JPS6182803A - Multi-flash seawater desalting apparatus - Google Patents

Multi-flash seawater desalting apparatus

Info

Publication number
JPS6182803A
JPS6182803A JP59202075A JP20207584A JPS6182803A JP S6182803 A JPS6182803 A JP S6182803A JP 59202075 A JP59202075 A JP 59202075A JP 20207584 A JP20207584 A JP 20207584A JP S6182803 A JPS6182803 A JP S6182803A
Authority
JP
Japan
Prior art keywords
output
controller
load
temperature
differential pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59202075A
Other languages
Japanese (ja)
Inventor
Kengo Hamanaka
浜中 健吾
Yoshiaki Furuki
古木 義章
Shinzo Inohara
猪原 晋三
Seiji Koyama
誠二 小山
Masahiro Tatsumoto
辰本 正弘
Katsutoshi Fukumoto
福本 勝利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP59202075A priority Critical patent/JPS6182803A/en
Publication of JPS6182803A publication Critical patent/JPS6182803A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/06Flash distillation
    • B01D3/065Multiple-effect flash distillation (more than two traps)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

PURPOSE:To operate stably the process by changing rapidly a load in correspondence with the load even when the varying velocity of the load changes momentarily. CONSTITUTION:The set value of a temp. controller 21 is raised or lowered by a water production controller 37 in correspondence with the difference between the signal from a water production detector 35 and the signal from a water production setting device 36, and the temp. at the outlet from a brine heater 3 is controlled to obtain a specified load. The output of a differential arithmetic unit 38 for differentiating the output of a differential pressure detector 30 and calculating the absolute value of the differential pressure between stages of the first and the second flash chambers 1 and 2. The difference between the output of the arithmetic unit 38 and the output of a device for setting the upper limit value of said varying velocity between stages is calculated by an arithmetic unit 40, and an ON signal is outputted only when the output of the arithmetic unit 38 is lower than the output of a setting device 39. Besides, when the output of the arithmetic unit 40 is OFF, the calculation of the water production controller 37 is held, and the calculated result of the water production controller is outputted to the temp. controller 21, when said output is ON.

Description

【発明の詳細な説明】 (腫業上の利用分野) 本発明は多段フラッシュ型海水淡水化装置の負荷制御装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Medical Application) The present invention relates to a load control device for a multi-stage flash type seawater desalination device.

