JPS61209086A - Load control apparatus in multistage flash type seawater desalting apparatus - Google Patents

Load control apparatus in multistage flash type seawater desalting apparatus

Info

Publication number
JPS61209086A
JPS61209086A JP60047773A JP4777385A JPS61209086A JP S61209086 A JPS61209086 A JP S61209086A JP 60047773 A JP60047773 A JP 60047773A JP 4777385 A JP4777385 A JP 4777385A JP S61209086 A JPS61209086 A JP S61209086A
Authority
JP
Japan
Prior art keywords
stage
brine
evaporation chamber
temperature
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60047773A
Other languages
Japanese (ja)
Inventor
Shinzo Inohara
猪原 晋三
Kengo Hamanaka
浜中 健吾
Seiji Koyama
誠二 小山
Masahiro Tatsumoto
辰本 正弘
Katsutoshi Fukumoto
福本 勝利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP60047773A priority Critical patent/JPS61209086A/en
Publication of JPS61209086A publication Critical patent/JPS61209086A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/06Flash distillation
    • B01D3/065Multiple-effect flash distillation (more than two traps)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

PURPOSE:To stably obtain made-up water so as to deal with disturbance, by respectively detecting the temp. of brine at the first stage inlet of an evaporation chamber and that of brine at the final stage of the evaporation chamber and operating the temp. difference between both detection terminals. CONSTITUTION:A final stage brine temp. detector 31, a subtractor 32 and a flash range controller 33 are provided and a flash range is operated by the subtractor 32 while the temp. difference corresponding to a set made-up water amount is calculated by a function device and a heating supply amount is controlled so as to allow the output signal of the subtractor 32 to coincide with that of the function device. By this method, even if an external operational condition changes, control can be performed so as to make the given flash range constant.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は多段フラッシェ型海水淡水化装置(以下これを
海淡装置と略す)において、供給海水温度の変化や冷却
管伝熱係数の経年変化等の外部運転条件が変化した場合
でも、所定の製造水量を安定且つ連続して得られる海淡
装置における負荷制御装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is a multi-stage flash-type seawater desalination device (hereinafter referred to as a seawater desalination device), in which changes in supply seawater temperature and aging changes in cooling tube heat transfer coefficients are used. The present invention relates to a load control device for a seaweed apparatus that can stably and continuously obtain a predetermined amount of produced water even when external operating conditions such as the above change.

〔従来の技術〕[Conventional technology]

従来の海淡装置は、例えば第3図に示すように、熱回収
部1(第3図中の/I61段〜腐N−2段)と熱放出部
2(第3図中の/l6N−1段および/16N段)から
なる多段の蒸発室と、ブラインヒータ3とにより構成さ
れている。
For example, as shown in FIG. 3, a conventional sea salt apparatus includes a heat recovery section 1 (stage /I61 to stage N-2 in FIG. 3) and a heat release section 2 (stage /I6N- in FIG. 3). It consists of a multi-stage evaporation chamber consisting of 1 stage and /16N stage) and a brine heater 3.

第3図において、原料海水は、供給ライン4から熱放出
部2へ供給される。その向火部分は放出ライン5から廃
棄されるが、一部は、海水補給ライン6を通って、海淡
装置へ補充液として供給される。この液と、蒸発室最終
段のブラインは合流して、ブライン循環ライン7を通9
、熱回収部lへ冷却液として供給される。熱回収部1で
は、蒸発室各段でフラッシニ蒸発した蒸気が、各蒸発室
の凝縮器8の中を通るブラインにより冷却され凝縮する
とともに、凝縮器8の中のブラインは、蒸発室各段毎に
昇温していき、ブラインヒータ3の入口では、はとんど
蒸発室初段の飽和温度近くまで昇温される。つまり、熱
回収効果をもたらしている。
In FIG. 3, raw seawater is supplied from a supply line 4 to a heat release section 2. In FIG. The refractory portion is discarded through the discharge line 5, while a portion is supplied as a replenisher to the seawater system through the seawater replenishment line 6. This liquid and the brine in the final stage of the evaporation chamber are combined and passed through the brine circulation line 7 to 9.
, is supplied to the heat recovery section l as a cooling liquid. In the heat recovery section 1, the vapor evaporated in flash in each stage of the evaporation chamber is cooled and condensed by the brine passing through the condenser 8 of each evaporation chamber, and the brine in the condenser 8 is flushed in each stage of the evaporation chamber. At the inlet of the brine heater 3, the temperature is raised almost to the saturation temperature of the first stage of the evaporation chamber. In other words, it provides a heat recovery effect.

