JPS6324095A - Method and apparatus for electroplating - Google Patents

Method and apparatus for electroplating

Info

Publication number
JPS6324095A
JPS6324095A JP6923986A JP6923986A JPS6324095A JP S6324095 A JPS6324095 A JP S6324095A JP 6923986 A JP6923986 A JP 6923986A JP 6923986 A JP6923986 A JP 6923986A JP S6324095 A JPS6324095 A JP S6324095A
Authority
JP
Japan
Prior art keywords
anodes
plating solution
plating
electrodes
steel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6923986A
Other languages
Japanese (ja)
Other versions
JPH0448879B2 (en
Inventor
Shuzo Fukuda
福田 脩三
Yutaka Okubo
豊 大久保
Toshio Ishii
俊夫 石井
Masaru Sagiyama
勝 鷺山
Shigehiro Takushima
重宏 多久島
Tatsuro Anami
阿南 達郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP6923986A priority Critical patent/JPS6324095A/en
Publication of JPS6324095A publication Critical patent/JPS6324095A/en
Publication of JPH0448879B2 publication Critical patent/JPH0448879B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)

Abstract

PURPOSE:To uniformize the flow velocity of a plating liquid and to execute plate to uniform quality and performance by forming respectively independent plating liquid flow passages of a pair of upper and lower anodes and a strip traveling between the anodes and sealing the inside of the spacing between the two anodes. CONSTITUTION:A pair of the insoluble anodes 27 are disposed on the top and bottom surfaces in a plating bath 22 in a tray wall 21 and a steel sheet 23 to be plated is run between the anodes 27. Edge sealing parts 34 having forked parts 34a are disposed to both side ends of the steel sheet 23 and masks 37 mounted to both side parts of both electrodes are brought into elastic contact with the edge sealing parts 34 to form the plating flow passages 35, 36 respectively independently between the anodes 27. A plating liquid sealing member 32 having a saw tooth shape is mounted to the inlet part of the anodes 27. The plating liquid 22 is fed from respective nozzle headers 29 via nozzles 28 to the respective flow passages 35, 36 in the above-mentioned constitution. The flow passages 35, 36 are respectively independent from each other and the inside between the two electrodes 27 is sealed by the sealing members 32, 34, 37; therefore, the pressure in the spacing between the electrodes 27 is increased to generate a substantial cushion force and to maintain the specified flow rates of the upper and lower flow passages 35, 36.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、鋼板を連続的に電気めっきする方法及び装置
の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to improvements in a method and apparatus for continuously electroplating steel sheets.

〔従来技術及びその問題点〕[Prior art and its problems]

近年、自動車用鋼板として耐食性、加工性の優れたもの
が要請さ汎、この要請に応えうる鋼板として合金亜鉛め
っき鋼板が棟々開発されている。この合金亜鉛めっき鋼
板、例えば鉄−亜鉛めっき鋼板は、その品質性能が成極
界面におけるめっき液の流動状況によって左右されるた
め、各種流動方式がとられている。
In recent years, there has been a growing demand for steel sheets for automobiles that have excellent corrosion resistance and workability, and galvanized alloy steel sheets have been developed as steel sheets that can meet these demands. Since the quality and performance of this alloy galvanized steel sheet, such as iron-galvanized steel sheet, depends on the flow condition of the plating solution at the polarization interface, various flow methods are used.

第10図は、合金亜鉛めっき鋼板を製造するための従来
の電気めっき装置の要部を示す。この装置は、水平に走
行する鋼板1の上下方向に1対の亜鉛成極2,2を対向
して配置し、更に幅方向にスリット状に開口したノズル
を備え友めっき液供給機構3を配置して、この機構から
電極2,2の間隙にめりきgを供給している。
FIG. 10 shows the main parts of a conventional electroplating apparatus for manufacturing alloy galvanized steel sheets. This device has a pair of zinc polarized plates 2, 2 arranged facing each other in the vertical direction of a horizontally running steel plate 1, and a plating solution supply mechanism 3 equipped with a nozzle opening in the shape of a slit in the width direction. This mechanism supplies milling g to the gap between the electrodes 2, 2.

なお図中4はめっき液をシールするためのダムロールで
ある。この装置では、めっき液供給機構3のノズルが電
極2,2から離間しており、この丸めノズル近傍におけ
る電極間のめっき流速が大きく変化する。この結果、合
金めっき層の組成が不均一となシ、品質性能が低い欠点
があった。
Note that 4 in the figure is a dam roll for sealing the plating solution. In this apparatus, the nozzle of the plating solution supply mechanism 3 is spaced apart from the electrodes 2, 2, and the plating flow rate between the electrodes in the vicinity of this rounded nozzle changes greatly. As a result, the composition of the alloy plating layer was non-uniform and the quality performance was low.