(従来の技術) 従来の多段フラッシュ型海水淡水化装置を第3図によシ
説明すると、囚が各7ラツンユ室(1)乃至フラッシュ
室(N−2)′t−具えた熱回収段、則が各フラッシュ
室(N−1)(N)を具えた熱放出段、(3)がブライ
ンヒータ、(4)が原料海水供給ライン、(5)が原料
海水放出ライン、(6)が原料海水供給ライン、(7)
が冷却循環ライン、(8)が凝縮器、(9)が加熱媒体
供給う・イン、Qlが各フラッシュ室の入口に設けたオ
リフィス、■が各7ラツシユ室の人口a〔近傍に設けた
堰、α2が各フラッシュ室に設けたデミスタ、(13が
各7ラツ7ユ室に設けた凝縮液トレイ、■が最終段フラ
ッシュ室(5)からの製造水取出しライン、(19が最
終段フラッシュ室(5)からの廃水抜出しライン、四が
ブラインヒータ(3)の出口側に設けた温度検出器、C
19が同温度検出器■からの検出信号によシ加熱媒体供
給ライン(9)に設けた流量調節弁a1の開度を調節す
る温度制御計、のが冷却循環ライン(力に設けた温度検
出器、のが同温度検出器のからの検出信号により冷却循
環ライン(刀に設けた流量調節弁u槌の開度に+7節す
る温度制御計、Caが最終段−)に設けた温度検出器、
(2)が同温度検出器(2)からの検出信号により廃水
抜出しライン(151に設けた流量調節弁α場の開度を
調節する温度制御計で、原料海水が原料海水供給ライン
(4)から供給され、一部の原料海水が原料海水放出ラ
イン(5)から外部へ放出され、残シの原料海水が原料
海水供給ライン(6)から最終段7ラソノ二室冊へ供給
されて、同最終段ブラックユ室間の液に合流したのち、
冷却循環ライン(力から熱回収段(Atへ供給されて、
冷却液(循環液)になる。即ち、熱回収段(3)の各7
ラソ/ユ室(1)(2)乃至(N−2)で沸騰蒸発した
蒸気が凝縮器(8)内を通る冷却液によシ冷却されて、
凝縮する。この凝縮器(8)内を通る冷却液は、プライ
ンヒータ(3)の入口に至るまでの間に次第に昇温して
いって、フラッシュ室(1)に設けた凝縮器(8)内を
通るときには、同フラッシュ室(1)で沸騰蒸発した蒸
気の温度近くまで昇温しでおり、上記冷却作用の外に、
熱回収作用をもっている。同冷却液は、プラインヒータ
(3)で加熱媒体供給ライン(9)から送られてくる加
熱媒体(通常は蒸気)により、フラッシュ室(1)の飽
和温度よシも数展高い温度に加熱されて、フラッシュ室
(1)へ供給される。この加熱された海水(ブライン)
は、各72ツ7ユ室(1)乃至(6)に向い流れてゆく
が、各フラッシュ室(1)乃至閥の人口には、オリフィ
ス(ilと堰0υとがあって、摩擦圧損が生じるので、
各フラッシュ室(11乃至閣を通過して液温か下っても
、飽和圧力も下っていくので、各7ラツ7ユ室(1)乃
至間で海水の沸騰蒸発が行われる。各72ツゾユ室(1
)乃至(5)で沸騰蒸発した蒸気が同伴する水滴は、デ
ミスタa3によ勺分離され、同水滴全分離した蒸気は、
凝縮器(8)に接触して冷却され、凝縮して淡水になる
。この淡水は、凝縮液トレイQ3に貯められたのち、最
終段フラッシュ室間に向い流れてゆって、製造水取出し
ライン側から取出される。またブラインヒータ(3)を
出てフラッシュ室(1)に向う加熱された海水(ブライ
ン)の温度が温度検出器■により検出され、そのとき得
らnる検出信号が温度制御針Qυへ送られ、同温度制御
計(21)が流量調節弁αηの開度を制御して、加熱媒
体供給ライン(9)をプラインヒータ(3)に向う加熱
媒体の流量を制御する。また最終段フラッシュ室間を出
て冷却循環ライン(7)中を熱回収設問に向う循環液の
温度が温度検出器のにより検出され、そのとき得られる
検出信号が温度制御計のへ送らn、同温度制御計のが流
量調節弁−〇開度を調節して、循環液の流量を所要の負
荷(遣水量)に対応した設定流量になるように制御する
。また最終段フラッシュ室間の温度が温度検出器(24
1により検出され、そのとき得られる検出信号が温度制
御計・器へ送られ、同温度制御計器が流量調節弁(11
の開度を調節して(最終段フラッシュ室間から廃水抜出
しライン13に向う廃水量を調節して)、最終段フラッ
シュ室(社)の液レベルを一定になるように制御するよ
うになっている。
(Prior Art) A conventional multi-stage flash type seawater desalination apparatus is explained with reference to FIG. (3) is a brine heater, (4) is a raw seawater supply line, (5) is a raw seawater discharge line, and (6) is a raw material seawater discharge stage. Seawater supply line, (7)
is the cooling circulation line, (8) is the condenser, (9) is the heating medium supply pipe, Ql is the orifice installed at the entrance of each flash chamber, and ■ is the population a of each of the 7 flash chambers [weir installed nearby] , α2 is the demister installed in each flash chamber, (13 is the condensate tray installed in each 7-7 chamber, ■ is the produced water take-out line from the final stage flash chamber (5), (19 is the final stage flash chamber) (5) waste water extraction line, 4 is a temperature sensor installed on the outlet side of the brine heater (3), C
19 is a temperature controller that adjusts the opening degree of the flow rate regulating valve a1 installed in the heating medium supply line (9) according to the detection signal from the temperature detector The temperature sensor installed in the cooling circulation line (temperature control meter with +7 knots in the opening of the flow rate regulating valve u mallet installed on the sword, Ca in the final stage -) is detected by the detection signal from the same temperature detector. ,
(2) is a temperature controller that adjusts the opening degree of the flow rate control valve α field installed in the wastewater extraction line (151) based on the detection signal from the temperature detector (2), and the raw seawater is transferred to the raw seawater supply line (4). A part of the raw seawater is discharged to the outside from the raw seawater discharge line (5), and the remaining raw seawater is supplied from the raw seawater supply line (6) to the final stage 7, the second chamber. After joining the liquid between the final stage black chamber,
