JPS6122040B2 - - Google Patents
Info
- Publication number
- JPS6122040B2 JPS6122040B2 JP19536182A JP19536182A JPS6122040B2 JP S6122040 B2 JPS6122040 B2 JP S6122040B2 JP 19536182 A JP19536182 A JP 19536182A JP 19536182 A JP19536182 A JP 19536182A JP S6122040 B2 JPS6122040 B2 JP S6122040B2
- Authority
- JP
- Japan
- Prior art keywords
- strip
- slits
- pad
- slit
- opposite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000003068 static effect Effects 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 16
- 239000003792 electrolyte Substances 0.000 claims description 14
- 239000012530 fluid Substances 0.000 claims description 11
- 239000008151 electrolyte solution Substances 0.000 claims description 10
- 230000002706 hydrostatic effect Effects 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 7
- 239000007788 liquid Substances 0.000 description 16
- 238000009826 distribution Methods 0.000 description 9
- 238000007747 plating Methods 0.000 description 9
- 239000007789 gas Substances 0.000 description 7
- 238000009713 electroplating Methods 0.000 description 6
- 229910021645 metal ion Inorganic materials 0.000 description 4
- 238000009825 accumulation Methods 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
Landscapes
- Electroplating Methods And Accessories (AREA)
Description
【発明の詳細な説明】
本発明は金属ストリツプの電気めつき、表面清
浄化処理等の電解処理方法及びその装置、特にス
トリツプを水平姿勢にて流体支持しながら電解処
理方法及び装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for electrolytic treatment of metal strips such as electroplating and surface cleaning treatment, and more particularly to a method and apparatus for electrolytic treatment of metal strips while fluidly supporting the strip in a horizontal position. .
例えば、鋼板の連続的電気めつき方法として近
年、水平にストリツプを走行させて横型のめつき
セル内を通過させ、セル内の電極とストリツプ間
に電解液を流動させて電気めつきを行う方式が採
用されている。通常、電気めつき方法において効
率の良い操業でかつ品質的に優れた製品を得るた
めには、高電流密度で金属を電析出来かつ低電圧
操業を可能とする構成が要求される。高電流密度
化の方策は(1)式で示されるように限界電流密度i
dを大きくすることである。 For example, in recent years, a method for continuous electroplating of steel sheets has been developed in which a strip is run horizontally through a horizontal plating cell, and electrolyte is flowed between the electrodes in the cell and the strip. has been adopted. Generally, in order to operate efficiently and obtain products of excellent quality in an electroplating method, a configuration is required that allows metal to be deposited at a high current density and that enables low voltage operation. The policy for increasing current density is as shown in equation (1), which is the critical current density i
The goal is to increase d .
id=nFDC/δ ……(1)
id=限界電流密度(A/cm2)
n=金属イオンの荷電数
F=フアラデー定数
D=金属イオンの拡散係数(cm2/sec)
C=金属イオン濃度
δ=拡散層の厚さ
そのためには、溶液面の改良策として、金属イ
オンの濃度アツプ、浴温アツプ等が提案出来る。
一方、拡散層δは、電解面のめつき液の移動速度
即ち、撹拌や流速アツプによつて小さくなること
が知られており、ストリツプの全幅にわたつて均
一な流速効果を与えられる電解槽が望ましい。
又、低電圧操業に対しては(2)式で表わされるよう
に、ストリツプ抵抗、液抵抗およびガス溜りによ
る電圧アツプを考慮する必要がある。 i d = nFDC/δ ...(1) i d = critical current density (A/cm 2 ) n = number of charges of metal ion F = Faraday constant D = diffusion coefficient of metal ion (cm 2 /sec) C = metal Ion concentration δ=thickness of the diffusion layer To this end, increasing the concentration of metal ions, increasing the bath temperature, etc. can be proposed as measures to improve the solution surface.
On the other hand, it is known that the diffusion layer δ becomes smaller due to the moving speed of the plating solution on the electrolytic surface, i.e., due to stirring or an increase in the flow rate. desirable.
Furthermore, for low voltage operation, it is necessary to take into account the voltage increase due to strip resistance, liquid resistance, and gas accumulation, as expressed by equation (2).
VT=Vd+Vs+Vl+Vg ……(2)
VT=極間電圧
Vd=分解電圧
Vs=ストリツプ抵抗Rsよる電圧。コンダク
ターロールから陽極迄の有効長Lに比例。 V T = Vd + Vs + Vl + Vg ... (2) V T = Voltage between electrodes Vd = Decomposition voltage Vs = Voltage due to strip resistor Rs. Proportional to the effective length L from the conductor roll to the anode.
=I・Rs・L
Vl=液抵抗Reによる電圧。極間距離Hに比
例。 =I・Rs・L Vl=Voltage due to liquid resistance Re. Proportional to distance H between poles.
=I・Re・H Vg=ガス溜りによる電圧。 =I・Re・H Vg = voltage due to gas accumulation.
