JP2980561B2 - Electroplating method and apparatus - Google Patents

Electroplating method and apparatus

Info

Publication number
JP2980561B2
JP2980561B2 JP8284134A JP28413496A JP2980561B2 JP 2980561 B2 JP2980561 B2 JP 2980561B2 JP 8284134 A JP8284134 A JP 8284134A JP 28413496 A JP28413496 A JP 28413496A JP 2980561 B2 JP2980561 B2 JP 2980561B2
Authority
JP
Japan
Prior art keywords
plating
plating solution
plated
flow control
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP8284134A
Other languages
Japanese (ja)
Other versions
JPH10130895A (en
Inventor
廣成 澤
典成 澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAATETSUKU KK
Original Assignee
SAATETSUKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAATETSUKU KK filed Critical SAATETSUKU KK
Priority to JP8284134A priority Critical patent/JP2980561B2/en
Publication of JPH10130895A publication Critical patent/JPH10130895A/en
Application granted granted Critical
Publication of JP2980561B2 publication Critical patent/JP2980561B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気鍍金方法及び
この方法を実施するための装置に関する。
[0001] The present invention relates to an electroplating method and an apparatus for carrying out the method.

【0002】[0002]

【従来の技術】従来、例えばシリコンウエハーディスク
を含む、精密な電子ディバイスの実装用電気バンプ(B
UMP)鍍金、その他平板な被鍍金物表面への電気鍍金
を行う場合、鍍金の品質の向上を図り且つ鍍金速度を上
げるために、被鍍金物表面への金属イオン(M++)の供
給が促進されるよう、陰極としての被鍍金物と対極とが
浸漬されている鍍金浴を絶えず撹拌するという方策がと
られている。具体的には、鍍金槽内に多数の小径孔を穿
った数本のパイプを垂直に立て、これらパイプに鍍金液
をポンプ給送し、小径孔から鍍金槽内に吐出させ、鍍金
槽から溢れた鍍金液は槽外の予備槽に集め、これを再び
上記のパイプにポンプ給送することにより、鍍金槽内に
鍍金液の撹拌が生じるようにしている。
2. Description of the Related Art Conventionally, electric bumps (B) for mounting precision electronic devices, including, for example, silicon wafer disks,
In the case of performing UMP) plating or other electroplating on a flat plate to be plated, the supply of metal ions (M ++ ) to the surface of the plate is required to improve plating quality and increase plating speed. To facilitate this, measures have been taken to constantly stir the plating bath in which the object to be plated as the cathode and the counter electrode are immersed. Specifically, several pipes with many small diameter holes are vertically set in the plating tank, and the plating solution is pumped into these pipes, discharged from the small diameter holes into the plating tank, and overflows from the plating tank. The plating solution thus collected is collected in a spare tank outside the tank, and is pumped again to the above-mentioned pipe so that the plating solution is stirred in the plating tank.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記のように
して発生せしめられるポンプ撹拌に伴う正圧流は、多数
の給送小孔から被鍍金物表面へ向けて同時に吐出されて
も、同表面に到達する過程で、鍍金液の持つ粘度に起因
する応力によってエネルギーを吸収され、緩い渦状の流
れとなり、殆どが被鍍金物表面では、同表面に沿った平
行な流れに変化し、層流となる。その結果、被鍍金物表
面は速度勾配の大きな薄い層で包まれている状態にな
る。被鍍金物表面には金属イオンと水和していた水の薄
い層が存在しているが、層流はこの薄い層の外側を流れ
るため、この薄い層に運動のエネルギーを加え、これを
被鍍金物表面から剥し取って、新しい水和金属イオンを
被鍍金物表面に供給する作用が弱く、所要の鍍金層を得
るためには長時間の鍍金作業を行わねばならない。
However, even if the positive pressure flow generated by the pump agitation generated as described above is simultaneously discharged from a large number of feed small holes toward the surface of the material to be plated, the positive pressure flow is generated on the same surface. In the process of reaching, energy is absorbed by the stress caused by the viscosity of the plating solution, and it becomes a gentle vortex flow, and almost changes on the surface of the plating object into a parallel flow along the surface and becomes a laminar flow. . As a result, the surface of the plating object is covered with a thin layer having a large velocity gradient. There is a thin layer of water hydrated with metal ions on the surface of the plating object, but laminar flow flows outside this thin layer, so kinetic energy is applied to this thin layer and this is applied. The effect of peeling off from the surface of the plating and supplying new hydrated metal ions to the surface of the plating target is weak, and a long plating operation must be performed to obtain a required plating layer.

【0004】鍍金時間を短縮するために、従来、鍍金浴
中の金属イオン濃度や鍍金浴温度を上げる方策がとられ
ているが、金属イオン濃度を上げると、均一電着性が悪
化するという問題が発生し、また浴温を上げると、分子
の運動や振動が大きくなり、ブラウン運動のように任意
な運動と思われる両極間の殆どの液体も、両極に近い部
分も、イオン勾配層を含めて、振動は活発に大きくなる
から、局部的に効果が現れるが、大幅な効果上昇は得ら
れない。
[0004] In order to shorten the plating time, conventionally, measures have been taken to increase the concentration of metal ions in the plating bath and the temperature of the plating bath. However, when the concentration of metal ions is increased, the uniform electrodeposition property deteriorates. When the bath temperature rises, the movement and vibration of molecules increase, and most liquids between the two poles, which seem to be arbitrary movements such as Brownian motion, and parts near both poles, including the ion gradient layer As a result, the vibration is actively increased, so that the effect appears locally, but a large increase in the effect cannot be obtained.

