JPS6121319B2 - - Google Patents

Info

Publication number
JPS6121319B2
JPS6121319B2 JP57018836A JP1883682A JPS6121319B2 JP S6121319 B2 JPS6121319 B2 JP S6121319B2 JP 57018836 A JP57018836 A JP 57018836A JP 1883682 A JP1883682 A JP 1883682A JP S6121319 B2 JPS6121319 B2 JP S6121319B2
Authority
JP
Japan
Prior art keywords
strip
electrolytic cell
flow
liquid
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57018836A
Other languages
Japanese (ja)
Other versions
JPS58136796A (en
Inventor
Kango Sakai
Yasuo Shimokawa
Hirobumi Nakano
Katsushi Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP57018836A priority Critical patent/JPS58136796A/en
Priority to AU10969/83A priority patent/AU540287B2/en
Priority to US06/463,835 priority patent/US4491506A/en
Priority to CA000421258A priority patent/CA1227450A/en
Priority to EP83300671A priority patent/EP0086115B1/en
Priority to ES519686A priority patent/ES8403535A1/en
Priority to DE8383300671T priority patent/DE3372992D1/en
Priority to AT83300671T priority patent/ATE28906T1/en
Priority to KR1019830000538A priority patent/KR890003409B1/en
Publication of JPS58136796A publication Critical patent/JPS58136796A/en
Publication of JPS6121319B2 publication Critical patent/JPS6121319B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)

Description

【発明の詳細な説明】 本発明はストリツプの電気めつき等を行うため
の水平型流体支持電解槽に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a horizontal fluid-supported electrolytic cell for electroplating strips and the like.

電気めつきを連続的に行う方法には竪型浸漬方
式、横型方式が実施されている。電気めつき方法
において優れたものはより高電流密度で金属を電
析出来且つ低電圧操業が可能な装置を有し、品質
的に優れた製品を提供出来ることにある。高電流
密度化の方策は(1)式で示されるように限界電流密
度idを大きくすることである。
A vertical dipping method and a horizontal method are used to perform electroplating continuously. The superiority of electroplating methods is that they have equipment that can deposit metals at higher current densities and operate at lower voltages, and that they can provide products of superior quality. The strategy for increasing the current density is to increase the critical current density id, as shown by equation (1).

id=nFDC/δ…(1) id=限界電流密度(A/cm2) n=金属イオンの荷電数 F=フアラデー定数 D=金属イオンの拡散係数(cm2/sec) C=金属イオン濃度 δ=拡散層の厚さ そのためには、溶液面の改良策として、金属イ
オンの濃度アツプ、浴温アツプ等が提案出来る。
一方、拡散層δは、電解面めつき液の移動速度即
ち、撹拌や流速アツプによつて小さくなることが
知られており、ストリツプの全幅にわたつて均一
な流速効果を与えられる電解槽が望ましい。又、
低電圧操業に対しては(2)式で表わされるように、
ストリツプ抵抗、液抵抗およびガス溜りによる電
圧アツプを考慮する必要がある。
id=nFDC/δ...(1) id=Limiting current density (A/ cm2 ) n=Number of charges of metal ions F=Faraday's constant D=Diffusion coefficient of metal ions ( cm2 /sec) C=Metal ion concentration δ =Thickness of the diffusion layer To this end, increasing the concentration of metal ions, increasing the bath temperature, etc. can be proposed as measures to improve the solution surface.
On the other hand, it is known that the diffusion layer δ becomes smaller as the moving speed of the electrolytic surface plating solution increases, such as stirring or increasing the flow rate, so an electrolytic cell that can provide a uniform flow rate effect over the entire width of the strip is desirable. . or,
For low voltage operation, as expressed by equation (2),
Voltage increases due to strip resistance, liquid resistance, and gas accumulation must be considered.

T=Vd+Vs+Vl+Vg ……(2) VT=極間電圧 Vd=分解電圧 Vs=ストリツプ抵抗Rsによる電圧。コンダ
クターロールから陽極迄の有効長Lに比
例。
V T = Vd + Vs + Vl + Vg (2) V T = Voltage between electrodes V d = Decomposition voltage V s = Voltage due to strip resistor Rs. Proportional to the effective length L from the conductor roll to the anode.

=I・Rs・L Vl=液抵抗Reによる電圧。極間距離Hに比
例。
=I・Rs・L Vl=Voltage due to liquid resistance Re. Proportional to distance H between poles.

=I・Re・H Vg=ガス溜りによる電圧。 =I・Re・H Vg = voltage due to gas accumulation.

前記の(2)式から明らかな如く低電圧操業を達成
するためのメツキセル設計は極間距離を出来るだ
け短縮出来ること、陽極で発生する酸素ガスを出
来るだけすみやかに電極間から除去出来ることに
ポイントを置かねばならない。又、コンダクター
ロールの配置や、高電導性のメツキ浴およびメツ
キ条件を採用すべきことは言うまでもない。最後
に品質は、限界電流密度以内であれば従来の低電
流密度電解のものより劣化しないことが必要であ
る。
As is clear from equation (2) above, the key points of the Metsuki cell design to achieve low voltage operation are to shorten the distance between the electrodes as much as possible and to remove the oxygen gas generated at the anode from between the electrodes as quickly as possible. must be placed. It goes without saying that the arrangement of the conductor rolls and the plating bath and plating conditions with high conductivity should be adopted. Finally, the quality must not deteriorate compared to conventional low current density electrolysis within a critical current density.

上述したごとき条件になるべく近づけるために
改良された電気めつき方法および装置として多く
の技術開発がなされている。例えば特公昭50−
8020に記載の水平直線型セルでメツキ液をストリ
ツプの進行方向に向流的に強制循環させる方法、
特公昭46−7162記載の通電ドラムの囲りをストリ
ツプを接触移動させ、ドラムに近接して湾曲型の
陽極を用いる方法、特開昭54−138831記載の陽極
に設けたスリツトもしくは小孔からめつき液をス
トリツプに噴射しながらめつきする方法、特公昭
45−7482記載のストリツプの横方向から電解液を
供給する方法、その他ジエツト流による方法(金
属表面技術21,(3),119(1971)記載)、などがあ
る。
Many technological developments have been made to improve electroplating methods and apparatuses in order to come as close as possible to the conditions described above. For example, special public service in the 1970s.
8020, in which the plating liquid is forced to circulate countercurrently in the direction of movement of the strip in a horizontal linear cell;
The method described in Japanese Patent Publication No. 46-7162, in which a strip is brought into contact with the surroundings of an energizing drum, and a curved anode is used close to the drum, and the method of plating through a slit or small hole provided in the anode, described in Japanese Patent Publication No. 54-138831. Method of plating while spraying liquid onto the strip, Tokkosho
45-7482, and another method using a jet flow (described in Metal Surface Technology 21, (3), 119 (1971)).

