshima
弘之 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP22828584A priority Critical patent/JPS61105870A/en
Publication of JPS61105870A publication Critical patent/JPS61105870A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • H01L29/66757Lateral single gate single channel transistors with non-inverted structure, i.e. the channel layer is formed before the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78672Polycrystalline or microcrystalline silicon transistor
    • H01L29/78675Polycrystalline or microcrystalline silicon transistor with normal-type structure, e.g. with top gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To increase ON/OFF ratio while accelerating the operational speed by a method wherein the stability and the reliability of device are improved by means of forming an interface in a polycrystalline silicon film by ion implanting oxygen atoms. CONSTITUTION:A polycrystalline silicon film 2 is deposited on a glass substrate 1 to be patterned on island type and then a gate oxide film SiO2 3 is deposited on the film 2 to form a resist 4. Succesively a part comprising a channel region in the polycrystalline silicon film 2 is implanted with oxygen atoms to form an interface 5 utilzing the resist 4 as a mask. Next materials 7, 8, 9 comprising gate electrodes are deposited and then the resist 4 is peeled off to form a gate electrode 9 by lifting off process. Finally a source region 10 and a drain region 11 are formed by ion implanting impurity atoms such as III group (boron) or V group (phosphorus, arsenic etc.) utilizing the gate electrode 9 as a mask. Through these procedures, Vth of transistor may be restricted to low value to lower the trap level on interface making a source region and a drain region thick while a channel region thin.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ガラス基板を用いた薄膜トランジスタの製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a thin film transistor using a glass substrate.

〔従来の技術〕[Conventional technology]

従来、ガラス基板上に薄膜トランジスタを作製する場合
には、熱酸化法によるゲート絶縁膜を用いることはでき
ないために、一般にCVD(化学的気相成長)法あるい
は、スパッタ法などの絶縁膜を堆積する方法を用いるの
が一般的である。例えば特許出願公開昭59−2286
5に述べられている。従来方法を第2図に示す。同図(
a)のように透明絶縁基板16に半導体薄膜17を堆積
させ島状にパターニングし、ゲート絶縁膜18をCVD
法あるいはスパッタ法で堆積させ、ゲート電極19を形
成する。次いで同図(b)に示すようにゲート電極19
をマスクとし、■族またはV族の不純物原子をイオン注
入し、前記半導体薄膜17中にソース領域側及びドレイ
ン領域21を形成する。22はイオンビームを示す。続
いて同図(、li)に示すように層間絶縁膜器を堆積さ
せて、コンタクトホールをあは、ソース電極冴及びドレ
イン電極5を形成する。以上述べたように、フォト4工
程で作製される。
Conventionally, when manufacturing a thin film transistor on a glass substrate, it is not possible to use a gate insulating film using a thermal oxidation method, so an insulating film is generally deposited using a CVD (chemical vapor deposition) method or a sputtering method. It is common to use a method. For example, patent application publication 1986-2286
5. The conventional method is shown in FIG. Same figure (
As shown in a), a semiconductor thin film 17 is deposited on a transparent insulating substrate 16 and patterned into an island shape, and a gate insulating film 18 is formed by CVD.
The gate electrode 19 is formed by depositing by a method or a sputtering method. Next, as shown in FIG.
Using this as a mask, ion implantation of group (I) or group V impurity atoms is performed to form a source region side and a drain region 21 in the semiconductor thin film 17. 22 indicates an ion beam. Subsequently, as shown in the same figure (11), an interlayer insulating film is deposited, a contact hole is formed, and a source electrode and a drain electrode 5 are formed. As described above, it is manufactured through four photo steps.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、従来の方法では、ゲート絶縁膜も半導体
薄膜上に堆積させるだけなので、その界面単位や、欠陥
準位は非常に多い。界面準位が多いために、トランジス
タの7th(スレッシュホルド電圧)が高い。さらに欠
陥準位が電子や正孔をトラップするためにデバイスとし
ての安定性力・び信頼性が低下する。
However, in the conventional method, the gate insulating film is simply deposited on the semiconductor thin film, so there are a large number of interface units and defect levels. Since there are many interface states, the 7th (threshold voltage) of the transistor is high. Furthermore, since the defect level traps electrons and holes, the stability and reliability of the device decrease.