前記の(2)式から明らかな如く低電圧操業を達成
するためのメツキセル設計は極間距離を出来るだ
け短縮出来ること、陽極で発生する酸素ガスを出
来るだけすみやかに電極間から除去出来ることに
ポイントを置かねばならない。 As is clear from equation (2) above, the key points of the Metsuki cell design to achieve low voltage operation are to shorten the distance between the electrodes as much as possible and to remove the oxygen gas generated at the anode from between the electrodes as quickly as possible. must be placed.
上記の条件を満足する電気めつき技術が従来で
も種々提案されているが、より一層高効率で確実
なめつきを実施し得るめつき方法及び装置は見い
出せなかつた。例えば、特公昭50−8020号公報で
は、ストリツプの上下面に対向する側を不溶性陽
極で構成した断面矩形の筒状めつき槽中を、スト
リツプの進行方向に対し向流的に電解液を噴流
し、陽極から発生する気泡を除去する方法を開示
している。しかしながら、この方法では水平に走
行するストリツプに対する適切な保持手段が存在
しないことから、ストリツプにカテナリー、C反
り(幅方向の反り)、ツイスト(幅方向の傾き)
が生じ易く、又これらの矯正機能も有しない。 Various electroplating techniques that satisfy the above conditions have been proposed in the past, but no plating method or apparatus has been found that can perform more efficient and reliable plating. For example, in Japanese Patent Publication No. 50-8020, an electrolytic solution is jetted countercurrently to the traveling direction of the strip in a cylindrical plating tank with a rectangular cross section, the sides of which are opposite to the upper and lower surfaces of the strip are made up of insoluble anodes. However, a method for removing air bubbles generated from the anode is disclosed. However, with this method, there is no suitable means for holding the strip running horizontally, so the strip may have catenary, C-curvature (curvature in the width direction), or twist (tilt in the width direction).
It is easy to cause these problems, and it does not have a corrective function.
一方、電解液の噴流の衝突圧でストリツプの支
持力を得る手段(動圧支持)として特公昭52−
3604号公報が挙げられるが、この方式ではストリ
ツプと噴出口との距離による圧力の減衰が少く、
ストリツプのC反り、ツイストの矯正力、カテナ
リーのセンターリングの復元力を生じない。 On the other hand, as a means of obtaining the supporting force of the strip by the collision pressure of the electrolyte jet (dynamic pressure support),
Publication No. 3604 is mentioned, but with this method, the pressure attenuation due to the distance between the strip and the spout is small;
It does not cause C-curvature of the strip, corrective force of twist, or restoring force of the center ring of the catenary.
このようなストリツプのカテナリー等の通板時
に生ずる不安定な挙動を防止し安定な通板状態を
保持するため、ストリツプを電解液の静圧で支持
する試みが提案されており、良好な作用効果が得
られることが判明している(特願昭57−18836号
(特開昭58−136796号))。この特願昭57−18836号
はストリツプの水平型流体支持電解槽に係るもの
で、ストリツプと対向する電極面の一部に、電解
液噴射用でかつストリツプ面に静圧を発生させる
ためのスリツトノズルを有する静圧流体支持パツ
ドを上下対称に設けることを特徴としている。 In order to prevent such unstable behavior that occurs when threading a strip catenary, etc., and to maintain a stable threading state, an attempt has been made to support the strip with the static pressure of an electrolytic solution, and this method has been shown to have good effects. It has been found that the following can be obtained (Japanese Patent Application No. 57-18836 (Japanese Unexamined Patent Publication No. 58-136796)). This patent application No. 18836/1983 relates to a horizontal fluid-supported electrolytic cell with a strip, in which a slit nozzle is installed on a part of the electrode surface facing the strip for spraying the electrolyte and for generating static pressure on the strip surface. It is characterized in that the hydrostatic fluid support pads having the following characteristics are vertically symmetrically provided.
しかして、ストリツプの水平型電解処理方法に
上記の静圧支持パツドを実際に適用する場合、該
支持パツドの噴出口の配置及び形状等が問題とな
る。すなわち、静圧流体支持パツドの配置は、そ
の静圧力によつてストリツプのカテナリーを少く
してストリツプを安定保持すると共に、従来法に
比べて電極間の電解液の流れを改善し、イオンの
安定供給及びガスの除去に有効であることは明ら
かであるが、最近の生産性向上を目的としたライ
ンスピードの高速化は、前記静圧支持パツドの機
能をより一層高度に発揮することが求められてい
る。特に、ラインスピードのアツプによつて電解
液の流れが影響を受け、今まで用いていたスリツ
トノズルの配置及び形状の静圧パツドでは、電極
設置範囲全体にわたつて均一な液流れとならず、
イオン濃度にバラツキが生じガス除去も困難とな
る。 However, when the above-mentioned static pressure support pad is actually applied to a horizontal electrolytic treatment method for strips, the arrangement and shape of the spout of the support pad pose problems. In other words, the placement of the hydrostatic fluid support pad uses its static pressure to reduce the catenary of the strip and maintain the strip stably, and also improves the flow of electrolyte between the electrodes compared to conventional methods, thereby stabilizing the ions. Although it is clear that it is effective in supplying and removing gas, the recent increase in line speed aimed at improving productivity requires that the function of the static pressure support pad be demonstrated to an even higher level. ing. In particular, the flow of electrolyte is affected by the increase in line speed, and with the static pressure pad of the slit nozzle arrangement and shape used up until now, the liquid does not flow uniformly over the entire electrode installation range.