これらの方法はそれぞれ優れためつき方法であ
り、高効率セル開発に貢献して来た。しかしなが
ら、近年要求されるところのより高効率なセルと
してはそれぞれ限界があり対応が難しい。例えば
特公昭50−8020は近接化、限界電流密度に限界が
あり、電極の中央部よりメツキ液を吹き込む電解
セルACIC(鉄鋼協会講演大会要旨集1981−
S334)への改良が提案されている。しかしこの
ACIC法でも後述するように均一流が得られない
問題点を有する。又特公昭46−7162、特開昭54−
138831の方法は片面メツキ専用である。更に、特
公昭45−7482の方法はストリツプの支持および巾
方向の流速分布の均一化に限界がある。
Each of these methods is an excellent storage method and has contributed to the development of high-efficiency cells. However, each of these has its own limitations and is difficult to meet as a highly efficient cell, which is required in recent years. For example, the 1980-8020 Special Publication Act (Iron and Steel Institute of Japan Lecture Conference Abstracts 1981-
Improvements to S334) have been proposed. But this
The ACIC method also has the problem that a uniform flow cannot be obtained, as will be described later. Also, Special Publication 1971-7162, Special Publication 1971-
Method 138831 is only for single-sided plating. Furthermore, the method disclosed in Japanese Patent Publication No. 45-7482 has limitations in supporting the strip and making the flow velocity distribution uniform in the width direction.

本発明者等は前記した従来法に問題点を解決
し、しかも近年の電気メツキ鋼板の儒要増に対処
出来る200A/dm2の高電流密度、極間距離5mm
の近接電解が可能な新しい高効率電解槽を提供す
るとともに、品質の良い安価な電気メツキ鋼板を
提供するこを目的に研究に行い、ストリツプに対
向配置した一対の電極パツドを設けたスリツトか
らメツキ液を噴出させてメツキ液を電極間に保持
すると同時に、その時発生する流体の静圧によつ
てストリツプ電極間に支持する電解方法および装
置を発明し特許出願した(特開昭56−127789およ
び特開昭56−127799)。この方法および装置は明
細書および図面に示したように電極自身の全面に
スリツトを設けたパツドを使用したものである。
従つて、竪型の電解の場合には高効率の電解の目
的を完全に発揮する。しかしこの先願発明をその
まま水平型電解槽に適用した場合には、メツキ液
の自由落下がないためメツキ液がスリツト内に封
じ込められやすく、メツキ液の流れは少なからず
乱流状態となる。従つて近接化のための流体支持
力は大きいが、イオン供給、ガス除去の点で劣
り、高電流密度化を達成するには必ずしも満足の
行く成果が得られない難点がある。
The present inventors have solved the problems with the conventional method described above, and have developed a method with a high current density of 200 A/dm 2 and a distance between poles of 5 mm, which can cope with the recent increase in the electrical strength of electroplated steel sheets.
The purpose of this research was to provide a new high-efficiency electrolytic cell capable of close electrolysis, as well as to provide high-quality, inexpensive electroplated steel sheets. He invented and applied for a patent on an electrolytic method and device that maintains the plating solution between the electrodes by ejecting the liquid and at the same time supports it between the strip electrodes using the static pressure of the fluid generated at the time (Japanese Patent Laid-Open No. 56-127789 and 127799). This method and apparatus utilizes a pad with slits on the entire surface of the electrode itself, as shown in the specification and drawings.
Therefore, in the case of vertical electrolysis, the purpose of high efficiency electrolysis is fully achieved. However, if this prior invention is applied as is to a horizontal electrolytic cell, the plating liquid is likely to be confined within the slit because there is no free fall of the plating liquid, and the flow of the plating liquid becomes quite turbulent. Therefore, although the fluid supporting force for proximity is large, it is inferior in terms of ion supply and gas removal, and has the disadvantage that satisfactory results cannot always be obtained in achieving high current density.

本発明は水平型の電気メツキ装置において、電
極の一部に流体パツドを設け、その静圧力によつ
てカテナリーを小なくしてストリツプを支持する
と同時に更にその静圧力を調整することによつて
電極間のメツキ液の流れを改善し、イオンの安定
供給およびガスの急速除去を可能にした理想的な
水平型メツキ装置を提供するものである。
In a horizontal electroplating device, the present invention provides a fluid pad in a part of the electrode, and uses the static pressure of the fluid pad to reduce the size of the catenary and support the strip. The present invention provides an ideal horizontal plating device that improves the flow of the plating liquid and enables stable supply of ions and rapid removal of gas.

なお、前述した如く現在最も優れた水平型の電
解槽としてACICがある。しかしながら、ACIC
も高効率化に限界値がある。
As mentioned above, ACIC is currently the most excellent horizontal electrolytic cell. However, ACIC
However, there is a limit to how high efficiency can be achieved.

以下本発明のメツキ装置の構成と効果について
ACICと対比しながら説明する。
Below is the configuration and effects of the plating device of the present invention.
This will be explained in comparison with ACIC.