また電気めっきプロセスでは、製造原価に占める′成力
費の割合が太きい。この友め電力コストを低減する方法
として、電極間距離りを短くすることが提案されている
。即ち電極間距離が電気抵抗の支配的要因であるため、
電流経路の電気抵抗を低くして電力費を下げようとする
ものである。例えば第11図に示すめっき装置は、鋼板
1の進行方向に涜って成極2,20前後端部及び中央部
にそれぞ几めつき液供給ノズル6゜7.8を形成し、こ
れらノズルを鋼板の幅方向に沼ってスリット状としてい
る。そして中央部のノズル7からめっぎ液を流量Qcで
供給して鋼板のカテナリーを低減するとともに、両端部
のノズル6.8からめっき液を流量Qr 、 Qoで供
給して電極間の内圧を高めかつシールして、めっき液に
クッション効果(めっき液の圧力による鋼板のカテナリ
ーを防ぐ効果)を持たせるようにしている。
Furthermore, in the electroplating process, production costs account for a large proportion of the manufacturing cost. As a method of reducing this power cost, it has been proposed to shorten the distance between the electrodes. In other words, since the distance between the electrodes is the dominant factor in electrical resistance,
This is an attempt to lower electricity costs by lowering the electrical resistance of the current path. For example, in the plating apparatus shown in FIG. 11, plating liquid supply nozzles 6° 7.8 are formed at the front and rear ends and the center of the polarizers 2 and 20 in the direction of movement of the steel plate 1, and these nozzles The steel plate is shaped like a slit in the width direction of the steel plate. Then, the plating solution is supplied from the nozzle 7 in the center at a flow rate Qc to reduce the catenary of the steel plate, and the plating solution is supplied from the nozzles 6.8 at both ends at a flow rate Qr and Qo to increase the internal pressure between the electrodes. It is also sealed so that the plating solution has a cushioning effect (an effect that prevents catenary formation of the steel plate due to the pressure of the plating solution).

しかしこの方法では、めっき液によるシール効果が十分
でない友め、必ずしも有効なりッションカが得られず、
しかもめっき放流量QX、Q。
However, with this method, the sealing effect of the plating solution is not sufficient, and it is not always possible to obtain an effective seal.
Moreover, the plating discharge amount QX, Q.

は、電極間内には流れず、シールだけを行うため、余力
の動力が必要となる。まためっきg全電極中央部から供
給しているので、めっき液は鋼板の進行方向前方には順
流で流れ、進行方向後方には対向流として流nる。この
友め、前方と後方とでは鋼板とめっき液との相対流速が
大きく異なることとな9、この結果、合金めっきの品質
性能がバラツキやすくなる欠点がある。
does not flow between the electrodes and only performs sealing, so extra power is required. Furthermore, since the plating solution is supplied from the center of all the electrodes, the plating solution flows forward in the forward direction of the steel plate in the forward direction, and flows in a countercurrent flow backward in the forward direction of the steel plate. The relative flow velocity between the steel plate and the plating solution differs greatly between the front and the rear.9 As a result, there is a drawback that the quality performance of the alloy plating tends to vary.

第12図は電極間の両側を閉じて、この内にめっき液を
流す構造を示す。この構造では、電極間にめっき液を流
すと、鋼板に対するめっき液の相対速反が均一となり、
合金めっき品質性能上の問題は解決される。しかし、電
極間に2ける鋼板上下の流路が連通している友め、鋼板
下方を流れるめっき液のみの圧力を上げることが困難で
ある。この結果クッション効果を十分に得ることができ
ない。まためっき液を供給するノズル(図示せず)のシ
ールも十分でなく、このことからも電極間内でのクッシ
ョン効果を期待できる程の圧力を得ることができない。
FIG. 12 shows a structure in which both sides between the electrodes are closed and the plating solution is allowed to flow inside. With this structure, when the plating solution is flowed between the electrodes, the relative velocity of the plating solution against the steel plate becomes uniform,
Alloy plating quality performance problems are solved. However, since the two channels above and below the steel plate are in communication between the electrodes, it is difficult to increase the pressure of only the plating solution flowing below the steel plate. As a result, a sufficient cushioning effect cannot be obtained. Furthermore, the sealing of the nozzle (not shown) for supplying the plating solution is not sufficient, and for this reason, it is not possible to obtain enough pressure to provide a cushioning effect between the electrodes.

このようなことから電極間距離をあまp小さくすること
ができず、電力使用効率が悪い。
For this reason, the distance between the electrodes cannot be made too small, resulting in poor power usage efficiency.

以上、従来方法及び装置の問題点を列挙すれば、 fl+  ’4電極内のめっき液の流速が不均一で、所
定の合金めっき性能を安定して得ることができない。
Listed above are the problems with the conventional method and apparatus: The flow rate of the plating solution within the fl+'4 electrode is non-uniform, making it impossible to stably obtain a predetermined alloy plating performance.

(2)更に流体シール方式のものでは、流体でシールす
るために、上記(1)の問題に加えて、余分な動力を要
するという問題がある。
(2) Further, in the fluid seal type, there is a problem in that extra power is required in addition to the problem in (1) above to seal with fluid.

(3)  また上下1B!極間の流路が連通しているの
で、鋼板上部のめっき液と鋼板下部のめつき液との間に
圧力差を形成することができず、クッション効果が不十
分とな夛、この結果極間距離をあまシ小さくできない。
(3) Top and bottom 1B again! Since the flow paths between the poles are in communication, no pressure difference can be created between the plating solution on the top of the steel plate and the plating solution on the bottom of the steel plate, resulting in an insufficient cushioning effect. It is not possible to reduce the distance between the two.

このため、高電流密度でめっきができず、電力コストの
低下を図ることができない。
For this reason, plating cannot be performed at high current density, making it impossible to reduce power costs.