Cooling circulation line (supplied from power to heat recovery stage (At)
Becomes cooling fluid (circulating fluid). That is, each 7 of the heat recovery stages (3)
The steam boiled and evaporated in the raso/yu chambers (1), (2) and (N-2) is cooled by the cooling liquid passing through the condenser (8),
Condense. The coolant passing through the condenser (8) gradually increases in temperature before reaching the inlet of the prine heater (3), and then passes through the condenser (8) provided in the flash chamber (1). Sometimes, the temperature rises to near the temperature of the steam boiled and evaporated in the flash chamber (1), and in addition to the above cooling effect,
It has a heat recovery effect. The coolant is heated to a temperature several orders of magnitude higher than the saturation temperature of the flash chamber (1) by the heating medium (usually steam) sent from the heating medium supply line (9) in the prine heater (3). and is supplied to the flash chamber (1). This heated seawater (brine)
Flows toward each of the 72 and 7 chambers (1) to (6), but each flash chamber (1) has an orifice (il) and a weir (0υ), which causes frictional pressure loss. So,
Even if the liquid temperature decreases after passing through each flash chamber (11 to 1), the saturation pressure also decreases, so seawater is boiled and evaporated in each of the 72 chambers (1) to 72 chambers (1). 1
) to (5), the water droplets accompanied by the steam boiled and evaporated are separated by a demister a3, and the steam from which all the water droplets have been separated is:
It contacts the condenser (8) and is cooled, condensing into fresh water. This fresh water is stored in the condensate tray Q3, flows toward the final stage flash chamber, and is taken out from the produced water take-out line side. Also, the temperature of the heated seawater (brine) leaving the brine heater (3) and heading towards the flash chamber (1) is detected by the temperature detector ■, and the detection signal obtained at that time is sent to the temperature control needle Qυ. , the temperature controller (21) controls the opening degree of the flow rate regulating valve αη to control the flow rate of the heating medium flowing through the heating medium supply line (9) toward the prine heater (3). In addition, the temperature of the circulating fluid leaving the final stage flash chamber and heading for the heat recovery test in the cooling circulation line (7) is detected by a temperature detector, and the detection signal obtained at that time is sent to a temperature controller. The temperature controller adjusts the opening degree of the flow rate control valve to control the flow rate of the circulating fluid to the set flow rate corresponding to the required load (water supply amount). Also, the temperature between the final stage flash chambers is measured by a temperature detector (24
1, the detection signal obtained at that time is sent to the temperature control meter/device, and the temperature control device is connected to the flow rate control valve (11
(by adjusting the amount of waste water flowing from between the final stage flash chambers to the waste water extraction line 13), the liquid level in the final stage flash chamber (company) is controlled to be constant. There is.