第1図、第2図に本発明の基本的な断面構造図
を示す。第1図イにおいてはストリツプ3の上下
に陽極1を内蔵した箱型槽2を配置する。箱型槽
2の中央部に流体パツド12を導入し、メツキ液
はヘツダー10より流体パツド12のストリツプ
対向面に設けたスリツト16よりストリツプ面に
向つて噴出せしめる。メツキ液はストリツプの進
行方向(以下並行流と呼ぶ)とストリツプと逆方
向(以下対向流と呼ぶ)に分流された排出口9お
よび8より流出する。排出口8,9にはメツキ流
出量制御板11があり、該制御板11を上下に移
動してストリツプとの間隙をコントロールして流
量を制御する。流出口8,9より流出したメツキ
液は、コンダクターロール6およびバツクアツプ
ロール7にてせきとめられ受槽4に受け止められ
メツキ液取出し口5より図示していないが循環タ
ンクに入り、ポンプによつてヘツダー10に強制
循環する。給電はコンダクターロール6からスト
リツプへ、又ブスバーを介して陽極にそれぞれ行
う。矢印の記号で電極間の液の流れの様子を図示
した。
FIGS. 1 and 2 show basic cross-sectional structural diagrams of the present invention. In FIG. 1A, a box-shaped tank 2 containing an anode 1 is placed above and below a strip 3. A fluid pad 12 is introduced into the center of the box-shaped tank 2, and plating liquid is ejected from a header 10 toward the strip surface through a slit 16 provided on the surface of the fluid pad 12 facing the strip. The plating liquid flows out from the discharge ports 9 and 8, which are divided into the advancing direction of the strip (hereinafter referred to as parallel flow) and the direction opposite to the strip (hereinafter referred to as countercurrent flow). At the discharge ports 8 and 9, there are plated outflow rate control plates 11, which are moved up and down to control the gap with the strip and thereby control the flow rate. The plating liquid flowing out from the outflow ports 8 and 9 is stopped by the conductor roll 6 and back-up roll 7, is received in the receiving tank 4, enters the circulation tank (not shown) from the plating liquid outlet 5, and is sent to the header by a pump. Forced circulation to 10. Power is supplied from the conductor roll 6 to the strip and to the anode via the bus bar. The flow of liquid between the electrodes is illustrated using arrow symbols.

第1図ロ,ハは本発明電解槽の横断面図の1例
を示す。同図ロはイ図のA−A′部断面を、又ハ
はイ図のB−B′部断面を示す。又必要によつては
ストリツプの端部にシーリング機構、例えば、水
平方向に移動自在の支持具18に接続するエツジ
マスク17を設けることができる。又エツジマス
ク17を用いない場合若しくは支持具18が槽内
に収まる場合には、第1図のロ図及びハ図の側壁
は1体化するのが好ましい。
FIGS. 1B and 1C show an example of a cross-sectional view of the electrolytic cell of the present invention. In the same figure, B shows a cross-section taken along the line A-A' in Fig. A, and C shows a cross-section taken along the line B-B' in Fig. A. If necessary, the ends of the strips can also be provided with sealing mechanisms, for example edge masks 17 connected to horizontally movable supports 18. Further, when the edge mask 17 is not used or when the support 18 is accommodated within the tank, it is preferable that the side walls shown in FIG. 1B and C are integrated.

第2図も本発明の基本的な断面構造図である。
第1図のメツキ液流出量制御板11に代えて液シ
ールノズル13をストリツプ入口8及びストリツ
プ出口9に設けている。液シールノズル13へは
液シールヘツダー14もしくはヘツダー10から
分流して給液する。又、図示する如く陽極1への
ストリツプの接触事故を防止するため邪魔板15
を陽極に取りつけている。
FIG. 2 is also a basic sectional structural diagram of the present invention.
In place of the plating liquid outflow control plate 11 shown in FIG. 1, liquid seal nozzles 13 are provided at the strip inlet 8 and the strip outlet 9. The liquid is supplied to the liquid seal nozzle 13 by branching from the liquid seal header 14 or the header 10. Additionally, as shown in the figure, a baffle plate 15 is installed to prevent the strip from coming into contact with the anode 1.
is attached to the anode.

第3図は第2図をストリツプ面から見た平面図
である。点線で示した17はエツジのシーリング
機構でストリツプの両サイドに設置し電解槽内の
静圧を上昇させると共にストリツプの巾方向の流
速分布を均一にする効果がある。シーリング機構
としては液体カーテンあるいは従来のストリツプ
の巾方向に移動し近接化することによつてメツキ
のエツジオーバーコートおよび裏廻りを抑える公
知のエツジマスクによつても達成出来る。
FIG. 3 is a plan view of FIG. 2 viewed from the strip surface. The edge sealing mechanism 17 indicated by the dotted line is installed on both sides of the strip and has the effect of increasing the static pressure inside the electrolytic cell and making the flow velocity distribution uniform in the width direction of the strip. The sealing mechanism can also be accomplished by a liquid curtain or conventional edge mask, which moves across the width of the strip and brings it into close proximity to reduce plating edge overcoat and backing.

上記流体パツド12にはスリツト16が設けら
れている。又、液シールノズルにも当然スリツト
16′が設けられている。スリツトの形状、間
隙、角度等は後述するごとく、目的に応じた設計
によつて決定する。第1図および第2図は基本的
な本発明の構成であり、流体パツドの位置、機能
的な応用も当然本発明に包含される。例えば流体
パツド12を箱型槽2から独立して上下に移動可
能にする例、あるいは、液シールノズル13の多
数本化、スリツトの噴射角度変更機構、シールレ
ズルに流体パツドを用いること等も本発明の一例
である。
A slit 16 is provided in the fluid pad 12 . Naturally, the liquid seal nozzle is also provided with a slit 16'. The shape, gap, angle, etc. of the slit are determined by design according to the purpose, as will be described later. 1 and 2 show the basic configuration of the present invention, and the position and functional application of the fluid pads are naturally included in the present invention. For example, the present invention also includes an example in which the fluid pad 12 is made vertically movable independently from the box-shaped tank 2, a multiplicity of liquid seal nozzles 13, a mechanism for changing the spray angle of the slit, and a fluid pad used in the seal nozzle. This is an example.

更にエツジシール機構の有無,構造,配置の仕
方,エツジマスク17の有無,構造,配置,移動
機構も本発明の流体パツドを用いた水平型流体支
持電解槽に含まれる。
Furthermore, the presence or absence of an edge seal mechanism, its structure and arrangement, the presence or absence of an edge mask 17, its structure, arrangement, and movement mechanism are also included in the horizontal fluid support electrolytic cell using the fluid pad of the present invention.

第4図は流体パツドに設けたスリツトの構成の
例を示したものである。いずれもスリツトで囲ま
れた面内に静圧が発生する。アはシングルスリツ
ト構造、イはストリツプ巾方向の位置にストリツ
プの進行方向と平行に1あるいは2本以上のスリ
ツトを設けた例、以下ウ,エ,オ,カは、ストリ
ツプ進行方向に対して傾斜,カーブを与えた例、
キ,クはダブルにスリツトを入れた例である。
FIG. 4 shows an example of the configuration of the slit provided in the fluid pad. In both cases, static pressure is generated within the plane surrounded by the slit. A is a single slit structure, B is an example in which one or more slits are provided parallel to the direction of strip movement, and C, E, O, and F are inclined with respect to the direction of strip movement. , an example of giving a curve,
K and K are examples of double slits.