〔発明が解決しようとする技術的課題〕この発明は、電
極間に均一な流速のめっき液を供給して品質性能が均一
な合金めっき鋼板を得、かつ鋼板上下を流れるめっき液
をそれぞれ独立とし、各めっき液に圧力差を設けてクッ
ション効果をもたせ、もってカテナリー量の低減を図り
、このことによυ電極間距離を小さくでき、高効率の電
気めっきを行なう電気めっき方法及びその装置を提供す
ることを目的とする。
[Technical problem to be solved by the invention] This invention supplies a plating solution at a uniform flow rate between electrodes to obtain an alloy-plated steel sheet with uniform quality and performance, and also to separate the plating solutions flowing above and below the steel sheet. , to provide an electroplating method and apparatus that provide a cushion effect by creating a pressure difference in each plating solution, thereby reducing the amount of catenary, thereby reducing the distance between the υ electrodes, and performing highly efficient electroplating. The purpose is to

〔技術的課題を解決する手段〕[Means to solve technical problems]

本発明は、上下に対向して配置さAil対の陽極と、こ
ルら陽極間を流通するストリップの両側端を囲うエツジ
マスクと、上記両陽極間の両側を閉じるシール機構と、
上部陽極、ストリップ、エツジマスク及びシール機構で
囲ま几た上部めっき液流路と、下部陽極、ストリップ、
エツジマスク及びシール機構で囲まれ上記上部めっき液
流路とは独立している下部めっき液流路とを具備し、各
めっき液流路にめっき′gLを独立して流通せしめ、同
時に電極間内にストリップを走行せしめながら両者間に
通電する電気めっき方法である。
The present invention comprises a pair of anodes arranged vertically opposite each other, an edge mask surrounding both ends of a strip flowing between these anodes, and a sealing mechanism that closes both sides between the two anodes.
The upper anode, the strip, the upper plating solution flow path surrounded by the edge mask and the seal mechanism, and the lower anode, the strip,
It is equipped with a lower plating solution flow path that is surrounded by an edge mask and a sealing mechanism and is independent from the above-mentioned upper plating solution flow path, and allows plating 'gL to flow independently through each plating solution flow path, and at the same time to flow between the electrodes. This is an electroplating method in which electricity is passed between the strips while running them.

更に本発明は、1組のめっき液供給機構に形成されたノ
ズルからそnぞれめっき液を上記各流路に供給するよう
にしfc電気めっき装置である。
Furthermore, the present invention is an fc electroplating apparatus in which a plating solution is supplied to each of the channels from nozzles formed in a set of plating solution supply mechanisms.

即ち本発明は、上下電極間の流路を互いに独立として各
流路にそれぞれ所定の流量でめっきtj、を流通させる
ことに工9、流体によるクッション効果を高め、もって
電極間距離を小さくすることを可?+巨とする。この原
理を第1図にもとづいて説明する。
That is, the present invention makes the flow paths between the upper and lower electrodes independent of each other and allows the plating tj to flow through each flow path at a predetermined flow rate.The cushioning effect of the fluid is enhanced, thereby reducing the distance between the electrodes. Is it possible? + Make it huge. This principle will be explained based on FIG.

第1図中11は鋼板、12は電極、13は非24寛体の
材質からなるシール部、14はダムロールを示す。図中
右側から電極12内にめっき液が上下同量(流量Q)流
れる時、流路出口の圧力f P oとすると、電極間に
かかる平均圧力Pは〔1〕式で表わさ九る。
In FIG. 1, reference numeral 11 indicates a steel plate, 12 an electrode, 13 a seal portion made of a non-circular material, and 14 a dam roll. When the plating solution flows in the same amount (flow rate Q) into the electrode 12 from the right side in the figure, and the pressure at the outlet of the flow path is f P o, the average pressure P applied between the electrodes is expressed by the formula [1].

ρ・・・めっき液密度 λl、λ2・・・抵抗係数 bL+h2・・・電極間距離 Lll”2・・・電極間長さ 電極間距離h2が中心位置から片側Δh2微小変位した
とすると、上下で起る圧力差ΔFは〔2〕式で表わさn
る。
ρ...Plating liquid density λl, λ2...Resistance coefficient bL+h2...Inter-electrode distance Lll"2...Inter-electrode length If the inter-electrode distance h2 is slightly displaced by Δh2 on one side from the center position, then The pressure difference ΔF that occurs is expressed by the formula [2], n
Ru.

ただし、流量Qは一定とし、h2の変化に対するhlの
変位はh2とhlの比に等しいものとした。〔2〕式中
右辺の〔〕内は常に正の値をとる。鋼板が移動して成極
間距離h2が移動量Δh2(負の量)で減少したとする
と、(2)式から距離の狭い方がΔ百(正の値)だけ圧
力が高くなシ、この結果この差圧によって鋼板を正規の
位置に戻すことができる。これがクッション効果の原理
である。
However, the flow rate Q was kept constant, and the displacement of hl with respect to the change in h2 was made equal to the ratio of h2 and hl. [2] The value in brackets on the right side of the equation always takes a positive value. If the steel plate moves and the distance h2 between the polarizations decreases by the amount of movement Δh2 (negative amount), then from equation (2), the pressure is higher by Δh2 (positive value) at the shorter distance. As a result, this differential pressure allows the steel plate to be returned to its normal position. This is the principle of the cushion effect.