また、半導体薄膜の膜厚が、ソース領域、ドレイン領域
、チャネル領域にわたってすべて同一である。従って、
トランジスタのOFF電流を低けるために半導体薄膜を
薄くすると、ソース電極及びドレイン電極とソース領域
及びドレイン領域とのコンタクト抵抗が増大してしまう
。一方、該コンタクト抵抗を低減するために半導体薄膜
の膜厚を厚くすると、逆にOFF電流が増大し、どちら
にしろ9N10FF比(ON電流とOFF電流の比)を
大きくすることができないという欠点を有する。
Further, the thickness of the semiconductor thin film is the same throughout the source region, drain region, and channel region. Therefore,
If the semiconductor thin film is made thinner in order to lower the OFF current of the transistor, the contact resistance between the source electrode and the drain electrode and the source region and the drain region increases. On the other hand, if the thickness of the semiconductor thin film is increased to reduce the contact resistance, the OFF current will increase, and in any case, the disadvantage is that the 9N10FF ratio (ratio of ON current to OFF current) cannot be increased. have

〔問題点を解決するための手段〕[Means for solving problems]

本発明の薄膜トランジスタの製造方法は、ガラス基板上
に、島状に半導体薄膜を形成する工程とゲート絶縁膜を
堆積させる工程と、チャネル領域を構成する界面に酸素
原子をイオン注入する工程とリフトオフ法によりゲート
電極を形成する工程と前記ゲート電極をマスクとし、■
族あるいはV族の不純物原子をイオン注入して、ソース
領域及びドレイン領域を形成する工程から成ることを特
徴とする。
The method for manufacturing a thin film transistor of the present invention includes a step of forming an island-shaped semiconductor thin film on a glass substrate, a step of depositing a gate insulating film, a step of ion-implanting oxygen atoms into an interface forming a channel region, and a lift-off method. A step of forming a gate electrode by using the gate electrode as a mask,
It is characterized by comprising a step of ion-implanting group or V group impurity atoms to form a source region and a drain region.

〔実施例〕〔Example〕

第1図に、半導体薄膜として多結晶シリコンを用いた場
合の実施例を示す。第1図(G)において、ガラス基板
1上に、多結晶シリコン膜2を堆積させ島状にパターニ
ングする。その上にゲート酸化膜5i023を堆積させ
る。該ゲート酸化膜の堆積方法としては、CVD法ある
いはプラズマCVD法あるいはスパッタ法などのように
生成温度の低い(約600℃以下)方法を採用する。こ
れは前記ガラス基板(コーニング7059など)の伸び
あるいはソリを防ぐためである。次に同図(b)に示す
ようにレジスト4を形成する。続いて、同図(C)に示
すように、前記レジスト4をマスクとし、多結晶シリコ
ン膜2中のチャネル領域を構成する4一 部分にイオン打込み法により酸素原子を注入する。
FIG. 1 shows an example in which polycrystalline silicon is used as the semiconductor thin film. In FIG. 1(G), a polycrystalline silicon film 2 is deposited on a glass substrate 1 and patterned into an island shape. A gate oxide film 5i023 is deposited thereon. As a method for depositing the gate oxide film, a method having a low formation temperature (approximately 600° C. or lower) such as a CVD method, a plasma CVD method, or a sputtering method is employed. This is to prevent the glass substrate (such as Corning 7059) from elongating or warping. Next, a resist 4 is formed as shown in FIG. 4(b). Subsequently, as shown in FIG. 1C, oxygen atoms are implanted into a portion of polycrystalline silicon film 2 constituting a channel region by ion implantation using resist 4 as a mask.

この場合、ゲート酸化膜8を通して酸素原子をイオン注
入することになるので、イオン注入により形成されるS
iO2層と、堆積により形成された前記ゲート酸化膜8
との間にs7層が残らないようにイオン打込み条件を設
定しなければならない。
In this case, since oxygen atoms are ion-implanted through the gate oxide film 8, S
iO2 layer and the gate oxide film 8 formed by deposition
Ion implantation conditions must be set so that no s7 layer remains between the two.