This causes variations in ion concentration, making it difficult to remove gas.
本発明の目的は電解液を通板時にストリツプ及
び電極間全体にわたつて均一な分配流として流動
させ、ガス溜りをなくし良好な電解処理を行うこ
とが出来る電解処理方法を提供することにある。 An object of the present invention is to provide an electrolytic treatment method that allows the electrolytic solution to flow as a uniformly distributed flow throughout the strip and between the electrodes when passing through the plate, eliminates gas accumulation, and performs a good electrolytic treatment.
他方、本発明は上記方法を効果的に実施するこ
とが出来かつ極間距離を可及的に小さく出来ると
共にストリツプの安定保持とC反り、ツイスト等
の矯正力を発揮し得る電解処理装置を提供するこ
とを別の目的とする。 On the other hand, the present invention provides an electrolytic treatment apparatus which can effectively carry out the above method, can reduce the distance between the poles as much as possible, can stably hold the strip, and can exert the ability to correct C warpage, twist, etc. Another purpose is to do something.
以下本発明の詳細を図面に基づいて説明する。 The details of the present invention will be explained below based on the drawings.
第1図は電気めつき設備を例にした基本的構成
を示す。第1図イに示す如く、矢印方向に水平状
態に走行されるストリツプ3の上下面に対向する
陽極1を内蔵した箱型槽2を、ストリツプ進行方
向に沿つて配置する。該箱型槽2の長手方向中央
部には対向する流体パツド12が組み込まれてお
り、該流体パツド12の背部に連結したヘツダー
10よりめつき液はパツド内に供給され、該パツ
ド12のストリツプ対向面に設けたスリツト16
よりストリツプ面に向つて噴出される。めつき液
はストリツプ3の進行方向(並行流)とストリツ
プと逆方向(対向流)に分流され、排出口8,9
より流出する。排出口8,9にはめつき液流出量
制御板11があり、該制御板11を上下に移動し
てストリツプとの間隙をコントロールして流量を
制御する。流出口8,9より流出しためつき液
は、コンダクターロール6およびバツクアツプロ
ール7にてせきとめられ受槽4に受け止められめ
つき液取出し口5より図示していないが循環タン
クに入り、ポンプによつてヘツダー10に強制循
環する。給電はコンダクターロール6からストリ
ツプへ、又ブスバーを介して陽極にそれぞれ行
う。矢印の記号で電極間の液の流れの様子を図示
した。 FIG. 1 shows the basic configuration of electroplating equipment as an example. As shown in FIG. 1A, a box-shaped tank 2 containing an anode 1 facing the upper and lower surfaces of a strip 3 running horizontally in the direction of the arrow is arranged along the direction in which the strip travels. Opposed fluid pads 12 are incorporated in the longitudinal center of the box-shaped tank 2, and the plating liquid is supplied into the pads from a header 10 connected to the back of the fluid pads 12, and the strips of the pads 12 are Slit 16 provided on the opposing surface
It is ejected towards the strip surface. The plating liquid is divided into the advancing direction of the strip 3 (parallel flow) and the direction opposite to the strip (counterflow), and is then passed through the discharge ports 8 and 9.
More leakage. There are fitting liquid outflow rate control plates 11 at the discharge ports 8 and 9, and the flow rate is controlled by moving the control plate 11 up and down to control the gap with the strip. The plating liquid flowing out from the outflow ports 8 and 9 is stopped by the conductor roll 6 and the back-up roll 7, is received in the receiving tank 4, enters the circulation tank (not shown) from the plating liquid outlet 5, and is pumped by the pump. Then, it is forced to circulate to the header 10. Power is supplied from the conductor roll 6 to the strip and to the anode via the bus bar. The flow of liquid between the electrodes is illustrated using arrow symbols.
なお、スリツト16を設ける流体パツド12の
ストリツプ対向部は、電極1と同一材質で作り通
電しても、又電極とは異なる材質で製作し通電し
なくともよい。 The part of the fluid pad 12 facing the strip in which the slit 16 is provided may be made of the same material as the electrode 1 and energized, or may be made of a different material from the electrode and not energized.
第1図ロ,ハは上記した装置の横断面図(A−
A,B−B)であり、図示の如く必要に応じてス
トリツプ3の端部にシーリング機構、例えば水平
方向に移動自在な支持具18に接続したエツジマ
スク17を設けることができる。又、エツジマス
ク17を用いない場合あるいは支持具18が槽内
に収まる場合には、側壁は一体化してもよい。 Figures 1B and 1C are cross-sectional views of the above-mentioned device (A-
A, B--B), and as shown in the drawings, the ends of the strips 3 can optionally be provided with a sealing mechanism, for example an edge mask 17 connected to a horizontally movable support 18. Furthermore, when the edge mask 17 is not used or when the support 18 is accommodated within the tank, the side walls may be integrated.
本発明において使用する静圧流体支持パツド1
2における噴出口は、第2図イに示すように、少
くともストリツプの幅方向、進行方向いずれもス
リツト16で周辺を囲つた形状とするが、イの如
く完全に一本のスリツトが閉ループをなす形状に
限ることなく、例えば複数本のスリツトで実質的
に閉ループ状を形成していればよい。又、パツド
の噴出口は第2図ロに示す如く、スリツトでなく
多数の孔(角形孔あるいは円形孔でもよい)を近
接して配置し噴出液が実質的に閉カーテンを形成
するように噴出口16Aを構成することも可能で
ある。要はスリツト又は孔によつて実質的に閉ル
ープを形成できかつ噴出された液が連続した状態
になればよい。さらに好ましくは上記1つの閉ル
ープ内にストリツプの進行方向に延びる2対以上
の噴出口を設けるのが良い。 Hydrostatic fluid support pad 1 used in the present invention
As shown in Fig. 2A, the jet nozzle in No. 2 is surrounded by slits 16 at least in both the width direction and the traveling direction of the strip. The shape is not limited to this, and it is sufficient that a substantially closed loop shape is formed by, for example, a plurality of slits. In addition, as shown in Figure 2B, the spout opening of the pad is not a slit, but a number of holes (square holes or circular holes may also be used) arranged close together so that the jetted liquid forms a substantially closed curtain. It is also possible to configure an outlet 16A. The point is that a substantially closed loop can be formed by the slit or hole and the ejected liquid can be kept in a continuous state. More preferably, two or more pairs of ejection ports extending in the direction of travel of the strip are provided within the one closed loop.
次に、本発明においては静圧パツド12からの
ストリツプ3面に対する電解液噴射方向に特色を
もつている。すなわち、静圧パツド12のスリツ
ト16又は噴出口16Aのうちストリツプ3の幅
方向にそつたスリツト又は噴出口(以下スリツト
等という)を、ストリツプ3の進行方向と反対す
る方向に傾斜させる。特に、静圧パツド12にお
いてストリプ幅方向に延びるスリツト等のうち少
なくとも出側のスリツト等は、必らずストリツプ
進行方向と逆方向に傾斜させると共に、この出側
スリツト等以外のスリツト等はストリツプ面に対
しほぼ垂直か又はストリツプ進行方向と逆方向に
傾斜させる。 Next, the present invention is characterized by the direction in which the electrolyte is sprayed from the static pressure pad 12 onto the three surfaces of the strip. That is, among the slits 16 or jet ports 16A of the static pressure pad 12, the slits or jet ports (hereinafter referred to as slits, etc.) along the width direction of the strip 3 are inclined in a direction opposite to the direction in which the strip 3 moves. In particular, among the slits, etc. extending in the width direction of the strip in the static pressure pad 12, at least the exit side slits, etc. are always inclined in the opposite direction to the strip advancing direction, and the slits, etc. other than the exit side slits, etc. are on the strip surface. or inclined in a direction opposite to the direction of strip movement.
従来の静圧パツドにおけるストリツプ幅方向に
延びるスリツトの向きは、すべてストリツプ面に
対しほぼ垂直か又は互いに内方に対称的な角度に
傾斜しているが、このスリツト配置では一方向へ
ストリツプが進行するため、該ストリツプにより
電解液の流れが偏り、パツドの前後において電解
液の分配流量差が生じる。つまりパツドの位置で
前後方向に電解液を均等に噴出しても、ストリツ
プによつて進行方向に液が搬出され、上述した流
量差が生じ、均一な電解作用の妨げとなる。特
に、この傾向はストリツプの速度が早くなる程、
又ストリツプと電極間の距離が小さくなる程(近
接化)顕著となる。 In conventional hydrostatic pads, the slits extending in the width direction of the strip are all oriented approximately perpendicular to the strip plane or inclined inwardly at symmetrical angles, but with this slit arrangement, the strip advances in one direction. Therefore, the flow of the electrolyte is biased by the strip, and a difference in the distribution flow rate of the electrolyte occurs before and after the pad. In other words, even if the electrolytic solution is ejected evenly in the front-rear direction at the pad position, the strip carries out the solution in the advancing direction, causing the above-mentioned flow rate difference and hindering uniform electrolytic action. In particular, this tendency increases as the stripping speed increases.
Moreover, the smaller the distance between the strip and the electrode (the closer the strip is), the more conspicuous it becomes.
そこで、本発明では前記の如くストリツプの進
行方向とは逆方向に電解液を多く流すものであ
る。例えば、第3図イの例ではパツド12のスト
リツプ3幅方向に延びる1対のスリツトのうち出
側のスリツト16Bをストリツプ3の進行方向と
は反対する方向に傾斜させると共に、入側のスリ
ツト16Cはストリツプ3面に対し垂直に形成
し、該スリツト16B,16Cではさまれたスト
リツプ3およびパツド面間の空間20に静圧を発
生せしめる。 Therefore, in the present invention, as described above, a large amount of electrolyte is caused to flow in the direction opposite to the direction in which the strip travels. For example, in the example shown in FIG. 3A, of the pair of slits extending in the width direction of the strip 3 of the pad 12, the exit side slit 16B is inclined in a direction opposite to the direction of movement of the strip 3, and the entrance side slit 16C is is formed perpendicularly to the surface of the strip 3, and generates static pressure in the space 20 between the pad surface and the strip 3 sandwiched between the slits 16B and 16C.
又、第3図ロに示すパツドでは、ストリツプ速
度がより早くなるか及び/又は電極・パツドの距
離が近い場合に有効なもので、1対のスリツト1
6D,16Eのいずれもストリツプ3の進行方向
と反対方向に傾斜させている。更に、ストリツプ
速度が極めて早くなるか及び/又は電極・パツド
の距離が極めて小さくなつた場合には、第3図ハ
に示す如く、ストリツプ3の進行とは逆向きの傾
斜スリツト16F,16G,16Hの数を増せば
よい。このようにして電極範囲全体にわたつて電
解液の流量を均一にし、良好な電解処理を行う。 The pad shown in Figure 3B is effective when the stripping speed is faster and/or the distance between the electrode and the pad is short.
Both 6D and 16E are inclined in a direction opposite to the direction in which the strip 3 moves. Furthermore, if the stripping speed becomes extremely high and/or the distance between the electrodes and the pads becomes extremely small, the inclined slits 16F, 16G, 16H in the opposite direction to the advancement of the strip 3, as shown in FIG. All you have to do is increase the number of . In this way, the flow rate of the electrolytic solution is made uniform over the entire electrode area, and a good electrolytic treatment is achieved.
上記の如く少ともストリツプ出側スリツトをス
トリツプ進行とは逆に傾けかつそれ以外のスリツ
トは出側スリツトと同方向に傾斜するかあるいは
ほぼ垂直にしているため、電解液の均一分配を計
れると同時に、静圧の作用する有効面積をそれ程
狭めることにはならないので、ストリツプの安定
保持には何ら支障はない。 As mentioned above, at least the strip outlet slit is inclined in the opposite direction to the strip advancement, and the other slits are inclined in the same direction as the outlet side slit or are made almost vertically, so that uniform distribution of the electrolyte can be ensured. Since the effective area on which the static pressure acts is not narrowed that much, there is no problem in maintaining the stability of the strip.
次に本発明において用いる静圧支持パツドの復
元力について説明する。第3図に示したスリツト
を有するパツドを用いてストリツプ面に対して電
解液を噴射せしめると、パツドとストリツプ間に
静圧が発生し、ストリツプを一定位置に保持する
と共に、ストリツプにC反りあるいはツイスト現
象が生じたときにこれを矯正する作用があること
は知られている。第4図にストリツプのC反りや
ツイストをより確実かつ迅速に矯正させ得る、強
力な復元力をもつ静圧パツドの例を示す。 Next, the restoring force of the static pressure support pad used in the present invention will be explained. When electrolyte is injected onto the strip surface using a pad with a slit shown in Figure 3, static pressure is generated between the pad and the strip, holding the strip in a fixed position and causing the strip to warp or curve. It is known that there is an effect to correct the twisting phenomenon when it occurs. FIG. 4 shows an example of a static pressure pad with a strong restoring force that can more reliably and quickly correct C-curves and twists in the strip.
すなわち、第4図イ〜ハはいずれもパツド本体
に形成する周辺スリツト等におけるストリツプ長
手方向スリツト等を、幅方向に2以上に分割した
ものである。まず、第4図イの例はストリツプ3
の幅方向に2対のスリツト26を対称的に配置し
たもの、第4図ロの例はイに中心スリツトを付加
したもの、第4図ハの例はストリツプ幅方向の端
部寄りのスリツトを4対のスリツト36に分割し
たものである。 That is, in all of FIGS. 4A to 4C, the strip longitudinal slit etc. in the peripheral slit etc. formed in the pad body is divided into two or more in the width direction. First, the example in Figure 4A is for strip 3.