(発明が解決しようとする問題点) 前記第3図の多段フラッシュ型海水淡水化装置では、運
転時に熱効率及び製造水の純度の面から各7ラツシユ室
内の海水(グライン)の液位を所定値に保つ心安がある
。し刀・し負荷の変動時や装置を起動する際等の運転条
件変更時には、各7ラツ7ユ室内の海水(ブライン)の
液位を一定に保つのが容易でない。即ち、本装置は一般
に20段程度のフラッシュ室がろるが、前記の制御を行
うのは、両端の7ラソシユ室に限られておシ、各7ラツ
シユ室内の海水(ブライン)の液位を一定に保つのが容
易でない。しかも負荷の変動時や装置全起動する際等の
運転条件変更時に応答性が悪い。
(Problems to be Solved by the Invention) In the multi-stage flash type seawater desalination apparatus shown in FIG. There is peace of mind in keeping it safe. It is not easy to keep the level of seawater (brine) in each chamber constant when the operating conditions change, such as when the load changes or when starting up the equipment. That is, although this device generally has about 20 stages of flash chambers, the above control is limited to the 7 flash chambers at both ends, and the level of seawater (brine) in each of the 7 flash chambers is controlled. It is not easy to keep it constant. Moreover, the response is poor when the operating conditions change, such as when the load changes or when the entire device starts up.