第5図は流体パツド部分のストリツプ巾方向か
らみた断面模式図の一例である。当然第4図のノ
ズル形状によつて変つて来る。スリツトの間隙t
および角度θ,スリツト間距離ls等は目的に応じ
て決定する。又、ストリツプと流体パツドの距離
hは後述する如くストリツプ支持力Fとを重要な
関係にある。第6図は流体パツドのストリツプ進
行方向からみた断面図の一例であり、アは逆ロー
ト型でストリツプに面して流体パツドの底板19
にスリツト16が設けてある。イは箱型構造の例
である。尚、19は導電性の材料を用いて陽極板
としてもよいし、絶縁性の材料を用いてもよい。
陽極として使用する場合にはめつきむらを防止す
る点から第4図に示したスリツト形状の中では傾
斜構造,カーブ構造のものが好ましい。流体パツ
ド12内部には、第6図イに示すようにスリツト
16からバランスの良い流速を得るため均一流を
与える邪魔板20を設けることも可能である。
又、流体パツド内の体積はスリツトから噴出する
液のバツフアータンクとしての機能を持てば充分
であり、大きな構造(高さ)を持つ必要はなく、
コンパクトな設計が可能である。
FIG. 5 is an example of a schematic cross-sectional view of the fluid pad portion viewed from the strip width direction. Naturally, it changes depending on the nozzle shape shown in FIG. Slit gap t
The angle θ, the distance between slits ls, etc. are determined according to the purpose. Further, the distance h between the strip and the fluid pad has an important relationship with the strip supporting force F, as will be described later. FIG. 6 is an example of a cross-sectional view of the fluid pad seen from the strip advancing direction, and A is a reverse funnel type bottom plate 19 of the fluid pad facing the strip.
A slit 16 is provided in the. A is an example of a box-shaped structure. Note that the anode plate 19 may be made of a conductive material, or may be made of an insulating material.
When used as an anode, from the viewpoint of preventing uneven plating, among the slit shapes shown in FIG. 4, inclined structures and curved structures are preferable. Inside the fluid pad 12, as shown in FIG. 6A, a baffle plate 20 may be provided to provide a uniform flow in order to obtain a well-balanced flow velocity from the slit 16.
In addition, the volume within the fluid pad is sufficient as long as it functions as a buffer tank for the liquid ejected from the slit, and there is no need for it to have a large structure (height).
A compact design is possible.

次に、本発明の電解槽の機能とその効果につい
て詳述する。
Next, the functions and effects of the electrolytic cell of the present invention will be explained in detail.

本発明は前述した流体パツドによつて生ずる静
圧によつてストリツプを支持し近接した極間距離
で電解を可能にする。又、公知の水平型セルでは
制御出来なかつたストリツプのスピードに依存す
る並行流と対向流の流速バランスの制御を可能と
し、又渦流の解消についても解決し高電流密度電
解を可能にした画期的な電解槽である。
The present invention supports the strip by the static pressure created by the fluid pads described above and allows electrolysis at close interpolar distances. In addition, it is possible to control the flow velocity balance of parallel flow and countercurrent flow depending on the speed of the strip, which could not be controlled with known horizontal cells, and it is also a breakthrough that solves the problem of eliminating eddy current and enables high current density electrolysis. It is a typical electrolytic cell.

水平型のメツキプロセスにおける課題の1つに
ストリツプのカテナリーがある。コンダクターロ
ール間のストリツプは自重および上下の液溜りの
差から弓なりの大きなカテナリーが生じ極間の近
接化に限界が生ずる。本発明はこの点を流体支持
によつて解決したものである。第7図に流体支持
メカニズムに関する図を示した。今、ストリツプ
3を挾んで流体パツド12を配置し間隙tのスリ
ツト16から流速Uでメツキ液を噴出する。流体
パツドとストリツプ間に静圧PrおよびPlが生ず
る。この静圧力は極間距離が上下等しいh0の時メ
ツキ液の密度をρとすると次式で表すことが出来
る。
One of the challenges in the horizontal plating process is the strip catenary. The strip between the conductor rolls has a catenary with a large bow due to its own weight and the difference between the upper and lower liquid pools, and there is a limit to how close the poles can be brought together. The present invention solves this problem by using fluid support. FIG. 7 shows a diagram regarding the fluid support mechanism. Now, the fluid pads 12 are placed between the strips 3, and the plating liquid is jetted out from the slit 16 at the gap t at a flow rate U. Static pressures Pr and Pl develop between the fluid pad and the strip. This static pressure can be expressed by the following equation when the distance between the poles is h 0 and the upper and lower poles are equal, and the density of the plating liquid is ρ.

Pr=Pl=ρU2t・1/h 今仮りにストリツプが△hだけ下側に移動(鎖
線3aの位置)した場合Pr>Plになり、上下の静
圧の差△Pは次式から△hに比例 △P=Pr−Pl=2ρU2t・1/h・△h △P=k・△h する。即ちストリツプは△hが大きいほど大きな
静圧力で上側に押し戻され自然にセンターリング
される。
Pr=Pl=ρU 2 t・1/h 0 Now, if the strip moves downward by △h (to the position of chain line 3a), Pr>Pl, and the difference △P between the upper and lower static pressures is calculated from the following equation. Proportional to △h △P=Pr−Pl=2ρU 2 t・1/h 0・△h △P=k・△h. That is, the larger Δh is, the more the strip is pushed back upward by a larger static force and is naturally centered.