【0005】本発明の第一の課題は、鍍金浴中の金属イ
オン濃度や鍍金浴温度を上げることなく鍍金時間を短縮
し、均一電着性を得ることができる方法を提供すること
である。
A first object of the present invention is to provide a method capable of shortening the plating time without increasing the metal ion concentration in the plating bath or the plating bath temperature and obtaining uniform electrodeposition.

【0006】本発明の第二の課題は、上記方法を効果的
に実施することができる装置を提供することである。
A second object of the present invention is to provide an apparatus capable of effectively performing the above method.

【0007】本発明の第三の課題は、比較的大きな被鍍
金物に対応して上記方法を実施することができる装置を
提供することである。
[0007] A third object of the present invention is to provide an apparatus capable of performing the above method for a relatively large object to be plated.

【0008】[0008]

【課題を解決するための手段】本発明によれば、上記の
第一の課題は、鍍金槽の鍍金浴中に浸漬されている陰極
としての被鍍金物の表面に向けて、同表面に対し直角乃
至略直角の複数の鍍金液流を発生させ、各鍍金液流を被
鍍金物表面において急激に向きを変えて反転させること
を特徴とする鍍金方法によって解決される。被鍍金物表
面において鍍金液の流れの方向を急激に変更させること
により、被鍍金物表面に発生し吸着しているイオン勾配
層を除去して、間断なく金属イオンを被鍍金物表面に供
給するので、同表面において金属イオンは間断なく還元
されて、均一な鍍金皮膜が高速で形成される。
According to the present invention, the first object is to face a surface of a plating object as a cathode immersed in a plating bath of a plating tank. This problem is solved by a plating method characterized in that a plurality of plating liquid flows having a right angle or a substantially right angle are generated, and each of the plating liquid flows is rapidly changed in direction and inverted on the surface of the material to be plated. By rapidly changing the flow direction of the plating solution on the surface of the plating object, the ion gradient layer generated and adsorbed on the surface of the plating object is removed, and metal ions are supplied to the surface of the plating object without interruption. Therefore, metal ions are continuously reduced on the surface, and a uniform plating film is formed at a high speed.

【0009】被鍍金物表面に向けての鍍金液流を二枚の
制流板の間で被鍍金物表面近くまで案内し、同表面で反
転した後の鍍金液流を上記の二枚の制流板の外側部で被
鍍金物表面に対して遠ざかる方向へ吸引することによ
り、イオン勾配層を被鍍金物表面から剥ぎ取るための大
きな運動エネルギーが得られ、同表面に対する金属イオ
ン供給率が向上する。
[0009] The plating liquid flow toward the surface of the plating object is guided between the two flow control plates to near the surface of the plating object, and the plating liquid flow after being reversed on the surface is used as the two flow control plates. By suctioning in the direction away from the surface of the plating object at the outer portion of the substrate, a large kinetic energy for stripping the ion gradient layer from the surface of the plating object is obtained, and the metal ion supply rate to the surface is improved.

【0010】被鍍金物表面に向けての鍍金液流の発生部
と、被鍍金物表面からの反転流の吸引部とを被鍍金物表
面に近接して配置することにより、上記の剥ぎ取りのた
めの運動エネルギーは更に増大し、更にその場合、陰極
としての被鍍金物の表面と、それに対面している陽極と
を近接させることにより鍍金条件としての電流密度を増
加させることができ、鍍金皮膜の生成速度を高くするこ
とができる。
[0010] By disposing the generating portion of the plating solution flow toward the surface of the plating object and the suction portion of the reverse flow from the surface of the plating object close to the surface of the plating object, the above-mentioned stripping is achieved. Kinetic energy further increases, and in that case, the current density as a plating condition can be increased by bringing the surface of the plating object as a cathode and the anode facing the plating object close to each other. Can be generated at a high speed.

【0011】上記の第二の課題は、陰極としての被鍍金
物が浸漬される鍍金浴を収容している鍍金槽と、この鍍
金槽内において鍍金浴中に浸漬される被鍍金物の被鍍金
面に対し間隔をおいて対向配置される陽極と、上記被鍍
金面に対して間隔をおいて対向配置された多数の縦列配
置の鍍金液流入小孔と、上記鍍金液流入小孔の列と並列
して設けられた多数の縦列配置の鍍金液流出小孔と、上
記鍍金液流入小孔に連通し且つ鍍金液ポンプの吐出側に
連通している鍍金液供給室と、上記鍍金液流出小孔に連
通し且つ鍍金液ポンプの吸込側に連通している鍍金液吸
込室とを有し、更に上記鍍金槽内には鍍金液流入小孔の
各縦列の両脇から被鍍金面へ向けて延び、上記流入小孔
から鍍金槽内へ流入する鍍金液を被鍍金面へ指向する流
路を形成している一対の制流板が設けてあり、上記の鍍
金液流出小孔の列が被鍍金面へ向けての鍍金液流路を形
成している制流板対の側方に設けてある鍍金装置によっ
て解決される。かかる構成とすることによって、一対の
制流板の間に発生せしめられ案内される鍍金液流は被鍍
金面(陰極表面)に衝突した後、当該制流板に隣接する
鍍金液流出小孔からの液吸引によりもたらされる吸引流
の作用により、直ちに反対方向の流れとなり、この急激
な流れの反転は被鍍金面に発生し吸着するイオン勾配層
を除去する作用をもたらし、従って、被鍍金面には間断
なく金属イオンが供給され、同金属イオンは間断なく還
元されて、均一な鍍金皮膜が高速で形成される。
The second problem is that a plating bath containing a plating bath in which a plating object as a cathode is immersed, and a plating object to be immersed in the plating bath in the plating bath. An anode disposed at an interval with respect to the surface, a number of plating solution inflow holes arranged in a row in a row arranged opposite to the surface to be plated, and a row of the plating solution inflow holes; A plurality of plating solution outflow holes arranged in parallel, a plating solution supply chamber communicating with the plating solution inflow hole and communicating with the discharge side of the plating solution pump, A plating solution suction chamber communicating with the holes and communicating with the suction side of the plating solution pump; and further, in the plating bath, from both sides of each column of the plating solution inflow holes toward the surface to be plated. The flow path extends and directs the plating solution flowing into the plating tank from the inflow small hole toward the surface to be plated. A pair of flow control plates is provided, and the above-mentioned row of plating solution outflow holes is provided by a plating apparatus provided on the side of the flow control plate pair forming a plating solution flow path toward the surface to be plated. Will be resolved. With this configuration, the plating solution flow generated and guided between the pair of flow control plates collides with the surface to be plated (cathode surface), and then flows from the plating solution outflow hole adjacent to the flow control plate. By the action of the suction flow provided by the suction, the flow immediately becomes the opposite direction, and this rapid reversal of the flow causes the action of removing the ion gradient layer generated and adsorbed on the surface to be plated, and therefore, the surface to be plated is interrupted. Metal ions are supplied without interruption, and the metal ions are continuously reduced, and a uniform plating film is formed at a high speed.