装置の負荷(製造水:i)F’pは、循環液の流量をF
IRN  フラッシュ室(1)とフラッシュ室(6)の
温度差を’I’、、  プラントによシ決まる比例定数
をKとすると、 FIP=KaFRIITF によ)表わされる。この式から明らかなよ′)VC製造
水量を増加するには、循環液の流量を増加させるか、プ
ラインヒータ(3)の出口温度を上昇させればよいが、
安定的な運転を行うためlc#i、各7ラツシユ室の液
位を所定の範囲に保つと同時に、循環液の流量とプライ
ンヒータ(3)の出口温度とを調和させながら増加、上
昇させる必要があり、この条件を満足していない場合、
即ち、循環液の流量のみを増加ぢせた場合、或いはプロ
セスの応答性の面から循環液の流量を増加させると同時
にブ2インヒータ(3)の出口温度を上昇させるが、プ
′ラインヒータ(3)の出口温度の上昇値よりも循環液
の流量増加量の方が多い場合には、次の問題を生じる。
Equipment load (produced water: i) F'p is the flow rate of circulating fluid F
IRN If the temperature difference between the flash chamber (1) and the flash chamber (6) is 'I', and the proportionality constant determined by the plant is K, then FIP=KaFRIITF). It is clear from this equation that in order to increase the amount of VC produced water, either the flow rate of the circulating fluid can be increased or the outlet temperature of the pline heater (3) can be increased.
In order to perform stable operation, it is necessary to maintain the liquid level in each of the seven rush chambers within a predetermined range, and at the same time increase the circulating fluid flow rate and the outlet temperature of the pline heater (3) while keeping them in harmony. and this condition is not satisfied,
That is, when only the flow rate of the circulating fluid is increased, or when the flow rate of the circulating fluid is increased from the viewpoint of process responsiveness, the outlet temperature of the line heater (3) is increased simultaneously, but the outlet temperature of the line heater (3) is increased. If the amount of increase in the flow rate of the circulating fluid is greater than the increase in the outlet temperature in 3), the following problem occurs.

即ち、循環液の流量が増加した場合、各7ラツク二室を
光れる海水(ブラインンの流量もその増加量にほぼ比例
して増加していないと、物質の収支及び熱の収支も狂っ
てくる。しかしブラインヒー、り(3)の出口温度がそ
れにほぼ比例して上昇りていないと、即ち、飽和圧力を
上昇させて、各フラッシュ室間の圧力差を大きくさせて
いないと、各フラッシュ室間での流量が増加していかず
、上流側のフラッシュ室にブラインが滞留し、上流側の
フラッシュ室の液位が上昇して、安定的な運転状態とは
いえなくなる。またそれとは逆に、ブラインヒータ(3
)の出口温度を高めて、循環流量が同温度に対して不足
しているとぎには、上流側のフラッシュ室の液位が異常
に低下する。以上から明らかなように安定的に運転する
には、循環液の流量とブラインヒータ(3)の出口温度
とを負荷(製造水量)に応じた比率に保つことが重要で
ある。この比は、プラント毎に異るが、計算により予め
知ることができる。しかし計算で知ることができるのは
、静的な場合であり、負荷が変動してたシ、プラントが
起動、停止するような過渡状態時には、循環液の流量と
ブラインヒータ(3)の出口温度との比を所定値に保つ
だけでは不充分である。そこで従来は、負荷の変化速度
を小さくして、静的バランスからの偏位を小さくしてお
り、次の操作を行っている。
In other words, if the flow rate of the circulating fluid increases, the flow rate of the seawater flowing through each of the two chambers (brine) will also increase in proportion to the increase, or the balance of matter and the balance of heat will go out of order. However, unless the outlet temperature of the brine heater (3) increases in proportion to it, that is, the saturation pressure is not increased to increase the pressure difference between each flash chamber, the temperature difference between each flash chamber will increase. The flow rate at the upstream side does not increase, and the brine stays in the upstream flash chamber, causing the liquid level in the upstream flash chamber to rise, resulting in an unstable operating condition. Heater (3
), if the circulating flow rate is insufficient for the same temperature, the liquid level in the upstream flash chamber will drop abnormally. As is clear from the above, in order to operate stably, it is important to maintain the flow rate of the circulating fluid and the outlet temperature of the brine heater (3) at a ratio that corresponds to the load (amount of produced water). Although this ratio differs from plant to plant, it can be known in advance by calculation. However, calculations can only be used to determine static conditions, and during transient conditions such as when the load is fluctuating or when the plant is started or stopped, the flow rate of the circulating fluid and the outlet temperature of the brine heater (3) can be determined. It is insufficient to simply maintain the ratio of Conventionally, the rate of change in load is reduced to reduce the deviation from the static balance, and the following operations are performed.