ブラインはブラインヒータ3で蒸発室初段の飽和温度の
数度高めまで加熱される。ライン9は、ブラインヒータ
3で用いる加熱媒体を供給するラインである。加熱媒体
は一般には水蒸気が用いられる。
The brine is heated by the brine heater 3 to a temperature several degrees higher than the saturation temperature of the first stage of the evaporation chamber. The line 9 is a line that supplies a heating medium used in the brine heater 3. Steam is generally used as the heating medium.

加熱されたブラインは、初段の蒸発室に導かれる。この
ように、ブラインは蒸発室各段を流下していくが、各段
の入口にはオリフィスIOとせき11が設置されている
。各段を流下する毎にフラッジ、g発してブラインの温
度が下がるが、オリフィス10とせき11による摩擦圧
fi[よってブラインの飽和圧力も下っていくので、そ
れぞれの段でフラッシュ蒸発させることができる。蒸発
室で発生した蒸気はデミスタ12で同伴する液滴が分離
され、凝縮器8に接触し冷却されて凝縮し淡水となる。
The heated brine is led to the first stage evaporation chamber. In this way, the brine flows down through each stage of the evaporation chamber, and an orifice IO and a weir 11 are installed at the entrance of each stage. As the brine flows down each stage, the temperature of the brine decreases as fluff and g are emitted, but the friction pressure fi due to the orifice 10 and the weir 11 [Thus, the saturation pressure of the brine also decreases, so flash evaporation can be performed at each stage. . The vapor generated in the evaporation chamber is separated from entrained droplets by a demister 12, contacts a condenser 8, is cooled and condensed, and becomes fresh water.

この液は凝縮液トレイ13に溜められ、この液も各段を
降下していきライン14から取出し製造水タンクに送ら
れる。
This liquid is stored in a condensate tray 13, and this liquid also descends through each stage and is taken out from a line 14 and sent to a manufactured water tank.

前記従来装置の制御法について説明する。A method of controlling the conventional device will be explained.

通常前記従来装置で制御されるものけ、ブラインヒータ
3の出口(即ち蒸発室/I61の初段入口)ブライン温
度、循環液流量、最終段液面および海水供給流量である
The items that are usually controlled by the conventional device are the brine temperature at the outlet of the brine heater 3 (that is, the first stage inlet of the evaporation chamber/I61), the circulating fluid flow rate, the final stage liquid level, and the seawater supply flow rate.

初段入口ブライン温度はブラインヒータ3の出口に温度
検出端20を設け、温度調節計21によって加熱媒体(
通常水蒸気を用いる)の流量を操作する。
The first-stage inlet brine temperature is determined by a temperature detection end 20 provided at the outlet of the brine heater 3, and a temperature controller 21 that measures the temperature of the heating medium (
(usually using water vapor).

循環流量は所要の負荷(遣水量)に対応した設定流量に
対し流量検出端25および流量調節計22によって一定
に制御される。
The circulating flow rate is controlled to be constant by a flow rate detection end 25 and a flow rate controller 22 to a set flow rate corresponding to a required load (water amount).

海水補充液も所要の造水量に応じて供給される。補充量
に対し装置内の液の物質収支は蒸発室最終段(N段)か
らの廃水ライン15の抜出し量によシ制御される。この
廃水量は蒸発室最終段液レベルを一定に制御するレベル
調節計23により操作される。
Seawater replenisher is also supplied according to the required amount of fresh water. The material balance of the liquid in the device with respect to the replenishment amount is controlled by the amount of water drawn from the waste water line 15 from the final stage (N stage) of the evaporation chamber. The amount of waste water is controlled by a level controller 23 that controls the final stage liquid level in the evaporation chamber to be constant.