このようにして多結晶シリコン膜2中に、新しい界面5
が形成される。図中6は酸素のイオンビームを示してい
る。続いて、同図(めに示すようにレジスト4を残した
状態でゲート電極を構成する材料7と8と9を堆積させ
る。該ゲート電極材料としてはITO(透明導電膜)あ
るいはアルミニウムなどの低抵抗材料を用いる。耐熱性
の優れたレジストを使うことができれば、多結晶シリコ
ン膜をゲート電極として用いることもできる。次に前記
レジスト4を剥離し、リフトオフ法によってゲート電極
9を形成する。このようにして同図(e)に示すような
構造となる。次に同図のに示すように前記ゲート電極9
をマスクとして■族(ボロン)あるいは■族(リン、ヒ
素など)不純物原子をイオン注入し、ソース領域10及
びドレイン領域11を形成する。図中12は不純物原子
のイオンビームを示す。ここでイオン打込みによるダメ
ージが考えられる場合には、レーザ−7ニールあるいは
電子ビームアニールなどの処理を行なう。たソしガラス
基板が損傷を受けないように、ガラス基板をあらかじめ
酸化膜でコーディングしておいたほうがよい。最後に同
図ω)に示すように層間絶縁膜13を堆積させ、コンタ
クトホールをあけて、ソース電極14及びドレイン電極
15を形成する。
In this way, a new interface 5 is created in the polycrystalline silicon film 2.
is formed. In the figure, 6 indicates an oxygen ion beam. Next, as shown in the same figure, materials 7, 8, and 9 constituting the gate electrode are deposited with the resist 4 remaining.As the gate electrode material, a low-resistance material such as ITO (transparent conductive film) or aluminum is used. A resistive material is used. If a resist with excellent heat resistance can be used, a polycrystalline silicon film can also be used as the gate electrode. Next, the resist 4 is peeled off and a gate electrode 9 is formed by a lift-off method. In this way, a structure as shown in the figure (e) is obtained.Next, as shown in the figure, the gate electrode 9 is
Using the mask as a mask, ion implantation of ■ group (boron) or ■ group (phosphorus, arsenic, etc.) impurity atoms is performed to form a source region 10 and a drain region 11. In the figure, 12 indicates an ion beam of impurity atoms. If damage due to ion implantation is suspected, treatment such as laser-7 annealing or electron beam annealing is performed. To prevent damage to the glass substrate, it is better to coat the glass substrate with an oxide film in advance. Finally, as shown in ω) in the figure, an interlayer insulating film 13 is deposited, contact holes are made, and a source electrode 14 and a drain electrode 15 are formed.

なお、実施例では信頼性の良い多結晶シリコン膜を用い
た場合について説明したが、非晶質シリコン膜を用いた
場合にも、本発明は同様に応用することができる。また
、同図(17)に述べた層間絶縁膜13は必要なければ
形成しなくてもよい。
In the embodiment, a case where a highly reliable polycrystalline silicon film is used has been described, but the present invention can be similarly applied to a case where an amorphous silicon film is used. Furthermore, the interlayer insulating film 13 described in FIG. 17 (17) may not be formed if it is not necessary.

〔本発明の効果〕[Effects of the present invention]

このように本発明は、酸素のイオン注入により多結晶シ
リコン膜中に界面を形成しているので、界面準位や欠陥
密度は非常に少ない。従ってトランジスタのvthを低
くおさえることができる。
As described above, in the present invention, since the interface is formed in the polycrystalline silicon film by oxygen ion implantation, the interface states and defect density are extremely small. Therefore, the vth of the transistor can be kept low.

さらに界面のトラップ準位が小さいのでトランジスタ特
性の安定性を向上させることができ、デバイスの信頼性
改善に大きな役割りをはたす。しい為も低温プロセス(
約600℃以下)で作製する(二とができるので、高温
加熱により生じる欠陥(オ、、を層欠陥や転位など)を
考慮する必要がまったくない。さらには低コスト化、基
板の大面積化も可能となる。
Furthermore, since the trap level at the interface is small, the stability of transistor characteristics can be improved, which plays a major role in improving device reliability. Low temperature process (
Since it can be fabricated at a temperature of approximately 600°C or below), there is no need to consider defects caused by high-temperature heating (e.g., layer defects, dislocations, etc.).In addition, costs can be reduced and the substrate area can be increased. is also possible.

また本発明ではイオン打込みによりゲート酸化膜を形成
するのでゲート酸化膜厚の制御性が改善される。さらに
酸累のイオン注入条件を任意に設定することにより、チ
ャネル領域の多結晶シリコン膜厚を、ソース領域及びド
レイン領域の多結晶シリコン膜厚よりも制御性良く薄く
することができる。このようにソース領域及びドレイン
領域の膜厚は厚く、チャネル領域の膜厚は薄くできるの
で、薄膜トランジスタのOFF電流は低減され、ソース
領域及びドレイン領域とソース電極及びドレイン電極と
のコンタクト抵抗は低減される。従って、0N10FF
比が増大される。
Further, in the present invention, since the gate oxide film is formed by ion implantation, controllability of the gate oxide film thickness is improved. Furthermore, by arbitrarily setting the conditions for ion implantation of the oxide, the thickness of the polycrystalline silicon film in the channel region can be made thinner with better control than the thickness of the polycrystalline silicon film in the source and drain regions. In this way, the film thickness of the source region and drain region can be made thick and the film thickness of the channel region can be made thin, so that the OFF current of the thin film transistor is reduced and the contact resistance between the source region and drain region and the source electrode and drain electrode is reduced. Ru. Therefore, 0N10FF
The ratio is increased.

また、ゲート電極はリフトオフ法により形成されるので
フォト工程が増えることな〈従来方法と同様に、フォト
4工程で作製できる。
In addition, since the gate electrode is formed by a lift-off method, the number of photo steps is not increased (it can be produced in four photo steps as in the conventional method).

このように、本発明は、■tんが小さく、ON/ OF
 F比が大きく、動作速度の速い薄膜トランジスタをガ
ラス基板上に実現し、しかも、その信頼性を向上させて
フォト4工程で作製する方法を提供するものである。
In this way, the present invention has a small t and ON/OF
The present invention provides a method for realizing a thin film transistor with a large F ratio and a high operating speed on a glass substrate, improving its reliability, and manufacturing it in four photo steps.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(、z)〜ω)は本発明の製造方法を示す工程図
であり、第2図<a)〜(C)は従来の製造方法を示す
工程図である。 1・・・ガラス基板 2・−・多結晶シリコン膜 8・・・ゲート酸化膜 4・e・レジスト 5・・ψ界面
FIG. 1 (, z) to ω) are process diagrams showing the manufacturing method of the present invention, and FIGS. 2<a) to (C) are process diagrams showing the conventional manufacturing method. 1... Glass substrate 2... Polycrystalline silicon film 8... Gate oxide film 4... Resist 5... ψ interface

Claims (1)

【特許請求の範囲】[Claims] ガラス基板上に、島状に半導体薄膜を形成する工程と、
ゲート絶縁膜を堆積させる工程と、チャネル領域を構成
する界面に酸素原子をイオン注入する工程と、リフトオ
フ法によりゲート電極を形成する工程と、前記ゲート電
極をマスクとし、III族あるいはV族の不純物原子をイ
オン注入して、ソース領域及びドレイン領域を形成する
工程を含むことを特徴とする薄膜トランジスタの製造方
法。
a step of forming an island-shaped semiconductor thin film on a glass substrate;
A step of depositing a gate insulating film, a step of ion-implanting oxygen atoms into the interface constituting the channel region, a step of forming a gate electrode by a lift-off method, and a step of depositing group III or group V impurities using the gate electrode as a mask. 1. A method of manufacturing a thin film transistor, comprising the step of ion-implanting atoms to form a source region and a drain region.
JP22828584A 1984-10-30 1984-10-30 Manufacture of thin film transistor Pending JPS61105870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22828584A JPS61105870A (en) 1984-10-30 1984-10-30 Manufacture of thin film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22828584A JPS61105870A (en) 1984-10-30 1984-10-30 Manufacture of thin film transistor

Publications (1)

Publication Number Publication Date
JPS61105870A true JPS61105870A (en) 1986-05-23

Family

ID=16874074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22828584A Pending JPS61105870A (en) 1984-10-30 1984-10-30 Manufacture of thin film transistor

Country Status (1)