まず不安定にならないことを確認しながら、操作量を小
刻みに且つ緩慢に変化させるか、安定的に運転できるい
ままでのデータから予め決められた昇温速度または降温
速度と、独立変数を時間の設定値、従属変数をブライン
ヒータ(3)の出口温度の設定値とする関数とによシ、
同温度を負荷変動にともなって変更するか、循環液の流
量全上記温度に比例して変化させるか、しているが、こ
れらの方法には、適切なフィードバック機能がなく、状
態に速応した操作を行うことができず、負荷変更速度が
緩慢にならざるを得なくて、また外乱への対応力がなく
て、不安定な運転状態になシ易いという問題があった。
First, while making sure that there is no instability, change the manipulated variable in small increments and slowly, or change the independent variable to a predetermined heating rate or cooling rate based on existing data that allows stable operation, and change the independent variable over time. The set value is a function whose dependent variable is the set value of the outlet temperature of the brine heater (3),
The same temperature is changed in accordance with load fluctuations, or the circulating fluid flow rate is changed in proportion to the above temperature, but these methods do not have an appropriate feedback function and do not respond quickly to the conditions. There were problems in that the operation could not be performed, the load change speed had to be slow, and there was no ability to respond to external disturbances, resulting in an unstable operating state.

(問題点を解決するための手段ン 本発明は前記の問題点に対処するもので、ブラインヒー
タの出口温度若しくはプラインの循環流ffi’を制御
する制御計と、各7ラツ/ユ室の段間圧力差を検出する
差圧検出器と、同差圧検出器からの検出信号全微分して
段間差圧変化速度の絶対値を演算する微分演算器と、同
微分演算器の出力を予め設定した設定値を越えない範囲
で上記制御計へ出力する制御機器とを具えていることを
特徴とした多段フラッシュ型海水淡水化装置に係り、そ
の目的とする処は、負荷の変化速度が時々刻々変化して
も負荷をそれに対応して迅速に変更できて、プロセスを
安定的に運転できる改良された多段フラッシュ型帥水淡
水化装置を供する点VCある。・(実施例) 次に本発明の多段フラッンユ型海水淡水化装置の一実施
例ケ第1,2図に示す一実施例により説明すると、(1
)〜u51(17)〜(ハ)が+1+1記と同一のiし
分、第1.2図の(31J1が第1段のフラッシュ室(
1)と第2段のフラッシュ室(2)との没圧會検出する
差圧検出器、0Dが同差圧検出器(至)からの差圧検出
信号を処理する信号処理回路、(へ)が製造水流量検出
器、備が目標負荷(目標製造水it、)を設定する製造
水量設定器、C37+が製造水量制御計で、同製造水量
制御計頷け、製造水量設定器東からの信号と製造水量設
定器(ト)からの信号との差に対応して温度制御計(2
11の設定値を上下させて、所定の負荷になるようにブ
ラインヒータ(3)の出口温度を調節する。以上の機器
(至)noηは、いままでに用いられているが、負荷を
安定的に変更するためには、温度制御計(211の設定
値を変更するときの変更速度が問題になるが、本発明は
上記差圧検出器■を付加している。また(至)が同差圧
検出器■の出力r微分して差圧の絶対値を演算する微分
演算器で、同微分演算器(至)の出力が第1段フラッシ
ュ室(1)と第2段フラッシュ室(2)との段間差圧変
化速度の絶対値になる。またG!Jが負荷を安定変更で
きる上記段間差圧変化速度の上限値を設定する設尾器、
taが演算器で、同演算器141Jは、上記微分演算器
(至)の出力と上記設定器G91の出力との差を演算し
て、微分演算器(至)の出力が設定器(31の出力より
も小さいときのみにONN倍音出力し、その外のときに
はOF’F信号を出力するように、tつている。また(
4υが上記製造水制御計c3nで行っている演算を制御
する制御器で、同制御器f4Gは、演算器(,11の出
力がOFFのときには、製造水制御計l37)の演算を
ホールドシ、ONのときには、製造水制御計l371の
演算結果を温度制御計(21)へ出力するようになって
いる。
(Means for Solving the Problems) The present invention addresses the above problems, and includes a controller for controlling the outlet temperature of the brine heater or the circulation flow ffi' of the pline, and a stage for each of the seven chambers. A differential pressure detector that detects the pressure difference between stages, a differential calculator that completely differentiates the detection signal from the differential pressure detector and calculates the absolute value of the rate of change of the differential pressure between stages, and a differential calculator that calculates the absolute value of the rate of change of the differential pressure between stages, A multi-stage flash desalination system is characterized in that it is equipped with a control device that outputs output to the controller within a range that does not exceed a set value, and its purpose is to control the rate of change of load from time to time. There is a point VC that provides an improved multi-stage flash type fresh water desalination device that can quickly change the load in response to minute changes and can operate the process stably. (Example) Next, the present invention An example of a multi-stage flannel type seawater desalination apparatus will be explained using an example shown in FIGS. 1 and 2.
)~u51(17)~(c) is the same as +1+1, and (31J1 is the first stage flash chamber (
1) and the second stage flash chamber (2), a differential pressure detector that detects the submerged pressure encounter, 0D is a signal processing circuit that processes the differential pressure detection signal from the differential pressure detector (to), (to) is the manufactured water flow rate detector, B is the manufactured water amount setting device that sets the target load (target manufactured water it,), and C37+ is the manufactured water amount controller. Temperature control meter (2)
The outlet temperature of the brine heater (3) is adjusted by increasing or decreasing the set value of 11 to achieve a predetermined load. The above devices (to) no η have been used up to now, but in order to stably change the load, the speed of change when changing the setting value of the temperature controller (211) is an issue. The present invention adds the above-mentioned differential pressure detector (2). Also, (to) is a differential calculator that calculates the absolute value of the differential pressure by differentiating the output r of the differential pressure detector (2). ) is the absolute value of the rate of change in pressure difference between the first stage flash chamber (1) and the second stage flash chamber (2).In addition, the output of the stage difference between the stages that allows G!J to stably change the load A tail device that sets the upper limit of the pressure change rate,
ta is an arithmetic unit, and the arithmetic unit 141J calculates the difference between the output of the differential operator (to) and the output of the setter G91, and the output of the differential operator (to) is set by the setter (31). It is designed to output ONN harmonics only when it is smaller than the output, and output an OFF'F signal at other times.
4υ is a controller that controls the calculations performed by the manufactured water control meter c3n, and the same controller f4G holds the calculation of the calculation unit (when the output of 11 is OFF, the manufactured water control meter l37) is turned ON. At this time, the calculation result of the produced water control meter 1371 is output to the temperature control meter (21).