供給ライン4から熱放出部2へ供給される海水供給量は
、熱放出部冷却海水流量調節計24によって一定に制御
される。
The amount of seawater supplied from the supply line 4 to the heat release section 2 is controlled to be constant by a heat release section cooling seawater flow rate controller 24 .

〔発明が解決しよダとする問題点〕[Problems that the invention is not supposed to solve]

一般に、海淡装置の運転において要求されていることは
所定の製造水量を安定かつ連続して得ることにある。し
かし製造水量はa加熱量、b循環液流量、C冷却管伝熱
係数、d供給海水流量、e供給海水温度等により影響を
受ける。
Generally, what is required in the operation of a seawater apparatus is to stably and continuously obtain a predetermined amount of produced water. However, the amount of produced water is influenced by a heating amount, b circulating fluid flow rate, c cooling pipe heat transfer coefficient, d supply seawater flow rate, e supply seawater temperature, etc.

このうちa、b、dは任意に調節操作できるが、c、e
は外部要因であり、製造水量の制御にとっては外乱であ
る。従って運転員はこの外乱に対応した操作が必要であ
る。
Of these, a, b, and d can be adjusted arbitrarily, but c, e
is an external factor and a disturbance for controlling the amount of produced water. Therefore, the operator is required to perform operations corresponding to this disturbance.

例えば、夏期と冬期でe供給海水温度が大きく異なった
り、経年変化によるC冷却管伝熱係数の変化等の運転条
件の変化に対応し、運転員は、蒸発室初段入口ブライン
温度調節計21、循環液流量調節計22、熱放出部冷却
海水流量調節計24等の各設定値を、所定製造水量に合
わせるべく調整する必要がある。また、C冷却管伝熱係
数を変化させる汚れの様に計測自体も困難なものもあり
、全ての製造水量に対する影響因子を量的に把握してい
るわけではない。従って、運転員は、製造水量の変更操
作に際しては、蒸発室各段のブライン温度やレベルを監
視しながら、a加熱量、b循環液流量、d供給海水流量
を小刻にかつ緩慢に変化させるため、かなりの経験的知
見を必要としている。
For example, in response to changes in operating conditions such as large differences in the temperature of e-supply seawater between summer and winter, and changes in the heat transfer coefficient of the C cooling pipe due to aging, operators can It is necessary to adjust each set value of the circulating fluid flow rate controller 22, heat release section cooling seawater flow rate controller 24, etc. to match the predetermined amount of produced water. Furthermore, there are some things that are difficult to measure, such as dirt that changes the heat transfer coefficient of the C cooling pipe, and not all factors that influence the amount of produced water are quantitatively understood. Therefore, when changing the amount of produced water, the operator should monitor the brine temperature and level in each stage of the evaporation chamber, and change a heating amount, b circulating fluid flow rate, and d supply seawater flow rate little by little and slowly. Therefore, considerable empirical knowledge is required.

前述のように製造水量は踵々の影響を受けるが大路次式
で表わされる。
As mentioned above, the amount of water produced is affected by the heel and is expressed by the following formula:

Fp=にφFR・TF  ・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・(1
)FP:製造水量   (t/h) FR:循環液流量   (t/h) K:比例定数    (−) すなわち製造水量に対する種々の運転条件の変化が結果
的に最終段温度の変化となって現われてくることに着目
r7たものである。
Fp=toφFR・TF ・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・(1
) FP: Produced water volume (t/h) FR: Circulating fluid flow rate (t/h) K: Proportionality constant (-) In other words, changes in various operating conditions with respect to the produced water volume result in changes in the final stage temperature. This is something that focused on the fact that it was coming.

ここで比例定数にはプラントにより決まる定数であるが
、プラント毎にほぼ一定と考えてもよく、所望の製造水
1tFpを得るためには循環液流量Fnとフラッシュレ
ンジTF との積を制御すればよい。
Here, the proportionality constant is a constant determined by the plant, but it can be considered to be approximately constant for each plant.In order to obtain the desired produced water of 1 tFp, the product of the circulating fluid flow rate Fn and the flush range TF must be controlled. good.