次に第2図に示した本発明におけるストリツプ
の変位(カテナリー)と静圧の関係を第8図に示
す。アは本発明の構成図でロール距離間2500mmで
ストリツプテンシヨン0.72Kg/mm2、ストリツプは
板厚0.4mm、板巾1000mmである。流体パツドは第
4図イのスリツト形状で第5図のθ=90゜,t=
4mm,ls=200mm,h=10mm、第6図アのものを
用いた。エツジシール機構としては公知のエツジ
マスクを用い、ストリツプエツジから10mmの所に
セツトした。液シールノズルのスリツトは1.5mm
の間隙を用いた。第8図イは電極間の中央部を0
としてストリツプのボトム側のカテナリーを変位
計で測定したものである。曲線bはストリツプの
自重によるカテナリー、aは公知の電解槽で水で
噴出した場合の上下の液溜り差によるカテナリー
を示す。図から明らかなように、この様なテンシ
ヨン条件ではカテナリーが10mm以上にも及び極間
の近接化は不可能である。曲線cは本発明におい
て液体パツドQ1より0.8m3/分の流量でメツキ液
を噴出させた変位曲線である。この時のストリツ
プの上部,下部の静圧分布を第8図ウのそれぞれ
T(上部)、CB(下部)に示した。ストリツプ
はW字状に中央センタリーングされカテナリーは
4mm以下に抑えられる。更に液シール部Q2とQ3
より各々メツキ液を0.1m3/分、0.2m3/分の流量
で噴出させると静圧はdT(上部)、dB(下部)
およびeT,eBに向上しストリツプのカテナリー
はQ2=Q3=0.1m3/分の時の1mm以下(第8図曲
線d)、Q2=Q3=0.2m3/分の時0.5mm以下(第8
図曲線e)に抑えられる。これはQ2,Q3によつ
て電解槽内の静圧が全体的に増加し、センターリ
ング効果が増加するためである。
Next, FIG. 8 shows the relationship between the displacement (catenary) of the strip and static pressure in the present invention shown in FIG. 2. A is a block diagram of the present invention in which the roll distance is 2500 mm, the strip tension is 0.72 Kg/mm 2 , the thickness of the strip is 0.4 mm, and the width is 1000 mm. The fluid pad has a slit shape as shown in Figure 4A, and θ=90°, t= in Figure 5.
4 mm, ls = 200 mm, h = 10 mm, and the one shown in Figure 6 A was used. A known edge mask was used as the edge seal mechanism and was set 10 mm from the strip edge. Liquid seal nozzle slit is 1.5mm
The gap was used. In Figure 8 A, the central part between the electrodes is 0.
The catenary on the bottom side of the strip was measured using a displacement meter. Curve b shows the catenary caused by the weight of the strip, and curve a shows the catenary caused by the difference between the upper and lower liquid pools when water is ejected from a known electrolytic cell. As is clear from the figure, under such tension conditions, the catenary extends over 10 mm, making it impossible to bring the poles closer together. Curve c is a displacement curve obtained by ejecting plating liquid from liquid pad Q 1 at a flow rate of 0.8 m 3 /min in the present invention. The static pressure distributions at the top and bottom of the strip at this time are shown in C T (top) and C B (bottom), respectively, in Figure 8C. The strip is centered in a W-shape and the catenary is kept below 4mm. Furthermore, liquid seal parts Q 2 and Q 3
When plating liquid is ejected at a flow rate of 0.1 m 3 /min and 0.2 m 3 /min, the static pressures are d T (top) and d B (bottom).
and the catenary of the strip is less than 1 mm when Q 2 = Q 3 = 0.1 m 3 /min (curve d in Figure 8), and when Q 2 = Q 3 = 0.2 m 3 /min. 0.5mm or less (No. 8
It can be suppressed to the curve e) in the figure. This is because Q 2 and Q 3 increase the overall static pressure within the electrolytic cell, increasing the centering effect.

第9図に前述した交知例ACICの電解槽構成を
示した。この方式では中央部の流体支持力は液吐
出部18より噴出する動圧力に依存しておりセン
ターリング効果が弱い。又ストリツプテンシヨン
1Kg/mm2の場合最大のカテナリーは15mmにも及
び、5mmにするためにはテンシヨンを3〜4Kg/
mm2にする必要がある。
FIG. 9 shows the electrolytic cell configuration of the ACIC communication example described above. In this system, the fluid supporting force at the center depends on the dynamic pressure ejected from the liquid discharge part 18, and the centering effect is weak. Also, if the strip tension is 1Kg/ mm2 , the maximum catenary will reach 15mm, and to make it 5mm, the tension must be 3 to 4Kg/mm2.
Must be mm 2 .

本発明は詳細に述べたように、きわめて小さな
ストリツプテンシヨン状態でも流体の静圧によつ
てストリツプをセンターリングする画期的な電解
槽である。特にQ2,Q3の液シールによる相剰効
果が大きく、非接触状態で静圧力を向上させるこ
とはカテナリーの抑制に極めて有効で画期的な発
明である。
As described in detail, the present invention is an epoch-making electrolytic cell in which the strip is centered by the static pressure of the fluid even under extremely small strip tension conditions. In particular, the mutual effect of liquid sealing of Q 2 and Q 3 is large, and improving static pressure in a non-contact state is extremely effective in suppressing catenary and is an epoch-making invention.

第10図はエツジマスクなしの場合の第8図に
対応した測定結果である。曲線aは略同様の結果
であるが、c,d.eに差が認められる。エツジマ
スクを設置した方がカテナリーが小さい。しかし
エツジマスクなしでもストリツプのセンターリン
グ作用は充分発揮されている。
FIG. 10 shows measurement results corresponding to FIG. 8 without an edge mask. Curve a shows almost the same results, but there are differences in c and de. The catenary is smaller when Edgemask is installed. However, the centering effect of the strip is fully demonstrated even without the edge mask.

以下並行流、対向流に対する本発明の機能およ
び効果について詳述する。
The functions and effects of the present invention for parallel flow and counterflow will be described in detail below.

特公昭50−8020のメツキ液をストリツプに対し
て向流的に強制循環させる方法は限界流密度の増
加に効果がある。しかしながらストリツプのスピ
ードが増加すると液の粘性の点から電解槽内の流
れは乱流状になる恐れが大きく、陽極で発生する
ガス除去およびイオン供給が問題となる。従つて
多くの流量を与える必要があり限界電流密度も50
〜100A/dm2である。次にACICの場合並行流と
対向流のバランスに問題がある。即ち並行流サイ
ドはイオン供給,ガス除去は良好だが拡散層δは
相対速度が小さい。又対向流サイドはイオン供
給,ガス抜きが難しい。ACICは特公昭50−8020
に比べれば著るしい改良効果はあり限界電流密度
も増加する。しかしストリツプのスピード増に依
存する乱流化と向流化のガス除去が難しい課題が
残る。
The method disclosed in Japanese Patent Publication No. 50-8020 in which the plating liquid is forced to circulate countercurrently to the strip is effective in increasing the critical flow density. However, as the stripping speed increases, the flow within the electrolytic cell is likely to become turbulent due to the viscosity of the liquid, and gas removal and ion supply generated at the anode become problematic. Therefore, it is necessary to provide a large flow rate, and the limiting current density is also 50
~100A/ dm2 . Next, in the case of ACIC, there is a problem with the balance between parallel flow and countercurrent flow. That is, the parallel flow side has good ion supply and gas removal, but the relative velocity of the diffusion layer δ is low. Also, it is difficult to supply ions and remove gas on the counterflow side. ACIC is a special public corporation Showa 50-8020
Compared to this, there is a significant improvement effect, and the limiting current density also increases. However, the problem remains that gas removal is difficult due to turbulent flow and countercurrent flow, which depend on increasing the speed of the strip.