−(作 用) 次に前記第1.2図の多段フラッシュ型海水淡水化装置
の作用を沙門する。いまプラントが60つめ負荷で安定
的に運転されているとすると、そのとき、第1段フラッ
シュ室(1)と第2段フラッシュ室(2)と間に差圧変
化がないので、微分演算器側の出力は零である。この状
態で製造水量設定器間の負荷設定を80%にしだとする
と、製造水量制御針Onによシ温度制御計(2Dの設定
値が増加し、ブラインヒータ(,3)の出口温度が上昇
して、負荷も上昇傾向になる。この結果、微分演算器側
の出力も漸増してゆき、ある時点、では、設定値C3G
の設定値を越える。このとき、演算器+40の出力がO
FF’になって、製造水量制御計c3nからの温度上昇
信号が中断される。以上の作用によシ、段間の流動増加
速度が所定範囲に抑えられ且つ可能な限シ迅速に変化す
る。なお制御器(Inの出力を循環液の流量の設定値と
して使用する場合、つまり制御器(41)の出力を温度
制御計(至)の設定値として使用する場合にも同様の作
用が行われる。
- (Function) Next, we will discuss the function of the multi-stage flash type seawater desalination apparatus shown in Fig. 1.2. Assuming that the plant is currently operating stably at the 60th load, there is no change in the differential pressure between the first-stage flash chamber (1) and the second-stage flash chamber (2), so the differential calculator The output on the side is zero. In this state, if the load setting between the produced water volume setting devices is set to 80%, the set value of the temperature controller (2D) will increase due to the production water volume control needle ON, and the outlet temperature of the brine heater (, 3) will rise. , the load also tends to rise.As a result, the output of the differential calculator side gradually increases, and at a certain point, the set value C3G
exceeds the set value. At this time, the output of computing unit +40 is O
FF', and the temperature rise signal from the produced water flow rate controller c3n is interrupted. As a result of the above-described effects, the rate of increase in flow between stages can be suppressed within a predetermined range and can be changed as quickly as possible. Note that the same effect is performed when the output of the controller (In) is used as the set value of the circulating fluid flow rate, that is, when the output of the controller (41) is used as the set value of the temperature controller (to). .

(発明の効果) 本発明の多段フラッシュ型海水淡水化装置は前記のよう
にプラインヒータの出口温度若しくはブラインの循環流
量を制御する制御計と、各フラッシュ室の段間圧力差を
検出する差圧検出器と、同差圧検出器からの検出信号を
微分して段間差圧変化速度の絶対値を演算する微分演算
器と、同畝分演算器の出力を予め設定した設定値を越え
ない範囲で上記制御計へ出力する制御機器とを具えて、
前記の作用が行われるので、負荷の変化速度が時々刻々
変化しても負荷をそれに対応して迅速に変更できて、プ
ロセスを安定的に運転できる効果がめる。
(Effects of the Invention) As described above, the multi-stage flash type seawater desalination apparatus of the present invention includes a controller that controls the outlet temperature of the prine heater or the circulating flow rate of brine, and a differential pressure that detects the pressure difference between stages in each flash chamber. The output of the detector, the differential calculator that calculates the absolute value of the interstage differential pressure change rate by differentiating the detection signal from the differential pressure detector, and the differential calculator, so that the output does not exceed a preset value. and a control device that outputs to the above controller within a range,
Since the above-mentioned action is performed, even if the rate of change in load changes from moment to moment, the load can be quickly changed accordingly, resulting in the effect that the process can be operated stably.

以上本発明を失癩例について説明したが、勿論本発明は
このような実施例にだけ局限されるものではなく、本発
明の精神を逸脱しない範d内で種々の設計の改変を厖し
うるものである。
Although the present invention has been described above with reference to cases of leprosy, the present invention is of course not limited to such embodiments, and may be modified in various ways without departing from the spirit of the present invention. It is something.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明lこ降る多段7ランゾユ型海水淡水化装
置の一実地例を示す系統図、第2図はその信号処理回路
を示す系統図、第3図は従来の多段フラッシュ型海水淡
水化装置を示す系統図である。 (1)(21〜(3)−・・7ラツ7ユ室、(3)・−
・ブラインヒータ。 +21)・・・ブラインヒータ(3)の出口温度の制御
計、(ハ)・・・ブラインの循環流量の制御計、C31
J・・・差圧検出器。 (至)−・・−微分演算器、 Qj(il(41)・・
・制御機器。 仮代理人 弁理士  岡 本 本 文 外3名 第1図 第2因 ″も
Fig. 1 is a system diagram showing an actual example of a multi-stage 7-flush type seawater desalination apparatus according to the present invention, Fig. 2 is a system diagram showing its signal processing circuit, and Fig. 3 is a system diagram showing a conventional multi-stage flash type seawater desalination system. FIG. (1) (21~(3)--7Ratsu7U room, (3)--
・Brine heater. +21)...Controller for outlet temperature of brine heater (3), (c)...Controller for brine circulation flow rate, C31
J...Differential pressure detector. (To) --- Differential calculator, Qj (il (41)...
・Control equipment. Provisional agent Patent attorney Okamoto Hon 3 people outside of the text Figure 1, cause 2''