このクッション効果を得るには、上下の流路を互いに独
立として流量を一定とすることが必要である。上下の流
路を互いに独立としないと、例えば鋼板の位置が変化し
、上下流路の一方が狭くなって圧力が上がシ、他方の流
路が広くなって圧力が下っても、めっき液が自由に上下
の流路間を往来でき、この結果めっき液は圧力の低い方
の流路へと流れ込み、圧力の差は緩和されてしまい、ク
ッション効果が期待できないためである。
In order to obtain this cushioning effect, it is necessary to make the upper and lower channels independent from each other so that the flow rate is constant. If the upper and lower channels are not independent from each other, for example, if the position of the steel plate changes, one of the upstream and downstream channels becomes narrower and the pressure increases, and the other channel becomes wider and the pressure decreases, the plating solution will not flow. This is because the plating solution can freely flow back and forth between the upper and lower channels, and as a result, the plating solution flows into the channel with lower pressure, the difference in pressure is alleviated, and a cushioning effect cannot be expected.

この流体のクッション効果によυ、鋼板の防振を図るこ
とができるが、この効果は(21式から明らかなように
流路間の圧力損失(百−PO)が大きい程太きい。この
圧力損失を大きくするには、 a、鋼板が進行する一方の¥IL柩端から他端に向けて
めっき液を供給して、流路長(L+ r L2 )を長
くとる。
The cushioning effect of this fluid can dampen the vibration of the steel plate by υ, but this effect increases as the pressure loss (100-PO) between the channels increases (as is clear from Equation 21. To increase the loss, a. Supply the plating solution from one end of the steel plate toward the other end to increase the flow path length (L+r L2).

b、供給するめっき液の方向を、鋼板の走行方向と対向
させる方向として、抵抗係数λ2を高める。
b. The resistance coefficient λ2 is increased by setting the direction of the supplied plating solution to be opposite to the traveling direction of the steel plate.

C,シール部をラビリンス方式などシール効果の高い方
式をとることによってλlを高める。
C. λl is increased by using a highly effective sealing method such as a labyrinth method for the sealing part.

などの方法が挙げられる。Examples of methods include:

めっき液の供給は、鋼板の走行に対向して行うのが効率
がよいが、ノズル設置上の制約から順流方向に供給して
もよい。要は上下電画間を仕切って互いに独立の流路を
形成すること、電極の一端g+)から他端に向けてめっ
き液を供給すること、及び電極間内のシール性を高めて
′亀甑内圧を高めてクッション力を得るものであればよ
い。
Although it is efficient to supply the plating solution in a direction opposite to the traveling direction of the steel plate, it may be supplied in the downstream direction due to restrictions on nozzle installation. The key points are to partition the upper and lower electrodes to form mutually independent flow paths, to supply the plating solution from one end of the electrode to the other end, and to improve the sealing between the electrodes. Any material that increases internal pressure and obtains cushioning force may be used.

〔実施例〕〔Example〕

以下本発明を亜鉛めっき方法及び装置に適用した実施例
につき説明する。第2図は本発明に係る電気めっき装置
の部分について鋼板の進行方向に沿う断面を示し、第3
図は第2図の■−m線に清う断面図である。この電気め
っき装置は、トレイ壁21内にめっき浴22金入れ、こ
のめっき浴22内を亜鉛めっきされる鋼板23が走行す
る。この鋼板23には、通電用コンダクタ−ロール24
、めっき液堰止め用ダムロール25、鋼板支持用サポー
トロール26が配置されている。このサポートロール2
6は、トレイの中間に位置している。めっき浴22内に
は、鋼板23の上下面に不溶性陽極27.27が配置さ
れている。鋼板23の進行方向前方には、各陽極27.
27の端部にそれぞれ、めっき液供給用ノズル28.2
8が一体的に取付けられ、これらノズル28.28はノ
ズルヘッダー29゜29と連通している。なお図中30
.31は、トレイ壁の外側に接している硬質ゴム製のめ
っき液シール部材、32は陽7427の入口部分に配置
さ′rしためつき液シール部材で、ン占状刃型をなし、
流路抵抗を増してクッション効果を上げるようにしてい
る。33は陽極27.27の出口部分に配置され几めっ
き液シール部材である。
Embodiments in which the present invention is applied to a galvanizing method and apparatus will be described below. FIG. 2 shows a cross section of the electroplating apparatus according to the present invention along the direction of movement of the steel plate;
The figure is a cross-sectional view taken along line -m in FIG. 2. In this electroplating apparatus, a plating bath 22 gold is placed in a tray wall 21, and a steel plate 23 to be galvanized runs within this plating bath 22. This steel plate 23 has a conductor roll 24 for energization.
, a dam roll 25 for damming the plating solution, and a support roll 26 for supporting the steel plate. This support role 2
6 is located in the middle of the tray. In the plating bath 22, insoluble anodes 27, 27 are arranged on the upper and lower surfaces of the steel plate 23. In front of the steel plate 23 in the advancing direction, each anode 27.
A plating solution supply nozzle 28.2 is installed at each end of the plating solution 27.
8 are integrally mounted and these nozzles 28,28 communicate with a nozzle header 29.29. In addition, 30 in the figure
.. 31 is a plating liquid sealing member made of hard rubber that is in contact with the outside of the tray wall; 32 is a plating liquid sealing member disposed at the inlet of positive 7427;
The flow path resistance is increased to improve the cushioning effect. 33 is a diluted plating solution sealing member disposed at the outlet of the anode 27.27.