本発明は前述したようにストリツプのカテナリ
ーを少なくして極間の近接化を可能にすると共
に、電解液の分流を液シール機構でコントロール
することにより前記の如き従来法の流体的難題を
解決することができる。
As mentioned above, the present invention reduces the number of catenaries in the strip to enable the electrodes to be brought closer to each other, and also solves the fluid problems of the conventional method by controlling the split flow of the electrolyte using a liquid seal mechanism. be able to.

第11図の電解槽内に設けた流速計21によつ
て並行流の流速UPおよび対向流の流速URに及ぼ
すストリツプスピードVの関係を第12図に示し
た。第12図P1〜P4は並行流、R19R4は対向流を
示す。流速差ΔUはストリツプスピーードV=O
の時の液速流UとVを各々25,50,75,100m/
分にした時の液流速Uとの差である。〔P1とR1
は流体パツドを用いない動圧制御でメツキ流量
0.8m3/分の場合の結果、又〔P2とR2〕,〔P3
R3〕,〔P4とR4〕は、本発明の流体パツドを用い流
体パツド流量Q1=0.8m3/分で各々液シールの流
量が〔Q2=Q3=0〕,〔Q2=Q3=0.1m3/分〕,
〔Q2=Q3=0.2m3/分〕の場合の流速度である。
このように本発明では流体パツドの分流効果、液
シールによる流量制御により並行流、対向流に流
速差の少い均一流速が得られる。又、電極を透明
なアクリン板に変えた流体実験において、アクリ
ル電極面に流れの方向を見るタフトをとりつけ観
察した所、並行流、対向流共にストリツプの長手
方向に前後に分れた均一流線を示すことが確めら
れた。更に、Vに対しQ2とQ3を制御することに
よつて完全な分配流を得られることを確認した。
一例を挙げればストリツプスピードがV=100
m/分の時流体パツド流量Q1=0.8m3/分、液シ
ール流量Q3=0.2m3/分、Q3=0で得られる。又
Q2とQ3を制御するとともに流体パツドのスリツ
トノズルの角度を調整することによつても完全に
近い分配流が得られる。例えばV=200m/分の
場合に、第2図の下側流体パツド12の並向流側
のスリツト16の角度θを45゜とし、他のスリツ
トを90゜として、Q1=1.2m3/分,Q2=Q3=0.15
m3/分で得られ、ガス溜り等が生じない。
FIG. 12 shows the relationship of the strip speed V on the flow velocity UP of the parallel flow and the flow velocity UR of the counterflow, measured by the current meter 21 installed in the electrolytic cell shown in FIG. 11. FIG. 12 P 1 to P 4 indicate parallel flow, and R 1 9R 4 indicate counter flow. The flow velocity difference ΔU is the strip speed V=O
The liquid velocity flows U and V at 25, 50, 75, and 100 m/
This is the difference from the liquid flow rate U in minutes. [P 1 and R 1 ]
is the plating flow rate by dynamic pressure control without using a fluid pad.
The results for the case of 0.8 m 3 /min and [P 2 and R 2 ], [P 3 and
R 3 ], [P 4 and R 4 ] are the fluid pad flow rate Q 1 = 0.8 m 3 /min using the fluid pad of the present invention, and the flow rates of the liquid seal are [Q 2 = Q 3 = 0] and [Q 2 = Q 3 = 0.1m 3 /min],
This is the flow velocity when [Q 2 = Q 3 = 0.2 m 3 /min].
As described above, in the present invention, a uniform flow velocity with little difference in flow velocity can be obtained between the parallel flow and the counterflow by the flow rate control by the flow dividing effect of the fluid pad and the liquid seal. In addition, in a fluid experiment in which the electrode was changed to a transparent acrylic plate, a tuft to observe the direction of flow was attached to the acrylic electrode surface, and when observed, uniform streamlines were observed that were divided into front and back sections in the longitudinal direction of the strip in both parallel and countercurrent flows. It was confirmed that Furthermore, it was confirmed that by controlling Q 2 and Q 3 with respect to V, a perfect distributed flow could be obtained.
For example, the strip speed is V=100
m/min, the fluid pad flow rate Q 1 =0.8 m 3 /min, the liquid seal flow rate Q 3 =0.2 m 3 /min, and Q 3 =0 are obtained. or
A nearly perfect distributed flow can also be obtained by controlling Q 2 and Q 3 and adjusting the angle of the slit nozzle of the fluid pad. For example, when V=200 m/min, the angle θ of the slit 16 on the parallel flow side of the lower fluid pad 12 in FIG . minutes, Q 2 = Q 3 = 0.15
m 3 /min, and no gas accumulation occurs.

本発明におけるストリツプスピードVに依存し
ない分配流の効果は次のように説明出来る。中央
部に設た流体パツドはその静圧から一種の壁とし
て作用し、ストリツプによるメツキ液の持ち込み
を遮断する。一方並行流のストリツプによるメツ
キ液の持ち出しは、ストリツプ出側の液カーテン
で制御され流体パツドを挾む両側の流量は分配さ
れ流速差が小さくなる。均一流速を得るために場
合によつては、流体パツドの位置を電極1のセン
ターにおかず、中央より前後にずらした構造をと
ることも効果がある。又、前述した如くスリツト
角θも効果がある。
The effect of the distributed flow independent of the strip speed V in the present invention can be explained as follows. The fluid pad located in the center acts as a kind of wall due to its static pressure and blocks the plating liquid from being brought in by the strip. On the other hand, the removal of the plating liquid by the strip in parallel flow is controlled by a liquid curtain on the outlet side of the strip, and the flow rate on both sides sandwiching the fluid pad is divided, reducing the difference in flow velocity. In order to obtain a uniform flow velocity, it may be effective in some cases to position the fluid pad not at the center of the electrode 1, but to shift it back and forth from the center. Furthermore, as mentioned above, the slit angle θ is also effective.