Claims (1)

【特許請求の範囲】[Claims] ブラインヒータの出口温度若しくはブラインの循環流量
を制御する制御計と、各フラッシュ室の段間圧力差を検
出する差圧検出器と、同差圧検出器からの検出信号を微
分して段間差圧変化速度の絶対値を演算する微分演算器
と、同微分演算器の出力を予め設定した設定値を越えな
い範囲で上記制御計へ出力する制御機器とを具えている
ことを特徴とした多段フラッシュ型海水淡水化装置。
A controller that controls the outlet temperature of the brine heater or the circulation flow rate of brine, a differential pressure detector that detects the pressure difference between stages in each flash chamber, and a differential pressure detector that differentiates the detection signal from the differential pressure detector to determine the difference between stages. A multi-stage device characterized by comprising a differential calculator that calculates the absolute value of the pressure change rate, and a control device that outputs the output of the differential calculator to the controller within a range that does not exceed a preset value. Flash type seawater desalination equipment.
JP59202075A 1984-09-28 1984-09-28 Multi-flash seawater desalting apparatus Pending JPS6182803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59202075A JPS6182803A (en) 1984-09-28 1984-09-28 Multi-flash seawater desalting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59202075A JPS6182803A (en) 1984-09-28 1984-09-28 Multi-flash seawater desalting apparatus

Publications (1)

Publication Number Publication Date
JPS6182803A true JPS6182803A (en) 1986-04-26

Family

ID=16451534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59202075A Pending JPS6182803A (en) 1984-09-28 1984-09-28 Multi-flash seawater desalting apparatus

Country Status (1)

Country Link
JP (1) JPS6182803A (en)

Similar Documents

Publication Publication Date Title
EP0409989A1 (en) Method of controlling temperature of machine tool and apparatus for practicing same
JPS63121910A (en) Fluid passing apparatus
US4676870A (en) Automatic control of a multiple-effect evaporator
JP6948012B2 (en) Ultrapure water heating method
JPS6182803A (en) Multi-flash seawater desalting apparatus
JPS61171585A (en) Multistage flush type seawater desalting apparatus
JP2023540588A (en) Compressor device and method for controlling compressor device
JPS61192383A (en) Brine level controller of multistage flash type water making apparatus
JPS58129511A (en) Temperature controlling device
SU993968A1 (en) Method of automatic control of evaporation process
RU2455673C1 (en) Method of control of multiple-effect evaporator with natural circulation head evaporator
JPS61245882A (en) Apparatus for controlling brine level of multistage flash type water making apparatus
SU1455123A1 (en) Method of regulating operating mode of vacuum deaerator
JPS6327827Y2 (en)
JPS6310854Y2 (en)
JPS62258790A (en) Controlling device for amount of fresh water produced by multi-flash type fresh water generator
JPS58206812A (en) Device for adjusting discharged gas of steam turbine with vacuum
SU947595A1 (en) Method of regulating process of air separation in cryogenic apparatus
JPH0410361B2 (en)
JPS61259701A (en) Condensation method and apparatus therefor
JPH0557037B2 (en)
SU873222A1 (en) Method of automatic controlling of alcohol evaporator in the process of producing formalin
JPH0263501A (en) Temperature controller for distillation tower
SU979824A1 (en) Water cooling temperature control method
SU1659356A1 (en) Method of control of absorption process in sulfuric acid production