JPS61210664A - Electrode forming method - Google Patents

Electrode forming method

Info

Publication number
JPS61210664A
JPS61210664A JP60051481A JP5148185A JPS61210664A JP S61210664 A JPS61210664 A JP S61210664A JP 60051481 A JP60051481 A JP 60051481A JP 5148185 A JP5148185 A JP 5148185A JP S61210664 A JPS61210664 A JP S61210664A
Authority
JP
Japan
Prior art keywords
film
electrode film
photoelectric conversion
upper electrode
patterning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60051481A
Other languages
Japanese (ja)
Inventor
Masakuni Itagaki
板垣 雅訓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP60051481A priority Critical patent/JPS61210664A/en
Publication of JPS61210664A publication Critical patent/JPS61210664A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To form electrodes without exposing a photoelectric conversion film to separating liquid for photoresist or, resist and the like, by patterning the lowest electrode film with an upper electrode formed by patterning as a mask, and forming a lower elelctrode. CONSTITUTION:On an insulating substrate 11, an a-Si photoelectric conversion film 12, which is patterned in an island shape, is formed. A lower electrode film 13, which is to become the lowest electrode film, is formed on the entire surface. Then, an interlayer insulating film 14 for multilayer wiring is formed at a part A. An upper electrode film 16 is formed on the entire surface. Only the upper electrode film 16 is patterned by a photolithography etching process using resist 17, and an upper electrode 18 is formed. A mask pattern 19 is formed in the vicinity of the a-Si photoelectric conversion film 12. After the patterning of the upper electrode film 16, the photoresist 17 is separated. With the mask pattern 19 of the upper electrode film 16, which remains on the upper electrode film 13, as a mask, the lower electrode film 13 is etched. Patterning is performed, and plane facing type electrodes 20a and 20b are formed on both right and left sides of the a-Si photoelectric conversion film 12.

Description

【発明の詳細な説明】 技術分野 本発明は、ファクシミリの等倍光センサー等のデバイス
における電極形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION TECHNICAL FIELD The present invention relates to a method for forming electrodes in a device such as a 1-magnification optical sensor for a facsimile.

従来技術 従来、ファクシミリにおいては、a −S i等倍光セ
ンサーを用いたものがある。第3図はそのコプラナー型
等倍光センサーの製造工程を概略的に示すものである。
BACKGROUND ART Conventionally, some facsimile machines use an a-Si equal-magnification optical sensor. FIG. 3 schematically shows the manufacturing process of the coplanar type 1-magnification optical sensor.

まず、同図(a)に示すように、絶縁性基板1上にa 
−S i光電変換膜2を形成し、この上に平面対向型電
極3a、3bを形成する。
First, as shown in FIG. 2(a), a
-Si photoelectric conversion film 2 is formed, and planar opposing electrodes 3a and 3b are formed thereon.

次に、同図(b)に示すように、電極3b側に多層配線
用の層間絶縁膜4を形成する。この層間絶縁膜4として
は例えばポリイミド系材料が用いられる。この場合、全
面にポリイミドを塗布した後、第3図(b)において斜
線を施して示す部分を除去する必要がある。そして、同
図(c)に示すように、第2電極5の形成工程を行なう
。6はこの第2電極5のエツチング用のレジストである
Next, as shown in FIG. 3B, an interlayer insulating film 4 for multilayer wiring is formed on the electrode 3b side. As this interlayer insulating film 4, for example, a polyimide material is used. In this case, after coating the entire surface with polyimide, it is necessary to remove the shaded area in FIG. 3(b). Then, as shown in FIG. 3(c), a step of forming the second electrode 5 is performed. 6 is a resist for etching this second electrode 5.

このような従来方式による場合、まず、同図(b)に示
した層間絶縁膜4の形成工程において。
In the case of such a conventional method, first, in the step of forming the interlayer insulating film 4 shown in FIG. 4(b).

a−8i光電変換膜2の表面がポリイミド及びそのエッ
チャント(又は現像液)に接することになる。又、同図
(c’ )に示した第2電極5の形成工程においても、
そのエツチング時にa −S j光電変換膜2表面がレ
ジス1へ6やレジスト剥離液に接することになる。この
ようにa −S j光電変換膜2表面が何度も異なる外
部環境に直接的に晒されることになり、a −S i光
電変換膜2の特性にバラツキや劣化を生ずるこ−とにな
る。
The surface of the a-8i photoelectric conversion film 2 comes into contact with polyimide and its etchant (or developer). Also, in the step of forming the second electrode 5 shown in FIG.
During the etching, the surface of the a-Sj photoelectric conversion film 2 comes into contact with the resist 1 to 6 and the resist stripping solution. In this way, the surface of the a-S j photoelectric conversion film 2 is directly exposed to different external environments many times, causing variations and deterioration in the characteristics of the a-S i photoelectric conversion film 2. .