以上並行流、対向流に対する本発明の効果を述
べた。最後に第13図に本発明の電解槽を用い
て、第12図の〔P4とR4〕の条件で電気亜鉛メツ
キを行つた例を示す。ストリツプスピード100
m/分の時の電流密度と極間電圧の関係を示す。
図中Vdは分解電圧、Vsはストリツプ抵抗による
電圧H=5,H=7.5,H=10,H=15はそれぞ
れ極間距離5mm,7.5mm,10mm,15mmの時の電圧
を示す。直線は計算によつて出したもので直線近
傍の〇印、△印、□印、●印が実測値である。従
来技術では難しかつた電流密度200A/dm2にお
いても殆んど直線にのつておりガス溜りによる電
圧の異常アツプは全く観察されずメツキやけも発
生しなかつた。更に静圧流体支持によつてカテナ
リーを少くできるので極間距離が大巾に短縮さ
れ、200A/dm2−12Vの低電圧操業が可能となつ
た。
The effects of the present invention on parallel flow and counterflow have been described above. Finally, FIG. 13 shows an example in which electrogalvanizing was performed using the electrolytic cell of the present invention under the conditions of [P 4 and R 4 ] in FIG. 12. strip speed 100
The relationship between current density in m/min and voltage between electrodes is shown.
In the figure, Vd is the decomposition voltage, and Vs is the voltage due to the strip resistor. H=5, H=7.5, H=10, and H=15 indicate the voltages when the distance between the electrodes is 5 mm, 7.5 mm, 10 mm, and 15 mm, respectively. The straight line was drawn by calculation, and the 〇, △, □, and ● marks near the straight line are actually measured values. Even at a current density of 200 A/dm 2 , which was difficult with the conventional technology, the current density was almost linear, and no abnormal voltage increase due to gas accumulation was observed, and no plating loss occurred. Furthermore, since the catenary can be reduced due to the hydrostatic fluid support, the distance between the poles can be greatly shortened, making it possible to operate at a low voltage of 200 A/dm 2 -12 V.

以上本発明の電解槽の構成,流体支持,均一流
速効果,メツキに関し詳述した如く、本発明は公
知の技術では成し得なかつた高能率の電解を可能
とした画期的な発明である。
As described above in detail regarding the structure, fluid support, uniform flow rate effect, and plating of the electrolytic cell of the present invention, the present invention is an epoch-making invention that enables highly efficient electrolysis that could not be achieved with known techniques. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図イは本発明の電解槽の断面構成図を示
す。第1図ロ及びハは本発明の電解槽の横断面図
を示す。第2図は液シールノズル13を配置した
本発明の断面構成図である。第3図は第2図のス
トリツプ面から見た平面図でエツジマスク17を
つけた例。第4図は流体パツド12のスリツト平
面図。第5図および第6図は流体パツドの断面基
本図。第7図は流体パツドによるストリツプの自
動センターリング機構を示す図。第8図は本発明
の実施例を示す。アの構成に対するストリツプの
カテナリーイと静圧ウを示している。第9図は公
知例としてACICを示す。第10図は第8図に対
応してエツジマスクを使用しなかつた場合の実施
例でストリツプのカテナリーの図である。第11
図は流体パツド12前後の並行流と対向流の流速
を測定した実施例を示し、第12図はその結果で
あり、P1,R1は公知の技術、〔P2,R2
は本発明の結果である。第13図は第12図の
〔P4,R4〕の条件で電気亜鉛メツキを行つた時の
電流密度と電圧の関係を示す実施例で直線が計算
値で〇,△,□,●印が測定結果である。 1……陽極、2……断面矩形の箱型槽、3……
ストリツプ、4……受槽、5……めつき液取出し
口、6……コンダクターロール、7……バツクア
ツプロール、8……ストリツプ入口(メツキ液排
出)、9……ストリツプ出口(メツキ液排出)、1
0……メツキ液供給ヘツダー、11……メツキ液
流出量制御板、12……流体パツド、13……液
シールノズル、14……液シールヘツダー、15
……邪魔板、16,16′……スリツト、17…
…エツジマスク、18……液吐出部、19……流
体パツド底板、20……均一流を与える邪魔板、
21……流速計。
FIG. 1A shows a sectional view of the electrolytic cell of the present invention. FIGS. 1B and 1C show cross-sectional views of the electrolytic cell of the present invention. FIG. 2 is a cross-sectional configuration diagram of the present invention in which the liquid seal nozzle 13 is arranged. FIG. 3 is a plan view seen from the strip surface of FIG. 2, and shows an example in which an edge mask 17 is attached. FIG. 4 is a plan view of the slit of the fluid pad 12. 5 and 6 are basic cross-sectional views of the fluid pad. FIG. 7 is a diagram showing an automatic strip centering mechanism using a fluid pad. FIG. 8 shows an embodiment of the invention. The catenary A and static pressure C of the strip are shown for the configuration A. FIG. 9 shows ACIC as a known example. FIG. 10 is a diagram of the catenary of the strip in an embodiment in which no edge mask is used, corresponding to FIG. 8. 11th
The figure shows an example in which the flow velocities of parallel flow and counterflow before and after the fluid pad 12 were measured, and FIG . 12 shows the results . 4 ]
is the result of the present invention. Figure 13 is an example showing the relationship between current density and voltage when electrogalvanizing is performed under the conditions of [P 4 , R 4 ] in Figure 12. The straight lines are calculated values and are marked with 〇, △, □, and ●. is the measurement result. 1... Anode, 2... Box-shaped tank with a rectangular cross section, 3...
Strip, 4... Receiver, 5... Plating liquid outlet, 6... Conductor roll, 7... Backup roll, 8... Strip inlet (plating liquid discharge), 9... Strip outlet (plating liquid discharge) ,1
0...Plating liquid supply header, 11...Plating liquid outflow control plate, 12...Fluid pad, 13...Liquid seal nozzle, 14...Liquid seal header, 15
...Baffle plate, 16, 16'...Slit, 17...
... Edge mask, 18 ... Liquid discharge part, 19 ... Fluid pad bottom plate, 20 ... Baffle plate that provides uniform flow,
21... Velocity meter.