しかしながら前記従来装置においては、蒸発室初段入ロ
ブライン温Kを一定に保つような制御系となっている。
However, in the conventional apparatus, the control system is such that the temperature K of the lobule entering the evaporation chamber at the first stage is kept constant.

従って、同じ製造水量を得るためにはこの設定値を夏期
には高く、冬期には低くする必要がある。また、蒸発室
初段へロブライン温度を変更すると、各段の液面が異常
となり、良質な製造水を得ることに支障が生じることも
あり、蒸発室初段入口ブライン温度を変更する際は液面
が異常にならないよう循環液流量も同時に調節する必要
があり、蒸発室初段入口ブライン温度の設定値の調整は
試行錯誤せざるを得ない。海淡装置の製造水11FPは
(1)式で示したように主に循環液流@ F Rとフラ
ッシュレンジTFで決まる。しかし従来の制御法はフラ
ッシュレンジTpでなく蒸発室初段入ロブライン温肛を
制御していることに問題がある。
Therefore, in order to obtain the same amount of produced water, it is necessary to set this value high in the summer and low in the winter. Additionally, if you change the brine temperature at the first stage of the evaporation chamber, the liquid level at each stage will become abnormal, which may cause problems in obtaining high-quality manufactured water. It is necessary to simultaneously adjust the circulating fluid flow rate to avoid abnormalities, and the adjustment of the set value of the brine temperature at the first stage inlet of the evaporation chamber has to be done through trial and error. The produced water 11FP of the seawater apparatus is mainly determined by the circulating liquid flow @FR and the flash range TF, as shown in equation (1). However, the conventional control method has a problem in that it controls not the flash range Tp but the lobline warmer which enters the first stage of the evaporation chamber.

C冷却管伝熱係数、e供給海水温度に変化がない時は所
望の製造水量に対する最終段ブライン温度がほぼ一定に
なっており、従来のように初段入口ブライン温度のみ制
御しても所望の製造水量に対するフラッシュレンジを制
御したことになるが、ブラインヒータ3と放出ライン5
との外乱が不可避とすれば、従来の制御法には問題があ
る。
C Cooling pipe heat transfer coefficient, e When there is no change in the supply seawater temperature, the final stage brine temperature for the desired production water amount is almost constant, and even if only the first stage inlet brine temperature is controlled as in the past, the desired production cannot be achieved. This means that the flash range for the amount of water is controlled, but the brine heater 3 and the discharge line 5
If disturbances are unavoidable, there are problems with conventional control methods.

本発明は前記従来の問題点を解消するために提案された
もので、前記のように単に一点の温度でなく、二点の温
度差であるフラッシュレンジTrによる加熱量制御を行
なうことにより、外部運転条件等の外乱に対処すること
ができ、常に所定の製造水量を安定且つ連続して得られ
る海淡装置における負荷制御装置を提供することを目的
とするものである。
The present invention was proposed in order to solve the above-mentioned conventional problems, and by controlling the amount of heating by the flash range Tr, which is based on the temperature difference between two points instead of simply controlling the temperature at one point as described above, It is an object of the present invention to provide a load control device for a seaweed apparatus that can cope with disturbances such as operating conditions and always stably and continuously obtain a predetermined amount of produced water.

〔問題点を解決するための手段〕[Means for solving problems]

本発明による海淡装置における負荷制御装置においで、
蒸発室初段入口ブライン温度と蒸発室最終段ブライン温
度とをそれぞれ検出し、両論出端の温度差を演算すると
ともに、この温度差を出力する演算器と、製造水量設定
器の設定信号および循環液流量検出信号から設定製造水
量に対応する温度差を計算する関数器と、前記演算器の
出力信号と前記関数器の出力信号とが一致するように加
熱供給量を制御する制御装置とを鵬備してなることを特
徴とするものである。
In the load control device for the seawater apparatus according to the present invention,
A calculator that detects the brine temperature at the first stage inlet of the evaporation chamber and the brine temperature at the final stage of the evaporation chamber, calculates the temperature difference between the two output ends, and outputs this temperature difference, as well as a setting signal for the production water volume setting device and the circulating fluid. A function unit that calculates a temperature difference corresponding to a set amount of manufactured water from a flow rate detection signal, and a control device that controls the heating supply amount so that the output signal of the arithmetic unit and the output signal of the function unit match are provided. It is characterized by:

〔作用〕[Effect]

本発明によれば、海淡装置において、蒸発室初段入口ブ
ライン温度と蒸発室最終段ブライン温度との差即ちフラ
ッシュレンジを減算器により演算し、設定製造水量に対
応する温度差を関数器により算出し、制御装置により前
記減算器の出力信号と前記関数器の出力信号とが一致す
るように加熱供給量を制御することにより、外乱に対処
できるようにして、前記従来の問題点を解消し得るよう
にしたものである。
According to the present invention, in the seawater apparatus, the difference between the first-stage inlet brine temperature of the evaporation chamber and the final-stage brine temperature of the evaporation chamber, that is, the flash range, is calculated by a subtractor, and the temperature difference corresponding to the set amount of produced water is calculated by a function unit. By controlling the amount of heating supply by a control device so that the output signal of the subtracter and the output signal of the function unit match, disturbances can be dealt with and the problems of the conventional technology can be solved. This is how it was done.

〔実施例〕〔Example〕

本発明の一実施例を添付図面を参照して詳細に説明する
An embodiment of the present invention will be described in detail with reference to the accompanying drawings.

第1図は本発明の一実施例の構成を示す図であり、第3
図に示されたものと同一部分には同一符号を付している
FIG. 1 is a diagram showing the configuration of one embodiment of the present invention.
The same parts as those shown in the figures are given the same reference numerals.

第1図に示す本発明の一実施例は、第3図に示す従来装
置に改良を加え、蒸発室初段入口ブライン温度調節計2
1をフラッシュレンジで加熱媒体の流量を操作する制御
方式にしたものであり、第1図において、3Iは最終段
ブライン温度検出器、32けフラッシュレンジ(初段入
口ブライン温度と最終段ブライン温度との差)を算出す
る減算器、33はフラッシュレンジ調節計である。その
他の各部の構成および作用は第3図について説明したも
のと同一である。
An embodiment of the present invention shown in FIG. 1 is an improvement on the conventional device shown in FIG.
1 is a control system that operates the flow rate of the heating medium in a flash range. In Fig. 1, 3I is a final-stage brine temperature detector, and a 32-digit flash range (a control system that controls the temperature of the first-stage inlet brine and the final-stage brine temperature). 33 is a flash range controller. The structure and operation of other parts are the same as those explained with reference to FIG.

上記第1図に示す本発明の一実施例の作用について説明
する。
The operation of the embodiment of the present invention shown in FIG. 1 will be explained.

第1図において、最終段ブライン温度検出器31、減算
器32およびフラッシュレンジ調節計33を設けること
により、フラッシュレンジを減算器32により演算し、
−力設定製造水量に対応する温度差を関数器により算出
17、減算器32の出力信号と前記関数器の出力信号と
が一致するように加熱供給量を制卸する。これにより外
部運転条件が変化しても、与えられたフラッシュレンジ
が一定と々るように制御でき、従って循@液流量に変化
がなければ、製造水量を一定に保持することができる。
In FIG. 1, by providing a final stage brine temperature detector 31, a subtracter 32, and a flash range controller 33, the flash range is calculated by the subtracter 32,
- Calculate the temperature difference corresponding to the force setting produced water amount using a function unit 17, and control the heating supply amount so that the output signal of the subtractor 32 and the output signal of the function unit match. As a result, even if external operating conditions change, the given flush range can be controlled to be constant, and therefore, as long as there is no change in the circulating fluid flow rate, the amount of produced water can be maintained constant.

第2図は本発明の池の実施例の構成を示す図で、第1図
および第3図に示すものと同一部分には同一符号を付し
ている。
FIG. 2 is a diagram showing the configuration of an embodiment of a pond according to the present invention, in which the same parts as those shown in FIGS. 1 and 3 are given the same reference numerals.

第2図に示す実権例は、与えられた製造水量に対して、
フラッシュレンジと循環液量とを自動的に調節して所望
の製造水負荷を得る場合の例であり、第2図において、
41け製造水量検出器、42は目標製造水負荷設定器、
43は緩衝器、44は製造水負荷調節器、45は製造水
負荷(製造水負荷調節器44の出力値)に対応するフラ
ッシュレンジを算出する演算器、46は製造水負荷(整
造水負荷調節器44の出力値)に対応する循環液流量を
算出する演算器である。
The actual example shown in Figure 2 shows that for a given amount of produced water,
This is an example of automatically adjusting the flash range and circulating fluid volume to obtain a desired manufactured water load, and in Fig. 2,
41 produced water amount detector, 42 target produced water load setter,
43 is a buffer, 44 is a manufactured water load adjuster, 45 is an arithmetic unit that calculates a flash range corresponding to the manufactured water load (output value of the manufactured water load adjuster 44), and 46 is a manufactured water load (refined water load). This is a calculation unit that calculates the circulating fluid flow rate corresponding to the output value of the regulator 44.

その他の各部の構成および作用は第1図および第3図に
ついて説明したものと同一である。
The structure and operation of other parts are the same as those explained with reference to FIGS. 1 and 3.

上記第2図に示す本発明の他の実施例の作用について説
明する。
The operation of another embodiment of the present invention shown in FIG. 2 will be explained.

第2図において、製造水負荷調節器44の出力信号であ
る製造水負荷信号は、目標製造水負荷設定器42の出力
信号を緩衝器43でゆるやかに変化する様に変化率制限
を加えた目標製造水負荷信号と製造水量検出器41で検
出された製造水量検出信号が等しくなる様に製造水負荷
調節器44により調節されたものである。
In FIG. 2, the manufactured water load signal, which is the output signal of the manufactured water load adjuster 44, is the output signal of the target manufactured water load setter 42, which is set to a target value with a rate of change limited so that the output signal changes slowly with a buffer 43. The produced water load regulator 44 adjusts the produced water load signal so that the produced water quantity detection signal detected by the produced water quantity detector 41 becomes equal.

この製造水負荷信号に対応する循環液流量を演算器46
で算出し、循環液流量調節計22の設定値として与える
。また演算器45では、製造水負荷信号と循環液流量検
出器25で検出された循環液流量検出信号により、下記
の計算を行ない、フラッシュレンジ調節計33の設定値
を算出する。
Calculator 46 calculates the circulating fluid flow rate corresponding to this manufactured water load signal.
is calculated and given as the setting value of the circulating fluid flow rate controller 22. Further, the calculator 45 performs the following calculation based on the produced water load signal and the circulating fluid flow rate detection signal detected by the circulating fluid flow rate detector 25, and calculates the set value of the flash range controller 33.

従って、目標製造水負荷設定器42の出力信号に応じて
、自動的に、循環液流量とフラッシュレンジの設定値を
与えることができ、外部運転条件が変化しても製造水量
を自動調節できる。
Therefore, the set values for the circulating fluid flow rate and the flush range can be automatically given in accordance with the output signal of the target produced water load setting device 42, and the produced water amount can be automatically adjusted even if external operating conditions change.

〔発明の効果〕〔Effect of the invention〕

以上により、本発明によれば、海淡装置において、遣水
負荷を連続的に、また運転条件の変化等の外乱に応じて
自動的に設定値を変更すること等により、希望する製造
水量を迅速且つ安定に得られる等の優れた効果が奏せら
れるものである。
As described above, according to the present invention, the desired amount of produced water can be rapidly achieved by continuously changing the water supply load and automatically changing the set value in response to disturbances such as changes in operating conditions. Moreover, excellent effects such as being stably obtained can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の構成を示す図、第2図は本
発明の他の実施例の構成を示す図、第3図は従来例を示
す図である。 l・・・熱回収部、2・・・熱放出部、3・・・ブライ
ンヒータ、31・・・最終段ブライン温度検出器、32
・・・減算器、33・・・フラッシュレンジ調節計、4
1・・・製造水量検出器、42・・・目標製造水負荷設
定器、43・・・緩衝器、44・・・製造水負荷調節器
、45.46・・・演算器。
FIG. 1 is a diagram showing the configuration of one embodiment of the present invention, FIG. 2 is a diagram showing the configuration of another embodiment of the present invention, and FIG. 3 is a diagram showing a conventional example. 1... Heat recovery section, 2... Heat release section, 3... Brine heater, 31... Final stage brine temperature detector, 32
...Subtractor, 33...Flash range controller, 4
DESCRIPTION OF SYMBOLS 1... Produced water amount detector, 42... Target produced water load setter, 43... Buffer, 44... Produced water load regulator, 45.46... Arithmetic unit.

Claims (1)

【特許請求の範囲】[Claims] 多段フラッシュ型海水淡水化装置において、蒸発室初段
入口ブライン温度と蒸発室最終段ブライン温度とをそれ
ぞれ検出し、両検出端の温度差を演算するとともに、こ
の温度差を出力する演算器と、製造水量設定器の設定信
号および循環液流量検出信号から設定製造水量に対応す
る温度差を計算する関数器と、前記演算器の出力信号と
前記関数器の出力信号とが一致するように加熱供給量を
制御する制御装置とを具備してなることを特徴とする多
段フラッシュ型海水淡水化装置における負荷制御装置。
In a multi-stage flash type seawater desalination device, a computing unit that detects the brine temperature at the first stage inlet of the evaporation chamber and the brine temperature at the final stage of the evaporation chamber, calculates the temperature difference between both detection ends, and outputs this temperature difference; a function unit that calculates the temperature difference corresponding to the set production water volume from the setting signal of the water volume setting device and the circulating fluid flow rate detection signal; 1. A load control device for a multi-stage flash desalination device, characterized in that it is equipped with a control device for controlling.
JP60047773A 1985-03-11 1985-03-11 Load control apparatus in multistage flash type seawater desalting apparatus Pending JPS61209086A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60047773A JPS61209086A (en) 1985-03-11 1985-03-11 Load control apparatus in multistage flash type seawater desalting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60047773A JPS61209086A (en) 1985-03-11 1985-03-11 Load control apparatus in multistage flash type seawater desalting apparatus

Publications (1)

Publication Number Publication Date
JPS61209086A true JPS61209086A (en) 1986-09-17

Family

ID=12784699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60047773A Pending JPS61209086A (en) 1985-03-11 1985-03-11 Load control apparatus in multistage flash type seawater desalting apparatus

Country Status (1)

Country Link
JP (1) JPS61209086A (en)

Similar Documents

Publication Publication Date Title
CA1150067A (en) Side stream type condensing system and method of operating the same
JP5431382B2 (en) Evaporative load control system for dryer
JPS61209086A (en) Load control apparatus in multistage flash type seawater desalting apparatus
US2776092A (en) Control method and apparatus for heat recovery condensers
JPS5939680B2 (en) Cooling tower control method
JPS6310854Y2 (en)
JPS61171585A (en) Multistage flush type seawater desalting apparatus
SU964334A1 (en) Method of adjusting green liquor level in soda regeneration boiler unit melt solution tank
SU889087A1 (en) Method of regulating melt spraying from soda regeneration boiler unit fire box
JPS6327827Y2 (en)
SU1775390A1 (en) Method for controlling hydroformylation of propylene
JPS61220781A (en) Controller for multi-flash freshwater generator
JPS6182803A (en) Multi-flash seawater desalting apparatus
SU988307A1 (en) Method of automatic regulating of evaporation process
SU799579A1 (en) System for controlling temperature of circulating gases upstream steam boiler of dry coke quenching plant
SU1018660A1 (en) System for automatic control of multieffect evaporation plant
JP2672729B2 (en) Water quality adjustment device
JPS61178087A (en) Apparatus for controlling amount of made-up fresh water making apparatus
SU993968A1 (en) Method of automatic control of evaporation process
JPH0410361B2 (en)
JPH0386291A (en) Method for controlling sea water desalting process of multistage flush type
JPS54103241A (en) Method of setting and controlling room temperature
SU1018662A1 (en) Evaporation process automatic control method
JPS61192383A (en) Brine level controller of multistage flash type water making apparatus
JPH03113201A (en) Method and apparatus for controlling boiler