目的 本発明は、このような点に鑑みなされたもので、光電変
換膜がフォトレジストやレジスト剥離液等の外部環境に
晒されることがなく、その特性劣化を防止した状態で電
極を形成することができる電極形成方法を提供すること
を目的とする。
Purpose The present invention was made in view of the above points, and it is an object of the present invention to form an electrode in a state where the photoelectric conversion film is not exposed to the external environment such as photoresist or resist stripping solution, and its characteristics are prevented from deteriorating. The purpose of the present invention is to provide an electrode forming method that allows for the formation of electrodes.

構成 本発明は、上記目的を達成するため、平面対向型電極構
造を有して多層配線を要するデバイスの電極形成方法に
おいて、基板上に形成された光電変換膜上に最下層電極
膜から多層配線に用いられる最上層電極膜まで順次積層
し、この最上層電極膜を積層した後レジスト材料を用い
て前記光電変換膜上部分の最下層電極膜を残して前記最
上電極膜のパターン化を行ない、このパターン化により
形成された上部電極をマスクとして前記最下層電極膜の
パターン化を行なって下部電極を形成することを特徴と
するものである。
Structure In order to achieve the above object, the present invention provides an electrode formation method for a device having a planar facing electrode structure and requiring multilayer wiring. After stacking the uppermost electrode film, the uppermost electrode film is patterned using a resist material, leaving the lowermost electrode film above the photoelectric conversion film; The method is characterized in that the lowermost electrode film is patterned using the upper electrode formed by this patterning as a mask to form a lower electrode.

以下、本発明の第一の実施例を第1図に基づいて説明す
る。まず、同図(a)に示すように絶縁性基板11上に
島状にパターン化されたa−8i光電変換膜12を形成
する。このようなa −S i膜の形成には、SiH4
のグロー放電分解法が好ましく用いられる。薄膜状に形
成したこのa−8i膜は、フォトリソグラフィー、エツ
チング工程により所望の島状にパターン化される。ここ
で、エツチングにはCF、プラズマ、レジスト剥離には
02プラズマを用いたドライエツチングプロセスが好ま
しく用いられるが、エツチングに(HF 十NH,F)
  溶液、レジスト剥離にアルカリ系剥離液を用いた通
常のウェットエツチングプロセスであってもよい。
Hereinafter, a first embodiment of the present invention will be described based on FIG. First, as shown in FIG. 4A, an a-8i photoelectric conversion film 12 patterned into an island shape is formed on an insulating substrate 11. To form such an a-Si film, SiH4
The glow discharge decomposition method is preferably used. This A-8i film formed into a thin film is patterned into a desired island shape by photolithography and etching steps. Here, a dry etching process using CF and plasma for etching and 02 plasma for resist stripping is preferably used;
A normal wet etching process using an alkaline stripping solution for resist stripping may be used.

このように島状のa−8i光電変換膜12を形成した後
、全面に最下層電極膜となる下部電極膜13を形成する
。この際、同図(b)におけるA部分が多層配線を要す
る部分であり、このA部分のみを通常のフォトリソグラ
フィー、エツチングニー3= 程によりパターン化する。このエツチング工程はウェッ
トプロセスでもドライプロセスでもよい。
After forming the island-shaped a-8i photoelectric conversion film 12 in this manner, a lower electrode film 13 serving as the lowermost electrode film is formed on the entire surface. At this time, part A in FIG. 3B is a part that requires multilayer wiring, and only this part A is patterned by ordinary photolithography and etching. This etching step may be a wet process or a dry process.

下部電極膜13を形成した後、同図(b)に示すように
、A部分に多層配線用の層間絶縁膜14を形成する。こ
の層間絶縁膜14の材料としては、ポリイミド等の有機
系材料やSio2.5iaN4等の無機系材料あるいは
これらを組み合わせたものが用いられる。15はコンタ
クトホールである。
After forming the lower electrode film 13, an interlayer insulating film 14 for multilayer interconnection is formed in a portion A, as shown in FIG. 3(b). As the material of this interlayer insulating film 14, an organic material such as polyimide, an inorganic material such as Sio2.5iaN4, or a combination thereof is used. 15 is a contact hole.

このように層間絶縁膜14を形成後、同図(c)に示す
ように、多層配線用となる最上層電極膜としての上部電
極膜16を全面に形成する。このような上部電極膜16
は同図(d)に示すように、レジスト17を用いた通常
のフォトリソグラフィー、エツチング工程によりこの上
部電極膜16のみがパターン化されて、上部電極18が
形成されるとともに、a−8i光電変換膜12付近には
マスクパターン19が形成される。この際、a−8i光
電変換膜12部分における下部電極膜13は残される。
After forming the interlayer insulating film 14 in this manner, an upper electrode film 16 as the uppermost layer electrode film for multilayer wiring is formed over the entire surface, as shown in FIG. 3(c). Such an upper electrode film 16
As shown in FIG. 4(d), only this upper electrode film 16 is patterned by a normal photolithography and etching process using a resist 17 to form an upper electrode 18, and a-8i photoelectric conversion. A mask pattern 19 is formed near the film 12. At this time, the lower electrode film 13 in the a-8i photoelectric conversion film 12 portion is left.

この上部電極膜16のパターン化の後、そのフ−4= オドレジスト17を剥離し、前記a−8i光電変換膜1
2付近の下部電極膜13上に残された上部電極膜16の
マスクパターン19をマスクとして下部電極膜13のエ
ツチングを行ない、パターン化してa−8i光電変換膜
12の左右に別れた平面対向型電極20a、20bが形
成される。
After patterning the upper electrode film 16, the photoresist 17 is peeled off and the a-8i photoelectric conversion film 1 is removed.
Using the mask pattern 19 of the upper electrode film 16 left on the lower electrode film 13 near 2 as a mask, the lower electrode film 13 is etched and patterned to form a planar facing type that is separated into left and right sides of the A-8I photoelectric conversion film 12. Electrodes 20a, 20b are formed.

このような工程により、a−8i等倍光センサーが形成
される。本実施例方式によれば、a−8i光電変換膜1
2のパターン形成時と最後の上部電極膜16をマスクと
した下部電極膜13のエツチング時以外の工程において
は、a −S i光電変換膜12の表面が常に下部電極
膜13により覆われており、フォトレジストやレジスト
剥離液、ポリイミド等の有機系材料及びそれらのエツチ
ング液(感光性材料の場合には、現像液)等にa−8i
光電変換膜12表面が晒されることがなく、製造プロセ
スにおけるa−8i光電変換膜12の特性のバラツキや
劣化を最小限に抑えることができる。この結果、歩留り
も向上し、かつ、完成したデバイスの長期的な信頼性も
向上することになる。
Through these steps, an a-8i 1x optical sensor is formed. According to the method of this embodiment, the a-8i photoelectric conversion film 1
The surface of the a-Si photoelectric conversion film 12 is always covered with the lower electrode film 13 in steps other than the pattern formation in step 2 and the final etching of the lower electrode film 13 using the upper electrode film 16 as a mask. , a-8i for photoresists, resist stripping solutions, organic materials such as polyimide, and their etching solutions (developing solutions in the case of photosensitive materials), etc.
The surface of the photoelectric conversion film 12 is not exposed, and variations and deterioration in the characteristics of the a-8i photoelectric conversion film 12 during the manufacturing process can be minimized. This results in improved yield and long-term reliability of the completed device.

ここで、下部電極膜13としては、a−8i光電変換膜
12とのオーミックコンタクトを形成するAQ (膜厚
500人〜1μm程度)が好ましく、上部電極膜16と
しては、下部電極膜13のエツチング時にマスクとして
使えるN1Cr(膜厚500人〜1μm程度)が好まし
い。もつとも、このような組合せに限定されるものでな
く、例えば下部電極膜13にA Q −S i、上部電
極膜16にCrを用いるような組合せでもよい。
Here, the lower electrode film 13 is preferably AQ (film thickness of about 500 to 1 μm) that forms ohmic contact with the a-8i photoelectric conversion film 12, and the upper electrode film 16 is preferably formed by etching the lower electrode film 13. N1Cr (film thickness of about 500 to 1 μm), which can sometimes be used as a mask, is preferable. However, the combination is not limited to such a combination, and for example, a combination in which AQ-S i is used for the lower electrode film 13 and Cr is used for the upper electrode film 16 may be used.