これら陽極27.27間には、第3図に示すように、こ
こを走行する鋼板23(紙面に対して垂直方向に走行す
る)の両側にエツジシール板34を配置し、このエツジ
シール板34は先端にゴム製の2股部34aを形成して
いる。エツジシール板34は鋼板23とともに電極間内
のめっき液流路35.36を上下に分けている。
Between these anodes 27 and 27, as shown in FIG. A two-crotch portion 34a made of rubber is formed at the bottom. The edge seal plate 34 and the steel plate 23 divide the plating solution flow paths 35 and 36 between the electrodes into upper and lower parts.

更にエツジシール板34はその先端を鋼板のエツジから
30fIr!n程度離間しておυ、走行する鋼板23の
蛇行や幅の変更があると、これを検出しく検出機構の説
明は省略する)この検出信号にもとづいてエツジシール
板34の位置を追随して変更するようになっている。ま
た先端の2股部34hIi鋼板23のエツジ部を囲うよ
うに配置され(例えば鋼板とのオーバーラッ7″量20
+mIS′鋼板との最短距離3咽としている)、エツジ
部のオーバーコーテイングを防ぐようになっている。ま
た鋼板23の上下方向のバタツキに対して弾性的に変形
し、≠4上下の流路35.36のめっき液を常に遮蔽し
ている。
Furthermore, the edge seal plate 34 has its tip 30 fIr from the edge of the steel plate! If there is a meandering or change in width of the traveling steel plate 23 at a distance of about n, this will be detected and the position of the edge seal plate 34 will be changed accordingly based on this detection signal (description of the detection mechanism will be omitted). It is supposed to be done. In addition, the forked portion 34hIi at the tip is arranged so as to surround the edge portion of the steel plate 23 (for example, the overlap with the steel plate is 7″).
+mIS' (the shortest distance to the steel plate is set at 3) to prevent over-coating of the edges. Moreover, it deforms elastically in response to the vertical flapping of the steel plate 23, and always shields the plating solution in the upper and lower channels 35 and 36 of ≠4.

更に両電極27.27の両側部には、それぞれゴム製の
マスク37・・・が取付けられ、これらマスク37・・
・は、先端が上記エツジシール板34に弾性的に接触し
て電極間内を閉じ、ここを流通するめっき液をシールし
ている。ここで上記マスク37の材質をゴム製とし友の
は、通板作業などの非定常時に電極間距離を変える必要
があるが、とのX極間距離の調整に柔軟に対応し、かつ
シール効果を向上させるためである。
Furthermore, rubber masks 37... are attached to both sides of both electrodes 27, 27, respectively, and these masks 37...
- The tip elastically contacts the edge seal plate 34 to close the space between the electrodes and seal the plating solution flowing there. Here, the material of the mask 37 is made of rubber, which flexibly responds to the adjustment of the distance between the X electrodes, which requires changing the distance between the electrodes during unsteady operations such as sheet passing work, and has a sealing effect. This is to improve.

この電気めっき装置では、鋼板23は、図中左から右に
走行し、めっき液はポンプ(図示せず)の作用によシ、
各ノズルヘッダー29 、29からノズル2B 、、?
、!lを通ってそnぞれの流路35.36に流nる。各
流路35,36はそnぞれ独立しており、また電極間内
の両側が・/−ルされており、更にシール部材32でめ
っき液の流路抵抗を増しているので、電極間内の圧力が
上昇し、十分なりッションカが生じる。この後めっき液
は出口38を通ってトレイ内に流れる。
In this electroplating apparatus, the steel plate 23 travels from left to right in the figure, and the plating solution is pumped by the action of a pump (not shown).
Each nozzle header 29, 29 to nozzle 2B,...?
,! l to respective channels 35, 36. Each flow path 35, 36 is independent, and both sides between the electrodes are sealed, and the seal member 32 increases the flow path resistance of the plating solution, so that the flow path between the electrodes is sealed. The internal pressure increases and sufficient shock occurs. The plating solution then flows through outlet 38 into the tray.

央訣例1 以下の概略仕様の電気めっき装置を使用し、以下の条件
で鉄−亜鉛合金めっきと純亜鉛めっきの2種類について
めっきを行った。
Example 1 Two types of plating, iron-zinc alloy plating and pure zinc plating, were performed under the following conditions using an electroplating apparatus having the following general specifications.

/ 、2’ k   開 口  I Q tHHX 2
100 wn吐出角度  水平に対して20’ 鋼  板     幅     1880++a厚  
み      0.8震 電 極    福    2200簡 長  さ    1000關 材質 (1f Pb−Ag (0,5〜1.0%)12
)Ti−Pt (!1y=10μmめっき)トレイ数 
8 電極間距離 8〜10關 鋼板定行速度 36〜180 mpm Iンゾ吐出流量1.8m/分/ヘッダー吐出圧力 40
m 浴  組  成  (電極材質(1)の場合)成   
  分     含  有  量  (9−/l )Z
nSO4・7H20150 FeSO4・7H20350 Na2SO430 CH3COONa−aF(2010 C6H8075 浴  組  成  (’it極材質(2)の場合)成 
    分     含  有  量  (9−/l 
)ZnSO47H20150 F11SO4’7H20350 Na2SO430 MgSO470 浴めっき液pH= 2.0  浴温度50℃鋼板との相
対速度2.0m/a 電流密度DK = 50 、60 、80A/dm2ま
た比較のために上記実験例とめっき条件を同じとして第
1図に示す従来のめっき方法を行った。
/ , 2' k aperture I Q tHHX 2
100wn Discharge angle 20' from horizontal Steel plate Width 1880++a Thickness
Min. 0.8 Earthquake Electrode Fuku 2200 Length 1000 Material (1f Pb-Ag (0.5-1.0%) 12
)Ti-Pt (!1y=10μm plating) Number of trays
8 Distance between electrodes 8~10 Steel plate regular running speed 36~180 mpm Inso discharge flow rate 1.8 m/min/Header discharge pressure 40
m bath composition (for electrode material (1))
Content (9-/l)Z
nSO4・7H20150 FeSO4・7H20350 Na2SO430 CH3COONa-aF (2010 C6H8075 Bath composition (in case of 'it electrode material (2))
Content (9-/l
) ZnSO47H20150 F11SO4'7H20350 Na2SO430 MgSO470 Bath plating solution pH = 2.0 Bath temperature 50°C Relative speed to steel plate 2.0 m/a Current density DK = 50, 60, 80 A/dm2 Also, for comparison, plating with the above experimental example The conventional plating method shown in FIG. 1 was carried out under the same conditions.

このようにして得られた実施例及び比較例のめつき皮膜
につき、その組成をG、D、S (グロウデスチャージ
・スペクトロスコピー)にて調べた。
The compositions of the plating films of Examples and Comparative Examples thus obtained were examined using G, D, and S (glow discharge spectroscopy).

その結果を第4図(比較例)及び第5図(実験例)にそ
nぞn示す。同図中縦@はめつき皮膜中のFe含有率を
示し、横軸は時間の経過(皮膜の厚み方向に相当する)
を示す。第4図から比較例のものは平均含有率に対して
±2〜3%のバラツキがあるが、第5図の実験例ではF
e含有率の皮膜厚さ方向のバラツキが従来方法に比べて
格段に小さくなっていることがわかる。
The results are shown in FIG. 4 (comparative example) and FIG. 5 (experimental example). The vertical axis in the same figure shows the Fe content in the fitted film, and the horizontal axis is the passage of time (corresponds to the thickness direction of the film)
shows. As shown in Figure 4, there is a variation of ±2 to 3% with respect to the average content in the comparative examples, but in the experimental example in Figure 5, F
It can be seen that the variation in e content in the film thickness direction is much smaller than in the conventional method.

実験例2 セル寸法を実験例1と同じとし、他の条件を変えて純亜
鉛めっきを行った。
Experimental Example 2 Pure zinc plating was performed using the same cell dimensions as Experimental Example 1 and changing other conditions.

II!極材質 Pb−Ag (1%) 浴   組   成   成      分 含有量(
P/1)ZnSO4・7H20400 Na2SO470 MgSO47Q pH=2.0.浴温度50’C,を流密度Dx = 1
2 OA/dm2上記の如く高電流密度で6つ几が、め
っきヤケ等の問題は全く生じなかった。
II! Pole material Pb-Ag (1%) Bath composition Component content (
P/1) ZnSO4・7H20400 Na2SO470 MgSO47Q pH=2.0. Bath temperature 50'C, flow density Dx = 1
2 OA/dm2 As mentioned above, no problems such as plating fading occurred during the six tests at high current density.

これに対し上記条件で従来方法の電気めっきをおこなっ
た結果、めっきヤケが生じた。
On the other hand, when electroplating was performed using the conventional method under the above conditions, plating discoloration occurred.

第6図は、本発明方法で得られた電極間内の靜圧分布分
示し、この分布からシール効果によって十分なりッショ
ンカが得られることがわかる。
FIG. 6 shows the quiet pressure distribution between the electrodes obtained by the method of the present invention, and it can be seen from this distribution that sufficient pressure can be obtained due to the sealing effect.

従って、本発明によ几ば、めっき液のクッション効果に
より、従来25鶏程度であった電極間距aを8羽8度ま
で短縮でき、電流密度を従来方法の70%以上向上でき
、高生産性を達成することができた。
Therefore, according to the present invention, due to the cushioning effect of the plating solution, the distance a between the electrodes, which was conventionally about 25 pieces, can be shortened to 8 pieces and 8 degrees, and the current density can be improved by more than 70% compared to the conventional method, resulting in high productivity. was able to achieve this.

なお、本発明におけるシール機構は上記実施例に限らず
、種々の方法が考えられる。例えば、第7図に示すよう
に、ゴムライニングシタシールロール41.41fエツ
ジシール板34と陽i2y、2yとの間に配置した構造
でもよい。
Note that the sealing mechanism in the present invention is not limited to the above embodiment, and various methods can be considered. For example, as shown in FIG. 7, a rubber-lined bottom seal roll 41, 41f may be arranged between the edge seal plate 34 and the positive i2y, 2y.

また第8図に示すように外周に複数の溝を設けたシール
ロッド42を陽極27.27間に介在してここをシール
するよりにしてもよい。
Alternatively, as shown in FIG. 8, a seal rod 42 having a plurality of grooves on its outer periphery may be interposed between the anodes 27 and 27 to seal the anodes 27 and 27.

実験例3 実験例1の電気めっき装置及び条件でめっき液を電極間
内に流通せしめ、その流速分布を測定した。比較のため
第1図に示す従来装置についても同じ条件でめっき敲を
流通せしめ、その流速分布を測定した。その結果を第9
図に示す。
Experimental Example 3 A plating solution was caused to flow between the electrodes using the electroplating apparatus and conditions of Experimental Example 1, and the flow velocity distribution was measured. For comparison, plating spools were allowed to flow through the conventional device shown in FIG. 1 under the same conditions, and the flow velocity distribution was measured. The result is the 9th
As shown in the figure.

同図から本発明によって得らnる電極間の流速分布は、
従来のものに比べて格段に均一となっていることがわか
る。
From the figure, the flow velocity distribution between the n electrodes obtained by the present invention is
It can be seen that it is much more uniform than the conventional one.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、シール機構により電極間内をシール
しているので、ここにめっき液を均一な流速で流すこと
ができ、品質性ηヒにムラのない合金めっき鋼板を得る
ことができる。
According to this invention, since the space between the electrodes is sealed by the sealing mechanism, the plating solution can flow therein at a uniform flow rate, and an alloy-plated steel sheet with uniform quality can be obtained.

また鋼板上下のめっき液流路をそnぞれ独立としている
ので、めっキ腹圧力によるクッション効果を向上して鋼
板の防振を図9、この結果電砥間距離を小さくして電気
めっきを高効率で行うことができる。
In addition, since the plating solution flow paths on the top and bottom of the steel plate are independent, the cushioning effect due to the plating pressure is improved and the vibration of the steel plate is improved (Figure 9). can be performed with high efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理説明図、第2図は本発明の電気め
っき方法の一実施例を示す断面図、第3図は第2図のn
l−I[1線に沿う断面図、第4図は従来方法における
時間の変化(皮膜の厚み方向に相当)による鉄含有量の
変化を示す図、第5図は本発明の実施例における時間の
変化(皮膜の厚み方向に相当)による鉄含有量の変化を
示す図、第6図は本発明の実施例における電極方向距離
と圧力との関係を示す図、第7図及び第8図は本発明の
異なる実施例を示す図、第9図は本発明の実施例におけ
る電極方向距離と流速との関係を比較例とともに示す図
、第10図乃至第12図は従来の電気めっき装置を示す
説明図である。 2ノ・・・トレイ壁、22・・・めっき浴、23・・・
鋼板、27・・・不溶性陽極、28・・・ノズル、29
・・・ノズルヘッダー、34・・・エツジシール板、3
41L・・・2股部、35.、”j6・・・めっき液流
路、37・・・マスク。 昌 3 口 a4図     第5図 81間C分)           時間(分)第6図 電享セ方1’1!巨真[(m) 第7図    第8図 第 9Il′21 電卆シフAX巨離(m) g 10図 第11図 r 第 12  図
FIG. 1 is a diagram explaining the principle of the present invention, FIG. 2 is a sectional view showing an embodiment of the electroplating method of the present invention, and FIG.
Figure 4 is a diagram showing the change in iron content over time (corresponding to the thickness direction of the film) in the conventional method; Figure 5 is a diagram showing the change in iron content over time in the example of the present invention. Figure 6 is a diagram showing the relationship between electrode direction distance and pressure in an example of the present invention, Figures 7 and 8 are diagrams showing changes in iron content due to changes in (corresponding to the thickness direction of the film). Diagrams showing different embodiments of the present invention; FIG. 9 is a diagram showing the relationship between electrode direction distance and flow velocity in an embodiment of the present invention together with a comparative example; FIGS. 10 to 12 show a conventional electroplating apparatus. It is an explanatory diagram. 2...Tray wall, 22...Plating bath, 23...
Steel plate, 27... Insoluble anode, 28... Nozzle, 29
... Nozzle header, 34 ... Edge seal plate, 3
41L...2 crotches, 35. , "j6... Plating solution flow path, 37... Mask. Chang 3 Mouth a4 Figure 5 81 C minutes) Time (minutes) Figure 6 Denkyose direction 1'1! Kyoshin [(m ) Fig. 7 Fig. 8 Fig. 9Il'21 Electric power shift AX long distance (m) g Fig. 10 Fig. 11 r Fig. 12

Claims (2)

【特許請求の範囲】[Claims] (1)上下に対向して配置された1対の陽極と、これら
陽極間を流通するストリップの両側端を囲うエッジマス
クと、上記両陽極間の両側を閉じるシール機構と、上部
陽極、ストリップ、エッジマスク及びシール機構で囲ま
れた上部めっき液流路と、下部陽極、ストリップ、エッ
ジマスク及びシール機構で囲まれ上記上部めっき液流路
とは独立している下部めっき液流路とを具備し、各めっ
き液流路にめっき液を独立して流通せしめ、同時に陽極
間内にストリップを走行せしめながら両者間に通電する
電気めっき方法。
(1) A pair of anodes arranged vertically opposite to each other, an edge mask surrounding both ends of a strip flowing between these anodes, a sealing mechanism that closes both sides between the two anodes, an upper anode, a strip, The plating solution has an upper plating solution flow path surrounded by an edge mask and a seal mechanism, and a lower plating solution flow path surrounded by a lower anode, a strip, an edge mask, and a seal mechanism and is independent of the upper plating solution flow path. , an electroplating method in which a plating solution is made to flow independently through each plating solution flow path, and at the same time, a strip is made to run between the anodes and electricity is applied between the two.
(2)上下に対向して配置された1対の陽極と、これら
陽極間を流通するストリップの両側端を囲うエッジマス
クと、上記両陽極間の両側を閉じるシール機構と、上部
陽極、ストリップ、エッジマスク及びシール機構で囲ま
れた上部めっき液流路と、下部陽極、ストリップ、エッ
ジマスク及びシール機構で囲まれ上記上部めっき液流路
とは独立している下部めっき液流路と、めっき液供給ノ
ズルから上記各流路にめっき液を供給する1組のめっき
液供給機構とを具備してなる電気めっき装置。
(2) a pair of anodes arranged vertically opposite to each other, an edge mask surrounding both ends of a strip flowing between these anodes, a sealing mechanism that closes both sides between the two anodes, an upper anode, a strip, an upper plating solution flow path surrounded by an edge mask and a seal mechanism; a lower plating solution flow path surrounded by a lower anode, a strip, an edge mask, and a seal mechanism and independent from the upper plating solution flow path; and a plating solution. An electroplating apparatus comprising: a set of plating solution supply mechanisms that supply plating solution from a supply nozzle to each of the channels.
JP6923986A 1986-03-27 1986-03-27 Method and apparatus for electroplating Granted JPS6324095A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6923986A JPS6324095A (en) 1986-03-27 1986-03-27 Method and apparatus for electroplating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6923986A JPS6324095A (en) 1986-03-27 1986-03-27 Method and apparatus for electroplating

Publications (2)

Publication Number Publication Date
JPS6324095A true JPS6324095A (en) 1988-02-01
JPH0448879B2 JPH0448879B2 (en) 1992-08-07

Family

ID=13396999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6923986A Granted JPS6324095A (en) 1986-03-27 1986-03-27 Method and apparatus for electroplating

Country Status (1)

Country Link
JP (1) JPS6324095A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0400611A2 (en) * 1989-05-31 1990-12-05 Nitto Boseki Co., Ltd. Aminoacetophenone derivatives and method for determination of enzyme activity using the same
JPH036395A (en) * 1989-05-31 1991-01-11 Kawasaki Steel Corp Horizontal plating bath

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5091528A (en) * 1973-12-17 1975-07-22
JPS58136796A (en) * 1982-02-10 1983-08-13 Nippon Steel Corp Horizontal type fluid supporting electrolytic cell for strip
JPS59185797A (en) * 1983-04-06 1984-10-22 Sumitomo Metal Ind Ltd Continuous electroplating device provided with soluble electrode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5091528A (en) * 1973-12-17 1975-07-22
JPS58136796A (en) * 1982-02-10 1983-08-13 Nippon Steel Corp Horizontal type fluid supporting electrolytic cell for strip
JPS59185797A (en) * 1983-04-06 1984-10-22 Sumitomo Metal Ind Ltd Continuous electroplating device provided with soluble electrode

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0400611A2 (en) * 1989-05-31 1990-12-05 Nitto Boseki Co., Ltd. Aminoacetophenone derivatives and method for determination of enzyme activity using the same
JPH036395A (en) * 1989-05-31 1991-01-11 Kawasaki Steel Corp Horizontal plating bath
EP0400611A3 (en) * 1989-05-31 1991-05-15 Nitto Boseki Co., Ltd. Aminoacetophenone derivatives and method for determination of enzyme activity using the same

Also Published As

Publication number Publication date
JPH0448879B2 (en) 1992-08-07

Similar Documents

Publication Publication Date Title
US3975242A (en) Horizontal rectilinear type metal-electroplating method
US3660259A (en) Electrolytic cell
KR910000510B1 (en) Preparation of zn-ni alloy plated steel strip
JPS6324095A (en) Method and apparatus for electroplating
US6383348B2 (en) Plating pretreatment apparatus and plating treatment apparatus
US4762602A (en) Method and apparatus for processing metal strip in vertical electroplating cells
JPS6216280B2 (en)
JPS58136796A (en) Horizontal type fluid supporting electrolytic cell for strip
JP6414037B2 (en) Method for producing electroplating strip
JP4723889B2 (en) Method for defining opening area on both sides of electrode of vertical electrolytic treatment apparatus
JP6558418B2 (en) Electroplated steel sheet manufacturing method and electroplated steel sheet manufacturing apparatus
CA1242410A (en) Vertical type electro-galvanizing apparatus
CN219470241U (en) High film thickness electroplating anode conductive structure for continuously plating nickel layer of IC lead frame in reel-to-reel manner
JPH0730688Y2 (en) Vertical electroplating equipment
JPH03191090A (en) Horizontal electroplating device
JP6589747B2 (en) Electroplated steel sheet manufacturing method and electroplated steel sheet manufacturing apparatus
JPS592115Y2 (en) Continuous single-sided electroplating equipment for metal strips
JP4505113B2 (en) Strip metal electrolytic treatment equipment
JPH0130919B2 (en)
JPH06299398A (en) Plating device and plating method
JPH02228494A (en) Production of zinc alloy electroplated steel sheet
JPH10102286A (en) Electroplating device
JPS5925997A (en) Electrolytic treatment device of metallic strip
JPH0336292A (en) Plating tank
US3400067A (en) Mercury-cathode chlorine cell and mercury feeding means

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees