JPH0410361B2 - - Google Patents

Info

Publication number
JPH0410361B2
JPH0410361B2 JP21175384A JP21175384A JPH0410361B2 JP H0410361 B2 JPH0410361 B2 JP H0410361B2 JP 21175384 A JP21175384 A JP 21175384A JP 21175384 A JP21175384 A JP 21175384A JP H0410361 B2 JPH0410361 B2 JP H0410361B2
Authority
JP
Japan
Prior art keywords
flow rate
evaporator
level
concentration
controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21175384A
Other languages
Japanese (ja)
Other versions
JPS6190701A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP21175384A priority Critical patent/JPS6190701A/en
Publication of JPS6190701A publication Critical patent/JPS6190701A/en
Publication of JPH0410361B2 publication Critical patent/JPH0410361B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Feedback Control In General (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は多重効用缶を用いた濃縮制御装置にお
ける、加熱蒸気流量変更時における制御性の改善
に関する。
DETAILED DESCRIPTION OF THE INVENTION <Field of Industrial Application> The present invention relates to improvement of controllability when changing the flow rate of heated steam in a concentration control device using a multi-effect can.

<従来技術> 第2図に示す多重効用缶の計装例により、従来
装置の構成並びに問題点につき説明する。1,
2,3はカスケードに接続された第1〜第3の蒸
発缶、101,201,301は夫々第1、第
2、第3蒸発缶の熱交換器、4は加熱蒸気Sを第
1蒸発缶1の熱交換機101に供給する管路、1
02は第1蒸発缶の蒸発蒸気V1を第2蒸発缶2
の熱交換器201に供給する管路、202は第2
蒸気缶2の蒸発蒸気V2を第3蒸発缶3の熱交換
器301に供給する管路、302は第3蒸発缶の
蒸発蒸気V3を凝縮機5に導くための管路である。
凝縮機5において501は真空ポンプへの接続管
路、502は大気へのブリード管路である。10
3,203,303は熱交換器101,201,
301のドレインである。
<Prior Art> The configuration and problems of a conventional device will be explained using an example of instrumentation of a multi-effect can shown in FIG. 1,
2 and 3 are the first to third evaporators connected in a cascade; 101, 201, and 301 are the heat exchangers of the first, second, and third evaporators, respectively; 4 is the heat exchanger for the heated steam S to the first evaporator; A pipe line supplying the heat exchanger 101 of No. 1, 1
02 transfers the evaporated steam V 1 from the first evaporator to the second evaporator 2
A pipe line 202 supplies the heat exchanger 201 to the second heat exchanger 201.
A conduit 302 is a conduit for supplying the evaporated vapor V 2 of the steam can 2 to the heat exchanger 301 of the third evaporator 3 , and a conduit 302 is a conduit for guiding the evaporated vapor V 3 of the third evaporator to the condenser 5 .
In the condenser 5, 501 is a connection pipe to a vacuum pump, and 502 is a bleed pipe to the atmosphere. 10
3,203,303 are heat exchangers 101,201,
301 drain.

6は加熱蒸気Sの流量Fsを測定する流量セン
サ、7はこの流量を制御する制御弁、8は流量セ
ンサ6の出力esと加熱蒸気流量の設定値Ysとを受
けて制御弁7を操作する調節計である。
Reference numeral 6 denotes a flow rate sensor that measures the flow rate F s of the heating steam S, 7 a control valve that controls this flow rate, and 8 a control valve 7 that receives the output e s of the flow rate sensor 6 and the set value Y s of the heating steam flow rate. It is a controller that operates.

9は濃縮すべき供給液Bを第3蒸発缶3の缶内
に供給する管路、10はこの管路に挿入されたポ
ンプ、11は供給液流量F3を制御する制御弁、
12は蒸発缶3内の供給液BのレベルL3を測定
するレベルセンサ、13はレベルセンサの出力
el3と設定値Yl3を受けて制御弁11を操作して流
量F3を制御するレベル調節計である。14は蒸
発缶3内の供給液を蒸発缶2に移送するための管
路、15はこの管路に挿入されたポンプ、16は
蒸発缶2への供給液の流量F2を制御する制御弁、
17は蒸発缶2内の供給液BのレベルL2を測定
するレベルセンサ、18はレベルセンサの出力
el2と設定値Yl2を受けて制御弁16を操作して流
量F2を制御するレベル調節計である。19は蒸
発缶2内の供給液を蒸発缶1に移送するための管
路、20はこれを管路に挿入されたポンプ、21
は蒸発缶1への流体の流量F1を制御する制御弁、
22は蒸発缶1内の供給液BのレベルL1を測定
するレベルセンサ、23はレベルセンサの出力
el1と設定値Yl1を受けて制御弁21を操作して流
量F1を制御するレベル調節計である。
9 is a pipe line for supplying the feed liquid B to be concentrated into the third evaporator 3; 10 is a pump inserted into this pipe line; 11 is a control valve that controls the feed liquid flow rate F3 ;
12 is a level sensor that measures the level L3 of the supply liquid B in the evaporator 3, and 13 is the output of the level sensor.
This is a level controller that receives e l3 and a set value Y l3 and operates the control valve 11 to control the flow rate F3 . 14 is a pipe line for transferring the feed liquid in the evaporator 3 to the evaporator 2, 15 is a pump inserted in this pipe, and 16 is a control valve that controls the flow rate F2 of the feed liquid to the evaporator 2. ,
17 is a level sensor that measures the level L2 of the supply liquid B in the evaporator 2, and 18 is the output of the level sensor.
This is a level controller that receives e l2 and set value Y l2 and operates the control valve 16 to control the flow rate F2 . 19 is a pipe for transferring the supply liquid in the evaporator 2 to the evaporator 1; 20 is a pump inserted into the pipe; 21
is a control valve that controls the flow rate F1 of fluid to the evaporator 1,
22 is a level sensor that measures the level L1 of the feed liquid B in the evaporator 1, and 23 is the output of the level sensor.
This is a level controller that receives e l1 and set value Y l1 and operates the control valve 21 to control the flow rate F 1 .

24は濃縮された供給液B′を排出する排出管
路、25はこの管路に挿入されたポンプ、26は
排出供給液B′を流量F0を制御する制御弁、27
は蒸発缶1内の供給液の濃度D1を測定する濃度
センサ、28は濃度センサの出力edと設定値Yd
を受けて制御弁26を操作して排出流量F0を制
御する濃度調節計である。
24 is a discharge pipe for discharging the concentrated supply liquid B', 25 is a pump inserted in this pipe, 26 is a control valve for controlling the flow rate F 0 of the discharged supply liquid B', 27
28 is a concentration sensor that measures the concentration D1 of the feed liquid in the evaporator 1, and 28 is the output e d of the concentration sensor and the set value Y d
This is a concentration controller that controls the discharge flow rate F 0 by operating the control valve 26 in response to the flow rate F 0 .

29は濃縮機5への管路302に空気Aをブリ
ードするための管路、30はこの管路に挿入され
た制御弁、31は第3蒸発缶3内の圧力P3を測
定する圧力センサ、32は圧力センサの出力ep
設定値Ypを受けて制御弁30を操作してブリー
ド空気量を制御する圧力調節計である。
29 is a pipe for bleeding air A into the pipe 302 to the concentrator 5, 30 is a control valve inserted into this pipe, and 31 is a pressure sensor for measuring the pressure P 3 in the third evaporator 3. , 32 is a pressure regulator that receives the output e p of the pressure sensor and the set value Y p and operates the control valve 30 to control the amount of bleed air.

T1、T2、T3は蒸発缶1,2,3内の温度、
P1、P2、P3は各蒸発缶内の圧力、L1、L2、L3
各蒸発缶内の供給液レベル、D1、D2、D3は各蒸
発缶の供給液濃度である。
T 1 , T 2 , T 3 are the temperatures inside the evaporators 1, 2, and 3;
P 1 , P 2 , and P 3 are the pressures in each evaporator, L 1 , L 2 , and L 3 are the feed liquid levels in each evaporator, and D 1 , D 2 , and D 3 are the feed liquid concentration in each evaporator. It is.

このような構成において各蒸発缶の圧力はP1
>P2>P3の圧力勾配、温度はT1>T2>T3の温度
勾配、濃度はD1>D2>D3の濃度勾配を有する。
従つて濃縮すべき供給液Bの温度が低い場合は加
熱蒸気Sの流れとは逆に第3蒸発缶3側より供給
する、実施例のごとき逆流型の構成が用いられ
る。
In such a configuration, the pressure in each evaporator is P 1
The pressure gradient is >P 2 >P 3 , the temperature is T 1 >T 2 >T 3 , and the concentration is D 1 >D 2 >D 3 .
Therefore, when the temperature of the feed liquid B to be concentrated is low, a backflow type configuration as in the embodiment is used in which the heated steam S is supplied from the third evaporator 3 side in the opposite direction to the flow.

排出供給液B′の濃度D1は排出蒸発缶1よりの
排出流量F0を制御することで設定値Ydに保持さ
れる。そして各蒸発缶のレベルL1、L2、L3はほ
ぼ一定レベルYl1、Yl2、Yl3を保つように各蒸発
缶への供給液流量F1、F2、F3が制御される。
The concentration D 1 of the discharged supply liquid B' is maintained at a set value Y d by controlling the discharge flow rate F 0 from the discharge evaporator 1 . The flow rates F 1 , F 2 , and F 3 of the liquid supplied to each evaporator are controlled so that the levels L 1 , L 2 , and L 3 of each evaporator are maintained at approximately constant levels Y l1 , Y l2 , and Y l3 . .

このような多重効用缶の運転では、各蒸発缶内
の液体のレベルを余り変動させることなく、各缶
内における濃縮濃度を一定に保つことが重要であ
る。第2図に示した制御ループ構成は、排出供給
液の流量の設定(加熱蒸気Sの流量Fsの設定値
Ys)が一定で、比較的小さな外乱(供給液濃度、
加熱蒸気圧、加熱蒸気流量)がある、定常状態で
の濃度制御とレベル制御を有効に維持できる様に
なつている。
In the operation of such multiple effect canisters, it is important to maintain a constant concentration of concentrate within each evaporator without significantly varying the level of liquid within each evaporator. The control loop configuration shown in FIG .
Y s ) is constant and relatively small disturbances (feed liquid concentration,
(heating steam pressure, heating steam flow rate), it is possible to effectively maintain concentration control and level control in a steady state.

しかしながら排出供給液の流量を大幅に変える
時は良好な濃度制御、レベル制御が困難となる欠
点がある。即ち短時間にFsを大幅に増加すると
(排出供給液の変更は蒸気流量Fsを変更すること
により行なわれる)第1段蒸発缶の発熱量が増え
始める。缶のレベルを一定に保つためにレベル調
節計23は供給液流量F1を蒸発量の増加に見合
つた量のみ増加させるように働く。これによりレ
ベルは一定に保たれるが、缶内の濃度D1は上昇
する。これは缶に対する収支F0D1=F1D2からD1
=F1・D0/F0が成立ち、F1が増加するとD1も大
きくなることから明らかである。
However, when the flow rate of the discharged supply liquid is changed significantly, there is a drawback that good concentration control and level control are difficult. That is, if F s is significantly increased over a short period of time (changing the discharge feed liquid is done by changing the steam flow rate F s ), the calorific value of the first stage evaporator begins to increase. To maintain a constant level in the can, the level controller 23 increases the feed flow rate F 1 by an amount commensurate with the increase in evaporation. This keeps the level constant, but the concentration D 1 in the can increases. This is the balance for the can F 0 D 1 = F 1 D 2 to D 1
It is clear that =F 1 ·D 0 /F 0 holds true, and as F 1 increases, D 1 also increases.

そこで、濃度D1を下げるために濃度調節計2
8はF0を増加させる。F0を増加させれば缶内の
レベルが下がるので、そこでレベルを一定とする
ために再びF1が増加される。このようなプロセ
スを繰返し、D1、F0、F1は定常値に落着くまで
変動し、この変動が第2、第3の蒸発缶のレベル
変動に波及し、同時に各蒸発缶内の濃度D2、D3
も大幅に変動し、これらが新しい定常値に落着く
までには長時間を要する。
Therefore, in order to lower the concentration D1 , the concentration controller 2
8 increases F 0 . If F 0 is increased, the level inside the can will drop, so F 1 is increased again to keep the level constant. By repeating this process, D 1 , F 0 , and F 1 fluctuate until they reach steady values, and this fluctuation affects the level fluctuations in the second and third evaporators, and at the same time the concentration in each evaporator increases. D2 , D3
also fluctuate significantly, and it takes a long time for these to settle down to new steady values.

<発明の解決しようとする問題点> 本発明は上記の欠点を解消すべく、短時間に排
出供給液の流量変更を実施しても、各蒸発缶にお
ける液体のレベルと濃度が大きく変動せず、短時
間で整定させることができる制御装置を実現する
ことを目的とする。
<Problems to be Solved by the Invention> In order to solve the above-mentioned drawbacks, the present invention solves the above-mentioned drawbacks by providing a method in which the level and concentration of the liquid in each evaporator do not change significantly even if the flow rate of the discharged supply liquid is changed in a short period of time. The purpose of this invention is to realize a control device that can be stabilized in a short time.

<問題点を解決するための手段> 本発明の構成上の特徴は、複数の蒸発缶を順次
連結して一つの蒸発缶で発生した蒸気を次の蒸発
缶の加熱に利用して供給液を順次濃縮する多重効
用缶の制御装置において、第1蒸発缶に供給され
る加熱蒸気流量の測定値と設定値に基づき上記加
熱蒸気流量を調節する蒸気流量調節計と、濃縮さ
れた上記供給液を排出する排出蒸気缶の排出流量
をこの蒸発缶内の供給液の濃度測定値と設定値に
基づいて調節する濃度調節計と、少く共上記排出
蒸気缶内の上記供給液のレベル測定値と設定値に
基づき上記供給液の供給流量を調節するレベル調
節計と、上記加熱蒸気流量に関連した操作量を上
記濃度調節計及び上記レベル調節計の操作出力に
加算するフイードフオワード手段とを具備せしめ
た点にある。
<Means for Solving the Problems> The structural feature of the present invention is that a plurality of evaporators are connected in sequence and the steam generated in one evaporator is used to heat the next evaporator to heat the supply liquid. A control device for a multi-effect canister that sequentially condenses includes a steam flow rate controller that adjusts the heated steam flow rate based on a measured value and a set value of the heated steam flow rate supplied to the first evaporator, and a steam flow rate controller that controls the concentrated supply liquid. a concentration controller that adjusts the discharge flow rate of the discharged steam can based on the measured concentration value and set value of the feed liquid in the evaporator; A level controller that adjusts the supply flow rate of the supply liquid based on the value, and a feed forward means that adds a manipulated variable related to the heated steam flow rate to the manipulated outputs of the concentration controller and the level controller. That's the point.

<作用> 加熱蒸気流量に関連した操作量を濃度調節計及
びレベル調節計の操作出力に加算するフイードフ
オワード制御ループにより、加熱蒸気流量の設定
を大幅に変更した場合に、排出流量F0及び供給
流量F1を、濃度調節計出力及びレベル調節計出
力が増加する前に増加させることが出来、各蒸発
缶のレベル変動、濃度変動を最小に抑えることが
できる。
<Function> The feed forward control loop adds the manipulated variable related to the heating steam flow rate to the manipulated output of the concentration controller and level controller, so that when the heating steam flow rate setting is significantly changed, the discharge flow rate F 0 and the supply flow rate F 1 can be increased before the concentration controller output and the level controller output increase, and level fluctuations and concentration fluctuations in each evaporator can be minimized.

<実施例> 第1図により本発明装置の一実施例につき説明
する。第2図と同一要素には同一符号を付して説
明を省略する。点線のブロツクCが本発明装置の
特徴部分であるフイードフオワード制御ループで
ある。31乃至34は加熱蒸気Sの流量Fsの測定
信号esを入力とするフイードフオワード演算回路
であり、加熱蒸気流量の増分に比例して制御弁2
1,16,13,26をフイードフオワード操作
する。演算回路31,32,33,34の出力
ef1、ef2、ef3、ef4は一般に次のような関数で表わ
される。
<Example> An example of the apparatus of the present invention will be described with reference to FIG. Elements that are the same as those in FIG. 2 are given the same reference numerals and their explanations will be omitted. A dotted block C is a feed forward control loop which is a characteristic part of the device of the present invention. Numerals 31 to 34 are feed forward calculation circuits which receive the measurement signal e s of the flow rate F s of the heating steam S, and operate the control valve 2 in proportion to the increment in the flow rate of the heating steam S.
1, 16, 13, and 26 are operated as feed forwards. Outputs of arithmetic circuits 31, 32, 33, 34
e f1 , e f2 , e f3 , and e f4 are generally expressed by the following functions.

ef1=fi(Fs)=Ki(Fs−Fnio) (1) ここでFnioは加熱蒸気の最低流量、i=1〜4
である。
e f1 = f i (F s ) = K i (F s − F nio ) (1) where F nio is the minimum flow rate of heating steam, i = 1 to 4
It is.

Kiの設定方法は次のようにする。まず供給液の
各蒸発缶への流量F1、F2、F3及び排出流量F0
制御弁21,16,11及び26の開度θ1、θ2
θ3及びθ0に比例すると仮定する。以下K1の設定方
法のみについて述べるが、K2〜K4も同様な手法
で設定できる。
The setting method for K i is as follows. First, the flow rates F 1 , F 2 , F 3 of the supply liquid to each evaporator and the discharge flow rate F 0 are determined by the opening degrees θ 1 , θ 2 of the control valves 21, 16, 11 and 26,
Assume that it is proportional to θ 3 and θ 0 . Only the method for setting K 1 will be described below, but K 2 to K 4 can also be set using a similar method.

加熱蒸気流量Fsが最小、最大時のθ1の開度を
θ1nio、θ1nax、加熱蒸気流量の最大値をFsnaxとす
るとき、 K1=(θ1nax−θ1nio) /(Fsnax−Fsnio) (2) となる。
When the opening degree of θ 1 when the heating steam flow rate F s is the minimum and maximum is θ 1nio and θ 1nax and the maximum value of the heating steam flow rate is F snax , K 1 = (θ 1nax − θ 1nio ) / (F snax −F snio ) (2).

次に本発明におけるフイードフオワード制御ル
ープによる動作について説明する。
Next, the operation of the feed forward control loop in the present invention will be explained.

まず、フイードフオワード制御ループが無い場
合は、設定値Ysの変更によるFsの変更後制御弁
21,16,11,26が定常値に落着くまでの
間は、各蒸発缶内の濃度の変動、レベルの変動は
前述したように大きい。
First, if there is no feed forward control loop, after changing F s by changing the set value Y s , until the control valves 21, 16, 11, 26 settle to steady values, the As mentioned above, the fluctuations in concentration and level are large.

こうした場合に濃度D1とレベルL1の変動を抑
えるためには、蒸発缶1において、蒸発蒸気量を
V1としたとき、 F0・D1=F1・D2 (3) F1−F0−V1=0 (4) が成立つように、F0、F1を予め操作すればよい。
蒸発缶2,3においても同様である。F0、F1
フイードフオワードによる操作量を(2)式としてお
けば、近似的に(3)、(4)式が成り立ち、濃度変動と
レベル変動を最小限に抑えることが可能となる。
In such a case, in order to suppress fluctuations in concentration D 1 and level L 1 , the amount of evaporated vapor in evaporator 1 must be reduced.
When V 1 , F 0 and F 1 should be manipulated in advance so that F 0 · D 1 = F 1 · D 2 (3 ) F 1 −F 0 −V 1 = 0 (4) .
The same applies to the evaporators 2 and 3. If the manipulated variables of F 0 and F 1 due to feed forward are set as equation (2), equations (3) and (4) will approximately hold, and it is possible to minimize concentration fluctuations and level fluctuations. Become.

以上説明した上記実施例では3重効用缶に本発
明を適用した例であるが、3重には限定されず、
任意の多重缶構成に適用することができる。又供
給液の温度が高い場合は第1段の蒸発缶側から供
給する順流型でも同様なフイードフオワード制御
を適用することができる。
The above-described embodiment is an example in which the present invention is applied to a triple-effect can, but it is not limited to triple-effect cans,
Can be applied to any multi-can configuration. Furthermore, when the temperature of the feed liquid is high, similar feed forward control can be applied to a forward flow type feed liquid that is fed from the first stage evaporator side.

フイードフオワード制御の演算は比例演算の例
を示したが、動特性の補償を考慮して1次進み遅
れ要素(TDs+1/Ts+1)を追加し、 fi(Fs)=TDs+1/Ts+1・Ki(Fs−Fsnio) (5) とすることも考えられる。ここで1次進み遅れ要
素の係数は制御系の試運転により最適値を決定す
ればよい。
The calculation of feed forward control has shown an example of proportional calculation, but in consideration of compensation of dynamic characteristics, a first-order lead/lag element (T D s+1/Ts+1) is added, and f i (F s )=T D It is also possible to set it as s+1/Ts+1·K i (F s −F snio ) (5). Here, the optimum value of the coefficient of the primary lead/lag element may be determined by a trial run of the control system.

フイードフオワード制御の対象は上記実施例で
は制御弁21,16,11,26への操作量とし
たが、供給液を排出する蒸発缶1のレベル制御及
び濃度制御を行なう制御弁21及び26に限定し
ても効果がある。
In the above embodiment, the object of feedforward control is the operation amount to the control valves 21, 16, 11, and 26, but the control valves 21 and 26 perform level control and concentration control of the evaporator 1 that discharges the feed liquid. It is effective even if it is limited to

<効果> 以上説明したように、本発明によれば次のよう
な効果が期待できる。
<Effects> As explained above, according to the present invention, the following effects can be expected.

(1) 濃縮すべき供給液の排出流量を短時間に大幅
に変更した場合に、各蒸発缶内の供給液のレベ
ル及び濃度を大きく変動させることなく、短時
間で整定させることができる。
(1) When the discharge flow rate of the feed liquid to be concentrated is significantly changed in a short period of time, the level and concentration of the feed liquid in each evaporator can be stabilized in a short time without significantly changing the level and concentration of the feed liquid.

(2) 加熱蒸気流量の設定値を変えない定常状態の
運転では、従来の制御系と同一構成であり、従
来装置の制御性は失なわれない。
(2) In steady-state operation without changing the set value of the heating steam flow rate, the configuration is the same as the conventional control system, and the controllability of the conventional device is not lost.

(3) 従来例の制御系では加熱蒸気量の変更時には
濃度制御とレベル制御の干渉が大きく、両者共
に良い制御を行なうことは困難であるが、本発
明のごときフイードフオワード制御を追加する
ことにより、両者の干渉が小さくなり、両者共
に良い制御性を期待することができる。
(3) In conventional control systems, when changing the amount of heating steam, there is a large interference between concentration control and level control, and it is difficult to perform good control of both, but adding feedforward control as in the present invention As a result, interference between the two is reduced, and good controllability can be expected for both.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す構成図、第2
図は従来装置の一例を示す構成図である。 1,2,3……蒸発缶、4……加熱蒸気供給管
路、6……加熱蒸気流量センサ、7,11,1
6,21,26,30……制御弁、8,13,1
8,23,28……調節計、12,17,22…
…レベルセンサ、21……濃度センサ、32……
圧力センサ、S……加熱蒸気、B……供給液、
B′……排出液。
FIG. 1 is a configuration diagram showing one embodiment of the present invention, and FIG.
The figure is a configuration diagram showing an example of a conventional device. 1, 2, 3... Evaporator, 4... Heated steam supply pipe line, 6... Heated steam flow rate sensor, 7, 11, 1
6, 21, 26, 30...control valve, 8, 13, 1
8, 23, 28...controller, 12, 17, 22...
... Level sensor, 21 ... Concentration sensor, 32 ...
Pressure sensor, S...heated steam, B...supply liquid,
B'...Drained fluid.

Claims (1)

【特許請求の範囲】[Claims] 1 複数の蒸発缶を順次連結して一つの蒸気缶で
発生した蒸気を次の蒸発缶の加熱に利用して供給
液を順次濃縮する多重効用缶の制御装置におい
て、第1蒸発缶に供給される加熱蒸気流量の測定
値と設定値に基づき上記加熱蒸気流量を調節する
蒸気流量調節計と、濃縮された上記供給液を排出
する排出蒸発缶の排出流量をこの蒸発缶内の供給
液の濃度測定値と設定値に基づいて調節する濃度
調節計と、少く共上記排出蒸発缶内の上記供給液
のレベル測定値と設定値に基づき上記供給液の供
給流量を調節するレベル調節計と、上記加熱蒸気
流量に関連した操作量を上記濃度調節計及び上記
レベル調節計の操作出力に加算するフイードフオ
ワード手段とよりなる多重効用缶制御装置。
1. In a control device for a multi-effect can which sequentially connects a plurality of evaporators and uses the steam generated in one evaporator to heat the next evaporator to sequentially concentrate the supplied liquid, a steam flow rate controller that adjusts the heated steam flow rate based on the measured value and set value of the heated steam flow rate; and a steam flow rate controller that adjusts the heated steam flow rate based on the measured value and set value of the heated steam flow rate; a concentration controller that adjusts the level of the feed liquid in the discharge evaporator based on the measured value and the set value; a level controller that adjusts the supply flow rate of the feed liquid based on at least the measured value and the set value of the level of the feed liquid in the discharge evaporator; A multi-effect tank control device comprising feed forward means for adding a manipulated variable related to the flow rate of heated steam to the manipulated outputs of the concentration controller and the level controller.
JP21175384A 1984-10-09 1984-10-09 Control device for multiple-effect evaporator Granted JPS6190701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21175384A JPS6190701A (en) 1984-10-09 1984-10-09 Control device for multiple-effect evaporator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21175384A JPS6190701A (en) 1984-10-09 1984-10-09 Control device for multiple-effect evaporator

Publications (2)

Publication Number Publication Date
JPS6190701A JPS6190701A (en) 1986-05-08
JPH0410361B2 true JPH0410361B2 (en) 1992-02-25

Family

ID=16611009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21175384A Granted JPS6190701A (en) 1984-10-09 1984-10-09 Control device for multiple-effect evaporator

Country Status (1)

Country Link
JP (1) JPS6190701A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4863781B2 (en) * 2006-06-16 2012-01-25 三浦工業株式会社 Multi-effect fresh water generator
JP6895170B2 (en) * 2016-10-05 2021-06-30 株式会社ミヤワキ Feedforward control type hot water supply system and hot water supply method
US11512008B2 (en) * 2018-06-04 2022-11-29 Breakthrough Technologies, LLC Waste water management

Also Published As

Publication number Publication date
JPS6190701A (en) 1986-05-08

Similar Documents

Publication Publication Date Title
US4617092A (en) Process for controlling a distillation column
JPH0410361B2 (en)
JPS6219641A (en) Method of controlling combustion for hot water supplier
SU1301434A1 (en) Method of automatic control for preventing hydration
US5848640A (en) Apparatus for controlling the temperature of fuel in a motor vehicle fuel tank
JPS5921902A (en) Controller for temperature of steam from boiler
SU780844A1 (en) Apparatus for automatic regulation of evaporation process
JPS6365206A (en) Boiler steam temperature controller
JPS5914241B2 (en) Evaporator control device
JP2725716B2 (en) Method of detecting non-condensable gas in decompression boiler type vaporizer and method of controlling decompression boiler type vaporizer with detection of non-condensable gas
SU1637817A1 (en) Method of control of distillation process
JPH0574758B2 (en)
SU1451443A1 (en) Automatic system for regulating steam parameters after power-generating boiler
JPS6149683B2 (en)
JPS6227320B2 (en)
SU1599438A1 (en) Method of automatic control of multiple-housing evaporator with developed steam intake
JPS6211590A (en) Automatic controller for controlling production of water in multi-flash evaporator
SU899048A1 (en) Method of control of evaporation plant
JPS621161B2 (en)
JPH05272771A (en) Control method of mixing ratio immediately before resupplying hot water in tap-controlled hot-water supplier
SU1200102A1 (en) Method of automatic control of spray-drying process
JPS6327827Y2 (en)
JPH05240422A (en) Combustion air flow rate controller
SU1616992A1 (en) Method of automatic control of film-type evaporator
RU1802261C (en) Method of level control in regenerative heater of steam turbine