つづいて、本発明の第二の実施例を第2図により説明す
る。第1図で示した部分と同一部分は同一符号を付して
示す。基本的には、前記実施例と同様であるが、下部電
極膜13を2層構造として第一下部電極膜13aと第二
下部電極膜13bとに分けて形成するとともに、上部電
極膜16も2層構造として第一上部電極膜16aと第二
上部電極膜16bとに分けて形成したものである。まず
、下部電極膜13を2層に分けるのは、層間絶縁膜14
のコンタクトホール15での上部電極膜16とのコンタ
クトを取り易くするためである。一方。
Next, a second embodiment of the present invention will be described with reference to FIG. Components that are the same as those shown in FIG. 1 are designated by the same reference numerals. Basically, it is the same as the above embodiment, but the lower electrode film 13 has a two-layer structure and is formed separately into a first lower electrode film 13a and a second lower electrode film 13b, and the upper electrode film 16 is also formed. A two-layer structure is formed separately into a first upper electrode film 16a and a second upper electrode film 16b. First, the lower electrode film 13 is divided into two layers by the interlayer insulating film 14.
This is to facilitate contact with the upper electrode film 16 through the contact hole 15. on the other hand.

上部電極膜16を2層構造にするのは、セルフアライン
メントエツチングの際のマスクにするためである。
The reason why the upper electrode film 16 has a two-layer structure is to use it as a mask during self-alignment etching.

しかして、この第2図(d)、(e)に示すように、上
部電極膜16のエツチングの際に、まず、フォトレジス
ト14をマスクにして最下層の第二下部電極膜13bの
みの一層だけを残してエツチングし、フォトレジスト1
4を剥離除去した後、電極膜16a、16b、13aを
マスクとして最下層の第二下部電極膜13bをセルフア
ラインメントエツチングするものである。
As shown in FIGS. 2(d) and 2(e), when etching the upper electrode film 16, first, using the photoresist 14 as a mask, only the second lower electrode film 13b, which is the lowest layer, is etched. Etch leaving only the photoresist 1
After peeling off and removing the second lower electrode film 13b, the second lower electrode film 13b, which is the lowest layer, is subjected to self-alignment etching using the electrode films 16a, 16b, and 13a as masks.

本実施例において、第一下部電極膜13aとしてはAQ
、第二下部電極膜13bとしてはNiCrの組合せ、第
一上部電極膜16aとしてはNiCr、第二上部電極膜
16bとしてはAQの組合せが好ましいが、これに限定
されるものではない。
In this embodiment, the first lower electrode film 13a is AQ
A combination of NiCr for the second lower electrode film 13b, NiCr for the first upper electrode film 16a, and AQ for the second upper electrode film 16b is preferred, but the combination is not limited thereto.

又、本実施例では、下部電極膜13及び上部電極膜16
を共に2層構造としたが、更に多層構造としてもよいこ
とは勿論である。
Further, in this embodiment, the lower electrode film 13 and the upper electrode film 16
Both have a two-layer structure, but it is of course possible to have a multi-layer structure.

なお、これらの実施例では、a−8層等倍光センサーを
例にとり説明したが、これに限らず同様の構造を有する
デバイスの電極形成に適用できるものである。
In addition, although these examples have been explained by taking an a-8 layer equal-magnification optical sensor as an example, the present invention is not limited to this and can be applied to electrode formation of a device having a similar structure.

効果 本発明は、上述したように最下層電極膜から最上層電極
膜まで順次積層形成してこの最上層電極膜のパターン化
を光電変換膜上の最下層電極膜が残るように行ない、そ
の後、上部電極をマスクとして最下層電極膜のパターン
化を行なうようにしたので、光電変換膜が自身のパター
ン形成時と最後の最下層電極膜のパターン化時以外の時
にはその表面が最下層電極膜により常に覆われているこ
とになり、よって、光電変換膜の表面がフォトレジスト
やレジスト剥離液等による外部環境に晒されることがな
く、製造プロセスにおける光電変換膜の特性のバラツキ
や特性劣化を最小限に抑えることができるものである。
Effects In the present invention, as described above, layers are sequentially formed from the bottom electrode film to the top electrode film, the top electrode film is patterned so that the bottom electrode film remains on the photoelectric conversion film, and then, Since the lowermost electrode film is patterned using the upper electrode as a mask, when the photoelectric conversion film is not forming its own pattern or patterning the final lowermost electrode film, its surface is exposed to the lowermost electrode film. This means that the surface of the photoelectric conversion film is always covered, so the surface of the photoelectric conversion film is not exposed to the external environment due to photoresist, resist stripping liquid, etc., and variations in the characteristics of the photoelectric conversion film and property deterioration during the manufacturing process are minimized. This can be suppressed to .

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(e)は本発明の第一の実施例を工程順
に示す断面図、第2図(a)〜(e)は本発明の第二の
実施例を工程順に示す断面図、第3図(a)〜(c)は
従来例を工程順に示す断面図である。 11・・・基板、12・・・a−8i光電変換膜(光電
変換膜)、13・・・下部電極膜(最下層電極膜)、1
4・・・レジスト、16・・・上部電極膜(最上層電極
膜)、17・・・上部電極、18・・・マスクパターン
、19・・・下部電極、13b・・・第二下部電極膜(
最下層電極膜)、16a・・・第一上部電極膜(最上層
電極膜) 出 願゛ 人   株式会社  リ コ −、JZ図
FIGS. 1(a) to (e) are cross-sectional views showing the first embodiment of the present invention in the order of steps, and FIGS. 2(a) to (e) are cross-sectional views showing the second embodiment of the present invention in the order of steps. 3(a) to 3(c) are cross-sectional views showing a conventional example in the order of steps. 11... Substrate, 12... a-8i photoelectric conversion film (photoelectric conversion film), 13... Lower electrode film (lowest layer electrode film), 1
4... Resist, 16... Upper electrode film (top layer electrode film), 17... Upper electrode, 18... Mask pattern, 19... Lower electrode, 13b... Second lower electrode film (
(lowest layer electrode film), 16a...first upper electrode film (top layer electrode film) Applicant: Ricoh Co., Ltd., JZ diagram

Claims (1)

【特許請求の範囲】[Claims] 平面対向型電極構造を有して多層配線を要するデバイス
の電極形成方法において、基板上に形成された光電変換
膜上に最下層電極膜から多層配線に用いられる最上層電
極膜まで順次積層し、この最上層電極膜を積層した後レ
ジスト材料を用いて前記光電変換膜上部分の最下層電極
膜を残して前記最上電極膜のパターン化を行ない、この
パターン化により形成された上部電極をマスクとして前
記最下層電極膜のパターン化を行なつて下部電極を形成
することを特徴とする電極形成方法。
In a method for forming electrodes for a device having a planar facing electrode structure and requiring multilayer wiring, the method comprises sequentially laminating layers from the lowest electrode film to the uppermost electrode film used for multilayer wiring on a photoelectric conversion film formed on a substrate, After laminating this uppermost electrode film, the uppermost electrode film is patterned using a resist material, leaving the lowermost electrode film above the photoelectric conversion film, and the upper electrode formed by this patterning is used as a mask. An electrode forming method comprising forming a lower electrode by patterning the lowermost electrode film.
JP60051481A 1985-03-14 1985-03-14 Electrode forming method Pending JPS61210664A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60051481A JPS61210664A (en) 1985-03-14 1985-03-14 Electrode forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60051481A JPS61210664A (en) 1985-03-14 1985-03-14 Electrode forming method

Publications (1)

Publication Number Publication Date
JPS61210664A true JPS61210664A (en) 1986-09-18

Family

ID=12888146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60051481A Pending JPS61210664A (en) 1985-03-14 1985-03-14 Electrode forming method

Country Status (1)

Country Link
JP (1) JPS61210664A (en)

Similar Documents

Publication Publication Date Title
JP3507771B2 (en) Pattern forming method and method of manufacturing thin film transistor
JPH0669351A (en) Manufacture of contact of multilayer metal interconnection structure
JPS61210664A (en) Electrode forming method
JP4376500B2 (en) Resist embedding method and semiconductor device manufacturing method
JPH0630352B2 (en) Patterned layer forming method
JPH0485829A (en) Semiconductor device and manufacture thereof
JP2537994B2 (en) Method of forming through-hole
JPH10247661A (en) Method for forming structure for bonding
KR960004085B1 (en) Forming method of metal via contact hole
JP3141855B2 (en) Method for manufacturing semiconductor device
JPH0587973B2 (en)
JPS6334928A (en) Formation of through hole
JP2644847B2 (en) Multilayer wiring board and method of manufacturing the same
JPS6298799A (en) Formation of multilayer wiring
JP3028279B2 (en) Method for forming via contact of semiconductor device
JPH03142466A (en) Production of semiconductor device and mask used for the production
JPH079933B2 (en) Method for manufacturing semiconductor device
JPH0555182A (en) Surface flattening method
JPS6028237A (en) Manufacture of semiconductor device
JPH08139073A (en) Manufacture of semiconductor device
JPH03152931A (en) Manufacture of semiconductor device
JPH03127827A (en) Manufacture of semiconductor device
JPH07202425A (en) Production of mulrilayer wiring board
JPS6151968A (en) Manufacture of semiconductor device
JPH03248533A (en) Semiconductor integrated circuit device