【0012】上記の鍍金液流入小孔の縦列と鍍金液流出
小孔の縦列がそれぞれ垂直方向に延び、且つ鍍金槽の一
つの槽壁に交互に設けてあることによって、一対の制流
れ板の間に発生せしめられる鍍金液流が被鍍金面に衝突
後、半分に別れて左右均等に反転し、被鍍金面からのイ
オン勾配層の除去を万遍なく行うと共に、そのような作
用が簡単な構造によって現出できる。
The above-mentioned columns of plating solution inflow holes and columns of plating solution outflow holes extend in the vertical direction, respectively, and are alternately provided on one tank wall of the plating tank. The generated plating solution flow collides with the surface to be plated, then splits in half and reverses evenly to the left and right, and removes the ion gradient layer from the surface to be plated evenly. Can appear.

【0013】上記の制流板対とそれに隣接する制流板対
との間の鍍金液流出小孔列の前方に角柱状の陽極を配置
し、この陽極とそれに対向する制流板及び鍍金槽壁との
間に、被鍍金面で反転した後の鍍金液吸引通路を設けた
ことにより、反転後、被鍍金面から遠ざかる方向への液
流が制流板への側面に沿って発生し、より効果的な鍍金
液の反転、即ちイオン勾配層を効果的に除去する反転流
が得られる。
[0013] A prismatic anode is disposed in front of the plating solution outflow row of holes between the above-described pair of flow control plates and the pair of flow control plates adjacent thereto, and the anode, the flow control plate and the plating tank opposed thereto are disposed. By providing a plating solution suction passage after being inverted on the plating surface between the wall and the plating surface, after the inversion, a liquid flow in a direction away from the plating surface is generated along the side surface to the flow control plate, A more effective inversion of the plating solution, that is, an inversion flow that effectively removes the ion gradient layer is obtained.

【0014】上記の第三の課題は、陰極としての被鍍金
物が浸漬される鍍金浴を収容している鍍金槽と、この鍍
金槽内において鍍金浴中に浸漬される被鍍金物の被鍍金
面に対し間隔をおいて対向配置される陽極と、上記被鍍
金面に対して間隔をおいて対向配置された多数の縦列配
置の鍍金液流入小孔と、上記鍍金液流入小孔の列と並列
して設けられた多数の縦列配置の鍍金液流出小孔と、上
記鍍金液流入小孔に連通し且つ鍍金液ポンプの吐出側に
連通している鍍金液供給室と、上記鍍金液流出小孔に連
通し且つ鍍金液ポンプの吸込側に連通している鍍金液吸
込室とを有し、上記鍍金槽内には鍍金液流入小孔の各縦
列の両脇から被鍍金面へ向けて延び、更に上記流入小孔
から鍍金槽内へ流入する鍍金液を被鍍金面へ指向する流
路を形成している一対の制流板が設けてあり、上記の鍍
金液流出小孔の列が被鍍金面へ向けての鍍金液流路を形
成している制流板対の側方に設けてある鍍金装置を一つ
のユニットとしての小鍍金セルとし、複数の小鍍金セル
を縦横に接続し、各ユニットの鍍金槽を相互に開放して
全体的に一つの大容量の鍍金槽とした鍍金装置によって
解決される。この鍍金装置によれば、大容量の鍍金槽の
鍍金浴内に浸漬された被鍍金物の大面積の被鍍金面(陰
極表面)に対し、各小鍍金セル毎に対向する被鍍金面部
分に対して作用させることができ、隣接する部分には然
程影響を及ぼさないので、被鍍金面全面において均一な
イオン勾配層の除去が達成され、均一な鍍金皮膜が得ら
れる。
The third problem is that a plating bath containing a plating bath in which a plating object as a cathode is immersed, and a plating object to be immersed in the plating bath in the plating bath. An anode disposed at an interval with respect to the surface, a number of plating solution inflow holes arranged in a row in a row arranged opposite to the surface to be plated, and a row of the plating solution inflow holes; A plurality of plating solution outflow holes arranged in parallel, a plating solution supply chamber communicating with the plating solution inflow hole and communicating with the discharge side of the plating solution pump, A plating solution suction chamber communicating with the hole and communicating with a suction side of the plating solution pump, and extending into the plating bath from both sides of each column of the plating solution inflow holes toward the surface to be plated; Further, a flow path is formed which directs the plating solution flowing into the plating tank from the inflow small hole toward the surface to be plated. A plating apparatus is provided in which a pair of flow control plates are provided, and the row of the plating solution outflow holes is provided on a side of the flow control plate pair forming a plating solution flow path toward the surface to be plated. This is solved by a plating apparatus in which a small plating cell is formed as one unit, a plurality of small plating cells are connected vertically and horizontally, and the plating tanks of each unit are mutually opened to form one large-capacity plating tank as a whole. . According to this plating apparatus, a large-area plating surface (cathode surface) of a plating object immersed in a plating bath of a large-capacity plating tank has a plating surface portion opposed to each small plating cell. Since it can act on the surface and does not significantly affect adjacent portions, uniform removal of the ion gradient layer can be achieved over the entire surface to be plated, and a uniform plating film can be obtained.