Country Link
JP (1) JPS61105870A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5702960A (en) * 1994-02-25 1997-12-30 Samsung Electronics Co., Ltd. Method for manufacturing polysilicon thin film transistor
US6214684B1 (en) * 1995-09-29 2001-04-10 Canon Kabushiki Kaisha Method of forming a semiconductor device using an excimer laser to selectively form the gate insulator
US6391701B1 (en) 1999-05-18 2002-05-21 Nec Corporation Semiconductor device and process of fabrication thereof
EP1533838A2 (en) * 2003-11-24 2005-05-25 Samsung SDI Co., Ltd. Method for manufacturing transistor and image display device using the same
US20160315200A1 (en) * 2015-04-21 2016-10-27 Incheon University Industry Academic Cooperation Foundation Method of manufacturing amorphous igzo tft-based transient semiconductor
CN110265303A (en) * 2019-06-12 2019-09-20 深圳市华星光电半导体显示技术有限公司 A kind of production method of display panel

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5702960A (en) * 1994-02-25 1997-12-30 Samsung Electronics Co., Ltd. Method for manufacturing polysilicon thin film transistor
US6214684B1 (en) * 1995-09-29 2001-04-10 Canon Kabushiki Kaisha Method of forming a semiconductor device using an excimer laser to selectively form the gate insulator
US6391701B1 (en) 1999-05-18 2002-05-21 Nec Corporation Semiconductor device and process of fabrication thereof
EP1533838A2 (en) * 2003-11-24 2005-05-25 Samsung SDI Co., Ltd. Method for manufacturing transistor and image display device using the same
EP1533838A3 (en) * 2003-11-24 2005-08-03 Samsung SDI Co., Ltd. Method for manufacturing transistor and image display device using the same
US7199406B2 (en) 2003-11-24 2007-04-03 Samsung Sdi Co., Ltd. Method for manufacturing transistor and image display device using the same
US7615803B2 (en) 2003-11-24 2009-11-10 Samsung Mobile Display Co., Ltd. Method for manufacturing transistor and image display device using the same
US7951658B2 (en) 2003-11-24 2011-05-31 Samsung Mobile Display Co., Ltd. Method for manufacturing diode-connected transistor and image display device using the same
US20160315200A1 (en) * 2015-04-21 2016-10-27 Incheon University Industry Academic Cooperation Foundation Method of manufacturing amorphous igzo tft-based transient semiconductor
US10134913B2 (en) * 2015-04-21 2018-11-20 Incheon University Industry Academic Cooperation Foundation Method of manufacturing amorphous IGZO TFT-based transient semiconductor
CN110265303A (en) * 2019-06-12 2019-09-20 深圳市华星光电半导体显示技术有限公司 A kind of production method of display panel
CN110265303B (en) * 2019-06-12 2021-04-02 深圳市华星光电半导体显示技术有限公司 Manufacturing method of display panel
US11158724B1 (en) 2019-06-12 2021-10-26 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Method of manufacturing display panel

Similar Documents

Publication Publication Date Title
JPH0465548B2 (en)
JPS58115864A (en) Semiconductor device
JPS60189971A (en) Manufacture of semiconductor device
JPS61105870A (en) Manufacture of thin film transistor
JPH0621099A (en) Manufacture of gaas mesfet
JPS59181064A (en) Semiconductor device
JPS6184868A (en) Nonvolatile semiconductor memory device
JPS61187274A (en) Manufacture of thin-film transistor
JPS5856467A (en) Manufacture of semiconductor device
JPH0231468A (en) Manufacture of floating gate type semiconductor memory device
JPS6161544B2 (en)
JP2690218B2 (en) Method for manufacturing field effect transistor
JPS6237964A (en) Schottky barrier type semiconductor device and manufacture thereof
JPH0349235A (en) Manufacture of mos-type semiconductor device
JPH0247853B2 (en)
JPS62104078A (en) Manufacture of semiconductor integrated circuit device
JPH055172B2 (en)
JPH0464470B2 (en)
JPH0231467A (en) Manufacture of non-volatile semiconductor memory device
JPH0349230A (en) Semiconductor device and manufacture thereof
JPS6265465A (en) Manufacture of insulated-gate type semiconductor device
JPS60192363A (en) Manufacture of schottky barrier junction
JPS6132577A (en) Manufacture of thin-film semiconductor field-effect transistor
JPS6252965A (en) Manufacture of semiconductor device
JPH0298173A (en) Manufacture of semiconductor memory