The example in Figure 4B has two pairs of slits 26 arranged symmetrically in the width direction of the strip, the example in Figure 4B has a center slit added to A, and the example in Figure 4C has slits closer to the ends in the width direction of the strip. It is divided into four pairs of slits 36.
次に本発明の実施例を説明する。 Next, embodiments of the present invention will be described.
第5図はストリツプ3に対し垂直の噴出角度を
もつ静圧パツド12を用いて電解液を噴射した場
合のラインスピードと流量分配比の関係を表わ
す。Cは対向流、Pは並行流を示す。ラインスピ
ードが増大すると対向流の流速は減少して流量分
配比は下がると共に、電解セル1内のガス滞留が
著しく増加する。その結果第6図に示すように電
圧上昇が起こりめつきが不可能となる。なお、第
5図から極間距離Hが広がればラインスピード増
大に応じ分配比が下がる傾向にある。 FIG. 5 shows the relationship between line speed and flow distribution ratio when electrolyte is injected using a static pressure pad 12 having an ejection angle perpendicular to the strip 3. C indicates counterflow, P indicates parallel flow. As the line speed increases, the flow velocity of the countercurrent decreases, the flow rate distribution ratio decreases, and the gas retention within the electrolytic cell 1 increases significantly. As a result, as shown in FIG. 6, a voltage rise occurs, making it impossible to attach. Note that, as shown in FIG. 5, as the distance H between poles increases, the distribution ratio tends to decrease as the line speed increases.
そこで、第7図に示すようにストリツプ幅方向
に延びるノズルのストリツプ面に対する角度を変
更した静圧パツドをつくり、対向流への液分配比
を検討し、その結果を第8図に示す。第7図にお
いてθ1はストリツプ進行方向の入側のノズル角
度、θ2は出側のノズル角度であり、イはθ1=
90゜、θ2=45゜、ロはθ1=90゜、θ2=30
゜、ハはθ1=60゜、θ2=45゜、ニはθ1=
135゜、θ2=45゜、ホはθ1=90゜、θ2=90
゜でありイ〜ハは本発明例、ニ及びホは比較例で
ある。 Therefore, as shown in FIG. 7, a static pressure pad was created in which the angle of the nozzle extending in the width direction of the strip with respect to the strip surface was changed, and the liquid distribution ratio to the opposing flow was investigated. The results are shown in FIG. In Fig. 7, θ 1 is the nozzle angle on the inlet side in the strip advancing direction, θ 2 is the nozzle angle on the outlet side, and A is θ 1 =
90°, θ 2 = 45°, b is θ 1 = 90°, θ 2 = 30
°, C is θ 1 = 60 °, θ 2 = 45 °, D is θ 1 =
135°, θ 2 = 45°, E is θ 1 = 90°, θ 2 = 90
(a) to (c) are examples of the present invention, and (d) and (e) are comparative examples.
第8図からわかるように、少なくともストリツ
プ出側のノズル角度θ2をストリツプ進行方向と
反対方向へ傾斜させると共に、その他のノズル角
度をストリツプ面に垂直若しくはストリツプの進
行方向と反対方向に傾斜させることにより、ライ
ンスピード200m/minにおいてもほぼ等しい液
分配が可能であることがわかつた。これに対し比
較例の如きノズル角度の組合せでは均等な液分配
が不可能である。 As can be seen from FIG. 8, at least the nozzle angle θ2 on the strip exit side is inclined in the direction opposite to the direction of strip movement, and the other nozzle angles are inclined perpendicular to the strip plane or in the direction opposite to the direction of movement of the strip. It was found that almost equal liquid distribution was possible even at a line speed of 200 m/min. On the other hand, with the combination of nozzle angles as in the comparative example, uniform liquid distribution is impossible.
したがつて、実際の電解装置を製作する場合に
は、設定ラインスピードに合せて適切な角度θを
選択すれば、対向流の流速を減少させることな
く、迅速なガス除去が可能となる。 Therefore, when manufacturing an actual electrolyzer, by selecting an appropriate angle θ in accordance with the set line speed, rapid gas removal is possible without reducing the flow velocity of the counterflow.
このように本発明の電解処理方法によれば、電
解液のパツド両側への分配がほぼ等しく行われか
つストリツプの保持力が大きいので、極間距離の
近接化を計ることができ、極めて効率のよい電解
処理を行うことが可能となる。また、ストリツプ
のC反り、ツイストに対する矯正力も期待でき、
ストリツプの安定走行、又良好な処理操作に寄与
する。他方、本発明の電解処理装置によれば、上
記方法を効果的に実施することができ、設備面で
の有利性も大きい。 As described above, according to the electrolytic treatment method of the present invention, the electrolytic solution is distributed almost equally to both sides of the pad and the holding force of the strip is large, so the distance between the electrodes can be shortened, resulting in extremely high efficiency. It becomes possible to perform good electrolytic treatment. In addition, it can be expected to have the ability to correct C warpage and twist of the strip.
Contributes to stable running of the strip and good processing operation. On the other hand, according to the electrolytic treatment apparatus of the present invention, the above-mentioned method can be carried out effectively, and there are great advantages in terms of equipment.
第1図イは電気めつき設備の全体構成を示す概
略断面図、ロはイ図のA−A断面図、ハはイ図の
B−B断面図である。第2図イ,ロは静圧流体支
持パツドに設ける流体噴出口の構成を示す平面図
である。第3図イ,ロ,ハは電解液の噴出方向の
種々の態様を示す断面図、第4図イ,ロ,ハはパ
ツド本体に形成するノズル(スリツト)パターン
例を示す平面説明図である。第5図は垂直ノズル
を有するパツドを用いた場合のラインスピードと
液量分配比の関係を示すグラフ、第6図は第5図
におけるラインスピードと電解電圧の関係を示す
グラフ、第7図イ〜ホは実施例に用いたノズル角
度の種々の例を示す断面図、第8図は第7図によ
る検討の結果をラインスピードと液量分配比の関
係で表わしたグラフである。
1……陽極、2……電解槽、3……ストリツ
プ、12……流体パツド、16,26……スリツ
ト。
FIG. 1A is a schematic sectional view showing the overall structure of the electroplating equipment, B is a sectional view taken along line AA in FIG. 1, and C is a sectional view taken along line BB in FIG. FIGS. 2A and 2B are plan views showing the configuration of fluid jet ports provided in the hydrostatic fluid support pad. 3A, 3B, and 3C are cross-sectional views showing various aspects of the ejection direction of the electrolytic solution, and 4A, 4B, and 3C are plan explanatory views showing examples of nozzle (slit) patterns formed on the pad body. . Figure 5 is a graph showing the relationship between line speed and liquid distribution ratio when using a pad with a vertical nozzle, Figure 6 is a graph showing the relationship between line speed and electrolytic voltage in Figure 5, and Figure 7 is a graph showing the relationship between line speed and electrolysis voltage in Figure 5. -E are sectional views showing various examples of nozzle angles used in the examples, and FIG. 8 is a graph showing the results of the study in FIG. 7 in terms of the relationship between line speed and liquid volume distribution ratio. 1... Anode, 2... Electrolytic cell, 3... Strip, 12... Fluid pad, 16, 26... Slit.
Claims (1)
極を対向配置すると共に該電極及びストリツプ間
に電解液を流動せしめて電解処理を行うに際し、
前記電極におけるストリツプ進行方向中央部に設
けた静圧流体支持パツドからストリツプ面に向つ
て電解液を噴出させると共に、前記静圧パツドの
ストリツプ幅方向に延びるスリツト又は噴出口の
うちストリツプ出側のスリツト又は噴出口からは
電解液をストリツプの進行方向と反対方向に斜め
に噴射させ、その他のスリツト又は噴出口からは
ストリツプ面に垂直に、若しくはストリツプの進
行方向と反対方向に斜めに電解液を噴射させるこ
とを特徴とする金属ストリツプの水平型流体支持
電解処理方法。 2 水平に通過する金属ストリツプの上下面に対
向して電極を配置し、該電極のストリツプ進行方
向中央部に、ストリツプ面に向つて電解液を噴出
させるスリツト又は実質的に連続する噴出口を有
する静圧流体支持パツドを設け、該静圧パツドの
ストリツプ幅方向に延在するスリツト又は噴出口
のうちストリツプ出側のストリツプ幅方向スリツ
ト又は噴出口は、ストリツプの進行方向と反対方
向に傾斜させ、その他のスリツト又は噴出口はス
トリツプ面に対して垂直に、若しくはストリツプ
の進行方向と反対方向に傾斜させて構成すること
を特徴とする金属ストリツプの水平型流体支持電
解処理装置。[Claims] 1. When performing electrolytic treatment by arranging electrodes facing each other on the upper and lower surfaces of a horizontally passing metal strip and flowing an electrolytic solution between the electrodes and the strip,
The electrolytic solution is ejected toward the strip surface from a hydrostatic fluid support pad provided at the center of the electrode in the direction in which the strip travels, and a slit or spout opening on the strip exit side extends in the strip width direction of the hydrostatic pad. Alternatively, the electrolytic solution is injected diagonally in the direction opposite to the direction in which the strip travels from the spout, and the electrolyte is injected perpendicularly to the strip surface or diagonally in the opposite direction to the direction in which the strip travels from other slits or jet ports. 1. A horizontal fluid-supported electrolytic treatment method for a metal strip, characterized in that: 2. Electrodes are disposed opposite the upper and lower surfaces of a metal strip that passes horizontally, and the electrode has a slit or a substantially continuous ejection port in the center of the electrode in the direction of strip movement for ejecting the electrolyte toward the strip surface. a hydrostatic fluid support pad is provided, of the slits or spout openings extending in the strip width direction of the static pressure pad, the strip width direction slits or spout openings on the strip exit side are inclined in a direction opposite to the traveling direction of the strip; A horizontal type fluid-supported electrolytic treatment apparatus for a metal strip, characterized in that the other slits or jet ports are arranged perpendicular to the strip surface or inclined in a direction opposite to the direction in which the strip travels.
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57195361A JPS5985890A (en) | 1982-11-09 | 1982-11-09 | Method and device for horizontal electrolytic treatment of metallic strip supported by fluid |
AU10969/83A AU540287B2 (en) | 1982-02-10 | 1983-02-03 | Continuous electrolytic treatment of metal strip using horizontal electrodes |
US06/463,835 US4491506A (en) | 1982-02-10 | 1983-02-04 | Process and apparatus for the continuous electrolytic treatment of a metal strip using horizontal electrodes |
CA000421258A CA1227450A (en) | 1982-02-10 | 1983-02-09 | Electrolytic treatment of strip using closed channel slit nozzles in narrow treating space |
DE8383300671T DE3372992D1 (en) | 1982-02-10 | 1983-02-10 | Process and apparatus for the continuous electrolytic treatment of a metal strip using horizontal electrodes |
KR1019830000538A KR890003409B1 (en) | 1982-02-10 | 1983-02-10 | Process and apparatus for the continuous electrolytic treatment of a metal strip using horizontal electrodes |
EP83300671A EP0086115B1 (en) | 1982-02-10 | 1983-02-10 | Process and apparatus for the continuous electrolytic treatment of a metal strip using horizontal electrodes |
AT83300671T ATE28906T1 (en) | 1982-02-10 | 1983-02-10 | METHOD AND DEVICE FOR THE CONTINUOUS ELECTROLYTIC TREATMENT OF A METAL STRIP USING HORIZONTAL ELECTRODES. |
ES519686A ES519686A0 (en) | 1982-02-10 | 1983-02-10 | PROCEDURE AND APPARATUS FOR THE CONTINUOUS ELECTROLYTIC TREATMENT OF A METALLIC BELT |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57195361A JPS5985890A (en) | 1982-11-09 | 1982-11-09 | Method and device for horizontal electrolytic treatment of metallic strip supported by fluid |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5985890A JPS5985890A (en) | 1984-05-17 |
JPS6122040B2 true JPS6122040B2 (en) | 1986-05-29 |
Family
ID=16339892
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57195361A Granted JPS5985890A (en) | 1982-02-10 | 1982-11-09 | Method and device for horizontal electrolytic treatment of metallic strip supported by fluid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5985890A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0242421B1 (en) * | 1986-04-25 | 1989-09-06 | Poligrat Gmbh | Method and apparatus for electrochemical polishing and pickling |
JP2011225923A (en) * | 2010-04-16 | 2011-11-10 | Nippon Steel Engineering Co Ltd | Horizontal type fluid support plating device |
-
1982
- 1982-11-09 JP JP57195361A patent/JPS5985890A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5985890A (en) | 1984-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4310403A (en) | Apparatus for electrolytically treating a metal strip | |
US4102772A (en) | Apparatus for continuously electroplating on only a single surface of running metal strip | |
KR890003409B1 (en) | Process and apparatus for the continuous electrolytic treatment of a metal strip using horizontal electrodes | |
JPS6122040B2 (en) | ||
JPS58136796A (en) | Horizontal type fluid supporting electrolytic cell for strip | |
JPH03191090A (en) | Horizontal electroplating device | |
KR860000419A (en) | Continuous Electrolytic Treatment of Metal Strips Using Insoluble Horizontal Electrodes | |
JPH06256991A (en) | Continuous electroplating device for steel strip | |
JP3402423B2 (en) | Method and apparatus for preventing vibration of metal strip in electroplating tank | |
JPS5915997B2 (en) | Strip proximity electrolyzer | |
JP3725852B2 (en) | Electrode for continuous processing of metal strip | |
JP2588454B2 (en) | Vertical jet plating equipment | |
JPH036394A (en) | Horizontal plating bath | |
JPH08277492A (en) | Horizontal electroplating device | |
JPS6116433B2 (en) | ||
JP2980561B2 (en) | Electroplating method and apparatus | |
JPH06264288A (en) | Electroplating device for metallic strip using electrolyte jet | |
JPH0285396A (en) | Electrolytic treatment method and apparatus | |
JPH0613759B2 (en) | Plating equipment and cleaning equipment | |
JPS5985892A (en) | Electrolytic device for surface traeatment of strip | |
JPS60238499A (en) | Electroplating apparatus | |
JPS5943558B2 (en) | Etzi bar coat prevention electroplating method and device | |
JPH06192895A (en) | Soluble electrode | |
JP2942144B2 (en) | Strip processing equipment | |
JPS6026693A (en) | High speed electrolyzing device |