【0015】上記の各小鍍金セルの鍍金液流入小孔の縦
列と鍍金流出小孔の縦列がそれぞれ垂直方向に延び且つ
交互に設けてある構成とすることにより、一対の制流板
の間に発生せしめられる鍍金液流が被鍍金面に衝突後、
半分に別れて左右均等に反転し、被鍍金面からのイオン
勾配層の除去を、大面積被鍍金面においても万遍なく行
うことができる。
The arrangement of the plating solution inflow holes and the plating outflow holes in each of the small plating cells is arranged vertically and alternately. After the plating solution flow hits the surface to be plated,
It is possible to remove the ion gradient layer from the surface to be plated evenly on the large-area surface to be plated.

【0016】また、各小鍍金セルの制流板対とそれに隣
接する制流板対との間の鍍金液流出小孔列の前方に間隔
をあけて角柱状の陽極を配置し、この陽極とそれに対向
する制流板との間に、被鍍金面で反転した後の鍍金液を
至近位置にある制流板に沿って鍍金液流出小孔へ向けて
案内する通路を設けた構成とすることにより、反転後、
被鍍金面から遠ざかる方向への液流が制流板に沿って発
生し、より効果的な鍍金液の反転、即ちイオン勾配層を
効果的に除去する反転流が、大面積被鍍金面においても
得られる。
Further, a prismatic anode is arranged at a distance in front of the plating solution outflow small hole row between the flow control plate pair of each small plating cell and the adjacent flow control plate pair, A passage for guiding the plating solution, which has been inverted on the surface to be plated, to the plating solution outflow hole along the flow control plate located in the closest position is provided between the flow control plate and the opposing control plate. , After inversion,
A liquid flow in a direction away from the surface to be plated is generated along the flow control plate, and a more effective reversal of the plating solution, that is, a reverse flow for effectively removing the ion gradient layer, is generated even on the large area plated surface. can get.

【0017】[0017]

【発明の実施の形態】図1〜3は本発明方法を実施する
ための鍍金装置の概略を示しており、図1は同装置の正
面図、図2はその側面図、図3はその平面図である。
1 to 3 schematically show a plating apparatus for carrying out the method of the present invention. FIG. 1 is a front view of the plating apparatus, FIG. 2 is a side view thereof, and FIG. FIG.

【0018】図中、1は鍍金槽、2はこの槽内に配置さ
れる陽極、3は槽内の鍍金浴内に陽極2に対向して配置
される陰極板としての、例えばシリコンウエハーディス
ク等の被鍍金物である。鍍金槽1は四個の壁部1a,1
b,1c,1dと底壁1eを有しており、扁平な内壁面
を有する壁部1aには縦列配置の多数の鍍金液流入小孔
5と、同じく縦列配置の多数の鍍金液流出小孔6が設け
てある。流入小孔5と流出小孔6の各縦列は、それぞれ
垂直方向へ延びており、また交互に配列されている。
In the figure, 1 is a plating tank, 2 is an anode disposed in this tank, 3 is a cathode plate, for example, a silicon wafer disk or the like, which is disposed in the plating bath in the tank so as to face the anode 2. It is an object to be plated. The plating tank 1 has four walls 1a, 1
b, 1c, 1d and a bottom wall 1e. A wall portion 1a having a flat inner wall surface has a large number of plating solution inflow holes 5 arranged in tandem and a large number of plating solution outflow holes also arranged in tandem. 6 are provided. The columns of the inflow holes 5 and the outflow holes 6 respectively extend in the vertical direction and are arranged alternately.

【0019】流入小孔5及び流出小孔6はいずれも一方
において鍍金槽1内に開口している。他方において、流
入小孔5は、鍍金液ポンプ(図示せず)の吐出側に吐出
管7を介して連通している鍍金液供給室8に開口し、流
出小孔6は、鍍金液ポンプの吸込側に吸入管9を介して
連通している鍍金液吸入室10に開口している。
Each of the inflow small hole 5 and the outflow small hole 6 is open in the plating tank 1 on one side. On the other hand, the inlet hole 5 opens into a plating solution supply chamber 8 communicating with the discharge side of a plating solution pump (not shown) via a discharge pipe 7, and the outlet hole 6 opens the plating solution pump. It opens to a plating solution suction chamber 10 which communicates with the suction side via a suction pipe 9.