Claims (1)

【特許請求の範囲】 1 水平に通過するめつきすべきストリツプの上
下両面に不溶性材料からなる陽極を対向配置した
電解槽において、ストリツプ面に対向して静圧流
体支持パツドと、該パツドのストリツプ進行方向
の両側に陽極を配設し、さらにこれらの陽極のス
トリツプ入側部と出側部に電解液の流出量制御機
構を設けたことを特徴とするストリツプの水平型
流体支持電解槽。 2 電解槽のストリツプ進行方向における中央部
に静圧流体支持パツドを設けた特許請求の範囲第
1項記載の水平型流体支持電解槽。 3 電解液の流出量制御機構が電解液噴射手段を
有する液体シール装置である特許請求の範囲第1
項記載の水平型流体支持電解槽。 4 ストリツプの巾方向端部に相当する位置の近
傍に電解液のシール機構を設けた特許請求の範囲
第1項,第2項又は第3項記載の水平型流体支持
電解槽。 5 電解液のシール機構がエツジマスクである特
許請求の範囲第4項記載の水平型流体支持電解
槽。
[Scope of Claims] 1. In an electrolytic cell in which anodes made of an insoluble material are disposed facing each other on both upper and lower surfaces of a strip to be plated that passes horizontally, a hydrostatic fluid support pad is provided opposite to the strip surface, and a pad that supports the strip as it advances. 1. A strip horizontal fluid support electrolytic cell, characterized in that anodes are disposed on both sides of the strip, and an electrolyte outflow control mechanism is provided on the inlet and outlet sides of the anodes. 2. The horizontal fluid support electrolytic cell according to claim 1, wherein a hydrostatic fluid support pad is provided at the center of the electrolytic cell in the direction of strip movement. 3. Claim 1, wherein the electrolytic solution outflow amount control mechanism is a liquid sealing device having an electrolytic solution injection means.
Horizontal fluid-supported electrolytic cell as described in . 4. The horizontal fluid support electrolytic cell according to claim 1, 2 or 3, wherein an electrolyte sealing mechanism is provided near a position corresponding to the widthwise end of the strip. 5. The horizontal fluid support electrolytic cell according to claim 4, wherein the electrolyte sealing mechanism is an edge mask.
JP57018836A 1982-02-10 1982-02-10 Horizontal type fluid supporting electrolytic cell for strip Granted JPS58136796A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP57018836A JPS58136796A (en) 1982-02-10 1982-02-10 Horizontal type fluid supporting electrolytic cell for strip
AU10969/83A AU540287B2 (en) 1982-02-10 1983-02-03 Continuous electrolytic treatment of metal strip using horizontal electrodes
US06/463,835 US4491506A (en) 1982-02-10 1983-02-04 Process and apparatus for the continuous electrolytic treatment of a metal strip using horizontal electrodes
CA000421258A CA1227450A (en) 1982-02-10 1983-02-09 Electrolytic treatment of strip using closed channel slit nozzles in narrow treating space
EP83300671A EP0086115B1 (en) 1982-02-10 1983-02-10 Process and apparatus for the continuous electrolytic treatment of a metal strip using horizontal electrodes
ES519686A ES8403535A1 (en) 1982-02-10 1983-02-10 Process and apparatus for the continuous electrolytic treatment of a metal strip using horizontal electrodes.
DE8383300671T DE3372992D1 (en) 1982-02-10 1983-02-10 Process and apparatus for the continuous electrolytic treatment of a metal strip using horizontal electrodes
AT83300671T ATE28906T1 (en) 1982-02-10 1983-02-10 METHOD AND DEVICE FOR THE CONTINUOUS ELECTROLYTIC TREATMENT OF A METAL STRIP USING HORIZONTAL ELECTRODES.
KR1019830000538A KR890003409B1 (en) 1982-02-10 1983-02-10 Process and apparatus for the continuous electrolytic treatment of a metal strip using horizontal electrodes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57018836A JPS58136796A (en) 1982-02-10 1982-02-10 Horizontal type fluid supporting electrolytic cell for strip

Publications (2)

Publication Number Publication Date
JPS58136796A JPS58136796A (en) 1983-08-13
JPS6121319B2 true JPS6121319B2 (en) 1986-05-26

Family

ID=11982643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57018836A Granted JPS58136796A (en) 1982-02-10 1982-02-10 Horizontal type fluid supporting electrolytic cell for strip

Country Status (1)

Country Link
JP (1) JPS58136796A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60131992A (en) * 1983-12-20 1985-07-13 Sumitomo Metal Ind Ltd Method and device for continuous type alloy electroplating
JPS61213388A (en) * 1985-03-18 1986-09-22 Sumitomo Metal Ind Ltd Production of aluminum-electroplated steel sheet
JPS6324095A (en) * 1986-03-27 1988-02-01 Nippon Kokan Kk <Nkk> Method and apparatus for electroplating
JPS6479394A (en) * 1987-09-22 1989-03-24 Nisshin Steel Co Ltd Aluminum electroplating method
JP2011225923A (en) * 2010-04-16 2011-11-10 Nippon Steel Engineering Co Ltd Horizontal type fluid support plating device
CN106757166B (en) * 2017-02-24 2023-08-18 新乡宏达冶金振动设备有限公司 Positioning device for loading bell jar

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56153136A (en) * 1980-04-30 1981-11-27 Nippon Steel Corp Noncontact type vibration damping method for strip

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56153136A (en) * 1980-04-30 1981-11-27 Nippon Steel Corp Noncontact type vibration damping method for strip

Also Published As

Publication number Publication date
JPS58136796A (en) 1983-08-13

Similar Documents

Publication Publication Date Title
US4310403A (en) Apparatus for electrolytically treating a metal strip
JPS59162298A (en) High current density plating method of metallic strip
JPS6121319B2 (en)
KR20120063824A (en) Electric plating apparatus with horizontal cell
KR101493852B1 (en) Apparatus for coating of strip
JP3402423B2 (en) Method and apparatus for preventing vibration of metal strip in electroplating tank
CA1165271A (en) Apparatus and method for plating one or both sides of metallic strip
JPS5985891A (en) Method and cell for electrolysis with uniform flow of electrolyte
JPS5915997B2 (en) Strip proximity electrolyzer
JP2588454B2 (en) Vertical jet plating equipment
JPS6116433B2 (en)
JPH06256991A (en) Continuous electroplating device for steel strip
CN218435990U (en) Plating solution sprays line
JPH036394A (en) Horizontal plating bath
JPS63171897A (en) Electroplating device
JPS60238499A (en) Electroplating apparatus
JP2761176B2 (en) Basket anode electrode of electrolytic plating equipment and electrolytic plating equipment.
JPS5985890A (en) Method and device for horizontal electrolytic treatment of metallic strip supported by fluid
JPH0336292A (en) Plating tank
CA1216822A (en) Electrotreating cell
JP2500813B2 (en) Steel strip electroplating apparatus and method of operating the same
JPS61190095A (en) Electroplating installation
JPS60149795A (en) Continuous electroplating device
JPS61190093A (en) Electroplating installation
JPH036395A (en) Horizontal plating bath