【0020】鍍金液供給室8と鍍金液吸込室10は鍍金
槽1の底壁1eと前壁1aとにかけて、それらの外側に
重ね合わせて設けてあり、外側の鍍金液吸込室10と鍍
金槽1内とを連通する流出小孔6は、鍍金液供給室8を
横切って延びる短菅6aによって形成されている。
The plating solution supply chamber 8 and the plating solution suction chamber 10 are provided over the bottom wall 1e and the front wall 1a of the plating tank 1 so as to be overlapped on the outside thereof. The small outflow hole 6 communicating with the inside of the inside 1 is formed by a short tube 6 a extending across the plating solution supply chamber 8.

【0021】吐出管7及び吸込管9は、鍍金槽1の底壁
1eの下方で、それぞれ鍍金液供給室8及び鍍金液吸込
室10を横切って延びており、それぞれの管7、9に形
成された小孔7a,9a(図1)によって、対応する室
8、10内と連通している。
The discharge pipe 7 and the suction pipe 9 extend below the bottom wall 1e of the plating tank 1 across the plating solution supply chamber 8 and the plating solution suction chamber 10, respectively. The small holes 7a, 9a (FIG. 1) communicate with the corresponding chambers 8, 10.

【0022】鍍金槽1内には、前壁1aの内側の扁平な
壁面に開口している垂直方向縦列配置の流入小孔5の両
脇に、内壁面から略直角方向へ延びている制流板11が
設けてあり、この一対の制流板11によって、一列の流
入小孔5から送り込まれる鍍金液が被鍍金物3の表面に
向けて直進的に案内されるようになされている。
In the plating tank 1, on both sides of an inflow small hole 5 arranged in a vertical cascade which is opened on a flat wall inside the front wall 1a, a flow control extending substantially perpendicularly from the inner wall is provided. A plate 11 is provided. The pair of flow control plates 11 guide the plating solution fed from the row of inflow small holes 5 straightly toward the surface of the plating object 3.

【0023】隣り合う制流板対の間、及び両端にある制
流板対の外側には、垂直方向縦列配置の各列の流出小孔
6の開口から間隔をおいて角柱状の陽極(バスケット)
12が配置されている。
A pair of prismatic anodes (baskets) are provided between the adjacent flow control plate pairs and outside the flow control plate pairs at both ends, at intervals from the openings of the outflow small holes 6 in each row in the vertical column arrangement. )
12 are arranged.

【0024】陽極12は、図4〜図6の部分図に示すと
おり、制流板11の側面から間隔をあけて配置されてお
り、また鍍金槽前壁1aの内面からも間隔をあけてあ
る。従って、陽極12と制流板11及び前壁内面との間
には流出小孔6に通じる吸引通路13が形成されてい
る。
As shown in the partial views of FIGS. 4 to 6, the anode 12 is spaced from the side surface of the flow control plate 11, and is also spaced from the inner surface of the plating tank front wall 1a. . Therefore, a suction passage 13 is formed between the anode 12 and the flow control plate 11 and between the anode 12 and the inner surface of the front wall.

【0025】上記の鍍金装置の作動について説明する
と、鍍金液ポンプから吐出され吐出管7内へ送られる鍍
金液は、小孔7a(図1)から鍍金液供給室8内へ入
り、次いで流入小孔5から鍍金槽1内の鍍金浴内へ流入
する。その際、流入する鍍金液は各流入小孔5の垂直方
向縦列に対応する一対の制流板11によって、被鍍金物
3に向けて直進的に案内される。
The operation of the plating apparatus will be described. The plating solution discharged from the plating solution pump and sent into the discharge pipe 7 enters the plating solution supply chamber 8 through the small hole 7a (FIG. 1), and then flows into the plating solution supply chamber 8. It flows into the plating bath in the plating tank 1 from the hole 5. At this time, the flowing plating solution is guided straight toward the plating object 3 by a pair of flow control plates 11 corresponding to the vertical columns of the respective inflow holes 5.

【0026】制流板11によって案内された鍍金流は被
鍍金面に対して衝突し方向変換せしめられるが、その際
鍍金液ポンプの吸引側に連通している鍍金液吸引室8内
へ流出小孔6から鍍金液が吸引されることによって吸引
通路13内に発生する、被鍍金面から遠ざかる方向への
鍍金液流によって、上記の方向変換が急激に行われ、こ
のような急激な鍍金液流の反転が、被鍍金物表面に発生
し吸着しているイオン勾配層を除去する大きな運動エネ
ルギーをもたらす。
The plating flow guided by the flow control plate 11 collides with the surface to be plated and is changed in direction. At this time, a small amount flows out into the plating solution suction chamber 8 communicating with the suction side of the plating solution pump. The above-described direction change is rapidly performed by the plating liquid flow generated in the suction passage 13 by suction of the plating liquid from the hole 6 in the direction away from the surface to be plated. Reversal causes a large kinetic energy to remove the ion gradient layer generated and adsorbed on the surface of the plating object.

【0027】このように、イオン勾配層が効果的に除去
され、被鍍金物表面に金属イオンが多く供給されること
により鍍金皮膜が高速で形成され、更に、その際流入小
孔5及び流出小穴6と、被鍍金物表面までの距離を短か
くすれば、イオン勾配層除去並びに金属イオン供給効果
が増大し、そのように金属イオンの供給率が高くなれ
ば、被鍍金物表面と陽極との間の距離を短縮し且つ陰極
電流密度(Dk)を上げることができるので、鍍金速度
は更に高められる。
As described above, the ion gradient layer is effectively removed, and the plating film is formed at a high speed by supplying a large amount of metal ions to the surface of the material to be plated. 6, if the distance to the surface of the plating object is shortened, the effect of removing the ion gradient layer and supplying metal ions increases, and if the supply rate of the metal ions is high, the distance between the surface of the plating object and the anode is increased. The plating speed is further increased because the distance between them can be reduced and the cathode current density (Dk) can be increased.

【0028】制流板11によって案内される鍍金液流は
被鍍金物表面に衝突後、左右両方向へ別かれ、それぞれ
反転してイオン勾配層の除去を行い、そのような作用が
各制流板毎に横方向に連続して発生せしめられるので、
全表面に亘って略々均一に鍍金皮膜が形成される。その
際、被鍍金物3を制流板11に対して直角の方向に左右
に揺り動かすことによって形成皮膜の均一性は更に高め
られる。
After the plating solution flow guided by the flow control plate 11 collides with the surface of the plating object, it is separated in both the left and right directions, and is reversed to remove the ion gradient layer. Since it is generated continuously in the horizontal direction every time,
A plating film is formed substantially uniformly over the entire surface. At this time, the uniformity of the formed film is further enhanced by swinging the plating object 3 right and left in a direction perpendicular to the flow control plate 11.

【0029】図7〜図9は、比較的大きな被鍍金物に対
応した鍍金装置の実施形態を示しており、図7は同装置
の正面図、図8は同側面図、図9は同平面図であって、
この鍍金装置は基本的には図1〜図6に示した鍍金装置
を一つのユニットとしての小鍍金セルとして用い、この
小鍍金セルを縦横に連結して構成されている。図示の実
施態様では、縦に二個、横に二個の計四個の小鍍金セル
20A〜20Dを組み合わせて構成されている。ただ
し、鍍金槽21は全部の小鍍金セル20A〜20Dに対
し開放し、仕切りのない室として構成されている。
7 to 9 show an embodiment of a plating apparatus corresponding to a relatively large object to be plated. FIG. 7 is a front view of the plating apparatus, FIG. 8 is a side view thereof, and FIG. FIG.
This plating apparatus is basically constructed by using the plating apparatus shown in FIGS. 1 to 6 as a small plating cell as one unit and connecting the small plating cells vertically and horizontally. In the illustrated embodiment, four small plating cells 20 </ b> A to 20 </ b> D are combined, two vertically and two horizontally. However, the plating tank 21 is open to all the small plating cells 20A to 20D and is configured as a room without partitions.

【0030】小鍍金セル20A〜20Dの鍍金液供給室
28と鍍金液吸込室30は各セル毎に独立しており、各
鍍金液供給室28へは、一つの鍍金液ポンプ(図示せ
ず)の吐出側に接続されている吐出管27を介して鍍金
液が供給され、各鍍金液吸入室30からは、他の鍍金液
ポンプの吸入側に接続されている吸入管29を介して鍍
金液が吸引される。
The plating solution supply chamber 28 and the plating solution suction chamber 30 of the small plating cells 20A to 20D are independent for each cell, and one plating solution pump (not shown) is provided to each plating solution supply chamber 28. The plating solution is supplied through a discharge tube 27 connected to the discharge side of the plating solution, and the plating solution is supplied from each plating solution suction chamber 30 through a suction tube 29 connected to the suction side of another plating solution pump. Is sucked.

【0031】図7に示すように、上下に接続する小鍍金
セル20Aと20B、及び20Cと20Dの制流板31
は直線的に整列しており、また、左右の小鍍金セル20
Aと20C、及び20Bと20Dの接続部においては、
一つの陽極32が共用されるようになされている。
As shown in FIG. 7, the flow control plates 31 of the small plating cells 20A and 20B and the small plating cells 20C and 20D connected vertically are connected.
Are linearly aligned, and the left and right small plating cells 20
At the connection between A and 20C, and 20B and 20D,
One anode 32 is shared.

【0032】各小鍍金セルの作用は、図1〜図6に示し
た鍍金装置と実質的に同じである。これら小鍍金セルを
複合、合成して形成した鍍金装置によれば、各小鍍金セ
ルに対向する被鍍金物表面部分に対してのみ撹拌作用、
即ちイオン勾配層除去作用を行い、隣接する部分には影
響を及ぼさず、大きな被鍍金物23の全鍍金面積におい
て均一な鍍金作用が行われる。
The function of each plating cell is substantially the same as that of the plating apparatus shown in FIGS. According to the plating apparatus formed by combining and synthesizing these small plating cells, only the surface of the plating object facing each small plating cell is stirred,
That is, the ion gradient layer removing operation is performed, and the adjacent portion is not affected, and the uniform plating operation is performed over the entire plating area of the large plating object 23.

【0033】上記の実施の形態では上下、左右、それぞ
れ二つの小鍍金セルを接続して大きな被鍍金物用の鍍金
装置を形成する場合を説明したが、被鍍金物の大きさに
応じてその数を変更し組み合わせることができる。
In the above-described embodiment, a case has been described in which two small plating cells are connected to each other in the upper, lower, left, and right directions to form a plating apparatus for a large plating object. The numbers can be changed and combined.

【0034】[0034]

【発明の効果】上記のように、本発明によれば、鍍金浴
中の金属イオン(M++)を殊更増やすことなく、通常の
温度で作業しても鍍金時間の短縮化が可能であり、また
平均的なM++濃度で陰極電流密度(Dk)を上げても均
一電着性が得られ、その結果高品質の鍍金が比較的短時
間の中に得られるものである。
As described above, according to the present invention, the plating time can be shortened even when working at a normal temperature without increasing the metal ions (M ++ ) in the plating bath. Even if the cathode current density (Dk) is increased at an average M ++ concentration, uniform electrodeposition can be obtained, and as a result, high quality plating can be obtained in a relatively short time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による鍍金装置の正面図である。FIG. 1 is a front view of a plating apparatus according to the present invention.

【図2】図1の鍍金装置の側面図である。FIG. 2 is a side view of the plating apparatus of FIG.

【図3】図1の鍍金装置の平面図である。FIG. 3 is a plan view of the plating apparatus of FIG. 1;

【図4】図1の鍍金装置の部分的拡大図である。FIG. 4 is a partially enlarged view of the plating apparatus of FIG. 1;

【図5】図4を5−5線に沿って矢印の方向に見た図で
ある。
FIG. 5 is a view of FIG. 4 as viewed in the direction of the arrow along line 5-5.

【図6】図4を6−6線に沿って矢印の方向に見た図で
ある。
FIG. 6 is a view of FIG. 4 as viewed in the direction of the arrow along line 6-6.

【図7】本発明による、大面積の被鍍金物用鍍金装置の
正面図である。
FIG. 7 is a front view of a plating apparatus for a large-area plating object according to the present invention.

【図8】図7の鍍金装置の側面図である。FIG. 8 is a side view of the plating apparatus of FIG. 7;

【図9】図7の鍍金装置の平面図である。FIG. 9 is a plan view of the plating apparatus of FIG. 7;

【符号の説明】[Explanation of symbols]

1 ‥‥ 鍍金槽 1a‥‥ 扁平な内壁面を有する壁部 2 ‥‥ 陽極 3 ‥‥ 被鍍金物(陰極) 5 ‥‥ 鍍金液流入小穴 6 ‥‥ 鍍金液流出小穴 7 ‥‥ 仕出管 8 ‥‥ 鍍金液供給室 9 ‥‥ 吸入管 10 ‥‥ 鍍金液吸込管 11 ‥‥ 制流板 13 ‥‥ 吸引通路 20A〜20D ‥‥ 小鍍金セル 21 ‥‥ 鍍金槽 23 ‥‥ 被鍍金物 27 ‥‥ 吐出管 28 ‥‥ 鍍金液供給室 29 ‥‥ 吸入管 30 ‥‥ 鍍金液吸込室 31 ‥‥ 制流板 32 ‥‥ 陽極 DESCRIPTION OF SYMBOLS 1 ‥‥ Plating tank 1 a 壁 Wall having flat inner wall surface 2 陽極 Anode 3 ‥‥ Plated object (cathode) 5 小 Plating solution inflow hole 6 ‥‥ Plating solution outflow hole 7 ‥‥ Discharge tube 8 ‥ ‥ Plating solution supply chamber 9 ‥‥ Suction pipe 10 ‥‥ Plating solution suction pipe 11 流 Flow control plate 13 Suction passage 20A-20D ‥‥ Small plating cell 21 ‥‥ Plating tank 23 ‥‥ Plated material 27 ‥‥ Discharge pipe 28 鍍 Plating solution supply chamber 29 吸入 Suction pipe 30 ‥‥ Plating solution suction chamber 31 ‥‥ Flow control plate 32 ‥‥ Anode

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−322599(JP,A) 特開 昭56−136977(JP,A) 特開 平2−185999(JP,A) 特開 昭60−67689(JP,A) 特開 昭62−297493(JP,A) (58)調査した分野(Int.Cl.6,DB名) C25D 21/10 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-6-322599 (JP, A) JP-A-56-136977 (JP, A) JP-A-2-185999 (JP, A) JP-A-60-1985 67689 (JP, A) JP-A-62-297493 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C25D 21/10

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 陰極としての被鍍金物が浸漬される鍍金
浴を収容している鍍金槽と、この鍍金槽内において鍍金
浴中に浸漬される被鍍金物の被鍍金面に対し間隔をおい
て対向配置される陽極と、上記被鍍金面に対して間隔を
おいて対向配置された多数の縦列配置の鍍金液流入小孔
と、上記鍍金液流入小孔の列と並列して設けられた多数
の縦列配置の鍍金液流出小孔と、上記鍍液流入小孔に連
通し且つ鍍金液ポンプの吐出側に連通している鍍金液供
給室と、上記鍍金液流出小孔に連通し且つ鍍金液ポンプ
の吸込側に連通している鍍金液吸込室とを有し、更に上
記鍍金槽内には鍍金液流入小孔の各縦列の両脇から被鍍
金面へ向けて延び、上記流入小孔から鍍金槽内へ流入す
る鍍金液を被鍍金面へ指向する流路を形成している一対
の制流板が設けてあり、上記の鍍金液流出小孔の列が被
鍍金面へ向けての鍍金液流路を形成している制流板対の
側方に設けてある鍍金装置を一つのユニットとしての小
鍍金セルとし、複数の小鍍金セルを縦横に接続し、各ユ
ニットの鍍金槽を相互に開放して全体的に一つの大容量
の鍍金槽とし、上記の小鍍金セルの鍍金液供給室と鍍金
液吸込室は各セル毎に独立していることを特徴とする、
鍍金装置。
1. A plating bath containing a plating bath in which a plating object as a cathode is immersed, and an interval between a plating surface of the plating object immersed in the plating bath in the plating bath. And a plurality of plating solution inflow holes arranged in a row in a row and opposed to the surface to be plated, and a plurality of plating solution inflow holes arranged in parallel with the row of the plating solution inflow holes. A plurality of plating solution outflow holes arranged in tandem, a plating solution supply chamber communicating with the plating solution inflow hole and communicating with the discharge side of the plating solution pump, and a plating solution communicating with the plating solution outflow hole and plating. A plating solution suction chamber communicating with the suction side of the solution pump, and further extending into the plating tank from both sides of each of the plating solution inflow holes toward the surface to be plated; A pair of flow control plates are provided that form a flow path that directs the plating solution flowing from the plating tank into the plating tank toward the surface to be plated. In addition, a plating cell as one unit is a plating apparatus provided on a side of a flow control plate pair in which the above-mentioned row of plating solution outflow holes forms a plating solution flow path toward a surface to be plated. and then, a plurality of small plating cells connected in a matrix, the plating bath generally one of the large-capacity plating bath open to each other for each unit, plating the plating solution supply chamber above the small plating cells
The liquid suction chamber is independent for each cell ,
Plating equipment.
【請求項2】 各鍍金液供給室へは、一つの鍍金液ポン
プの吐出側に接続されている吐出管を介して鍍金液が供
給され、各鍍金液吸入室からは、他の鍍金液ポンプの吸
入側に接続されている吸入管を介して鍍金液が吸引され
ることを特徴とする、請求項1に記載の鍍金装置。
2. One plating solution pump is provided for each plating solution supply chamber.
The plating solution is supplied via a discharge pipe connected to the discharge side of the pump.
The plating solution is supplied from each plating solution suction chamber.
The plating solution is sucked through the suction pipe connected to the inlet side.
The plating apparatus according to claim 1, wherein:
【請求項3】 各小鍍金セルの鍍金液流入小孔の縦列と
鍍金液流出小孔の縦列がそれぞれ垂直方向に延び且つ交
互に設けてあることを特徴とする、請求項1または2に
記載の鍍金装置。
3. The method according to claim 1, wherein the columns of plating solution inflow holes and the columns of plating solution outflow holes of each small plating cell extend in the vertical direction and are alternately provided. Plating equipment.
【請求項4】 各小鍍金セルの制流板対とそれに隣接す
る制流板対との間の鍍金液流出小孔列の前方に間隔をあ
けて角柱状の陽極を配置し、この陽極とそれに対向する
制流板との間に、被鍍金面で反転した後の鍍金液を至近
位置にある制流板に沿って鍍金液流出小孔へ向けて案内
する通路を設けたことを特徴とする、請求項1〜3の1
つに記載の鍍金装置。
4. A prism-shaped anode is arranged at a distance in front of a plating solution outflow small hole row between a flow control plate pair of each small plating cell and a flow control plate pair adjacent to the flow control plate pair. A passage for guiding the plating solution, which has been inverted on the surface to be plated, to the plating solution outflow hole along the flow control plate located at a close position is provided between the opposing control plate and the plating plate. Claims 1 to 3
The plating apparatus according to any one of the above.
JP8284134A 1996-10-25 1996-10-25 Electroplating method and apparatus Expired - Fee Related JP2980561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8284134A JP2980561B2 (en) 1996-10-25 1996-10-25 Electroplating method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8284134A JP2980561B2 (en) 1996-10-25 1996-10-25 Electroplating method and apparatus

Publications (2)

Publication Number Publication Date
JPH10130895A JPH10130895A (en) 1998-05-19
JP2980561B2 true JP2980561B2 (en) 1999-11-22

Family

ID=17674615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8284134A Expired - Fee Related JP2980561B2 (en) 1996-10-25 1996-10-25 Electroplating method and apparatus

Country Status (1)

Country Link
JP (1) JP2980561B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4686816B2 (en) * 2000-05-30 2011-05-25 住友電気工業株式会社 Plating method
JP2004211124A (en) * 2002-12-27 2004-07-29 Saatec Kk Damascene plating method and plating apparatus using this method

Also Published As

Publication number Publication date
JPH10130895A (en) 1998-05-19

Similar Documents

Publication Publication Date Title
JP5597751B2 (en) Apparatus and method for electrolysis treatment of plate-like product
US20130186852A1 (en) Device and method for producing targeted flow and current density patterns in a chemical and/or electrolytic surface treatment
US20050006241A1 (en) Paddles and enclosures for enhancing mass transfer during processing of microfeature workpieces
CN103060871B (en) Electroplanting device and electro-plating method
US6379511B1 (en) Paddle design for plating bath
JPH0950977A (en) Device and method for cleaning semiconductor substrate
KR20010090533A (en) Perforated anode for uniform of a metal layer
US4832811A (en) Electroplating apparatus for plate-shaped workpieces, particularly printed circuit boards
KR100917433B1 (en) Method and device for regenerating ion exchanger, and electrolytic processing apparatus
US6979391B1 (en) Method and device for the electrolytic treatment of electrically conducting structures which are insulated from each other and positioned on the surface of electrically insulating film materials and use of the method
CN212505140U (en) Electrode structure and electrochemical deposition apparatus
US9551083B2 (en) Paddle for materials processing
US6939455B1 (en) Method and device for the electrolytic treatment of electrically conducting surfaces separated plates and film material pieces in addition to uses of said method
JP2980561B2 (en) Electroplating method and apparatus
KR101426373B1 (en) Apparatus to Plate Substrate
US6949172B1 (en) Arrangement enabling a liquid to flow evenly around a surface of a sample and use of said arrangement
TW202129085A (en) Electroplating system and method of plating a substrate
JP2698871B2 (en) Barrel plating equipment
JPH07171352A (en) Device and method for ion recovery
CN218404477U (en) Electroplating bath and have its electroplating production line
JP3366319B2 (en) Continuous automatic plating equipment
CN115992380A (en) Horizontal electroplating device
JP2988567B2 (en) Strip electropolishing equipment
JPS6067689A (en) Method and apparatus for plating
JP4056359B2 (en) Electrolytic processing apparatus and method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees