JPS5914241B2 - Evaporator control device - Google Patents

Evaporator control device

Info

Publication number
JPS5914241B2
JPS5914241B2 JP12674680A JP12674680A JPS5914241B2 JP S5914241 B2 JPS5914241 B2 JP S5914241B2 JP 12674680 A JP12674680 A JP 12674680A JP 12674680 A JP12674680 A JP 12674680A JP S5914241 B2 JPS5914241 B2 JP S5914241B2
Authority
JP
Japan
Prior art keywords
flow rate
level
liquid
control
liquid supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12674680A
Other languages
Japanese (ja)
Other versions
JPS5750501A (en
Inventor
康一郎 猪原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP12674680A priority Critical patent/JPS5914241B2/en
Publication of JPS5750501A publication Critical patent/JPS5750501A/en
Publication of JPS5914241B2 publication Critical patent/JPS5914241B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Feedback Control In General (AREA)
  • Control Of Non-Electrical Variables (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Description

【発明の詳細な説明】 本発明は蒸発器の液体レベルを制御する制御装置の改良
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a control system for controlling liquid level in an evaporator.

一般に蒸発器は、化学工業や原子力プラント等 、の分
野で種々使用されている。
Generally, evaporators are used in various fields such as chemical industry and nuclear power plants.

例えば化学工業では糖密の濃縮化、海水の淡水化、また
原子力プラントでは液体廃棄物処理の除染化等である。
第1図は従来の蒸発器制御装置の1つを示している。こ
の装置は、蒸発タンク1の被濃縮液に一 。定の加熱蒸
気を加え蒸発分に見合つた分だけ給液を供給すべく、蒸
発タンク1の液体レベルを給液流量を調整することによ
り、一定値制御を行なうものである。先ず、被濃縮液の
濃縮化は、蒸発タンク1に加熱蒸気を与える。そうする
と、その加熱蒸気流量に相当する蒸発効果が行なわれ、
これ5 により蒸発タンク1の被濃縮液が給液の積算量
に比例して濃縮化される。この加熱蒸気流量を流量検出
器2によつて測定し、その流量信号を流量調節計3に供
給する。流量調節計3は流量信号を受けて予め所定の処
理量とするように調節すべく操10作信号を得る。そし
て、この操作信号を電空変換器4により変換処理を行な
つた後、流量調節弁5に与えて加熱蒸気流量の定値制御
を行なう。一方、給液制御は次のようにして行なう。先
ず、2本のバブラー管6、Tの差圧をレベル伝送器81
5で信号変換して液体レベルとして検出した後、このレ
ベル検出信号をレベル調節計9に供給する。このレベル
調節計9は、レベル検出信号を受けて所定レベルとなる
操作信号を得、これを給液流量調節弁10に与えて給液
制御を行なう。11は電フo 空変換器である。
For example, in the chemical industry, it is necessary to concentrate molasses, desalinate seawater, and in nuclear power plants, to decontaminate liquid waste treatment.
FIG. 1 shows one conventional evaporator control system. This device is used for the liquid to be concentrated in the evaporation tank 1. The liquid level in the evaporation tank 1 is controlled at a constant value by adjusting the flow rate of the liquid to be supplied so that a certain amount of heated steam is added and the liquid is supplied in an amount commensurate with the evaporated amount. First, to concentrate the liquid to be concentrated, heated steam is applied to the evaporation tank 1. Then, an evaporation effect corresponding to the heated steam flow rate will occur,
As a result of this step 5, the liquid to be concentrated in the evaporation tank 1 is concentrated in proportion to the cumulative amount of liquid supplied. This heated steam flow rate is measured by a flow rate detector 2, and the resulting flow rate signal is supplied to a flow rate controller 3. The flow rate controller 3 receives the flow rate signal and obtains an operation signal for adjusting the throughput to a predetermined amount. After converting this operation signal by the electro-pneumatic converter 4, it is applied to the flow rate control valve 5 to perform constant value control of the heated steam flow rate. On the other hand, liquid supply control is performed as follows. First, the differential pressure between the two bubbler tubes 6 and T is detected by the level transmitter 81.
After the signal is converted and detected as a liquid level in step 5, this level detection signal is supplied to a level controller 9. The level controller 9 receives the level detection signal, obtains an operation signal that reaches a predetermined level, and applies this to the liquid supply flow rate control valve 10 to control the liquid supply. Reference numeral 11 denotes an electric pneumatic converter.

第2図は従来のもう1つの装置を示す。FIG. 2 shows another conventional device.

これは、第1図に示す装置の欠点である給液流量の外乱
に対する制御性の悪さを解消したものである。つまり、
第1図に示す装置にあつては、給液流量がポノ5 ンプ
の吐出圧力変化などにより変つた場合、蒸発タンク1の
液体レベルに偏差が生じて初めて給液流量の調節動作が
行なわれるため、制御精度に問題がある。そこで、第2
図に示す装置は、レベル調節計9ノ0 の出力で、給液
流量調節計12の目標値を操作するようカスケード制御
するものである。
This eliminates the drawback of the apparatus shown in FIG. 1, which is poor controllability with respect to disturbances in the flow rate of liquid supplied. In other words,
In the device shown in Fig. 1, when the liquid supply flow rate changes due to changes in the discharge pressure of the pump, etc., the liquid supply flow rate is not adjusted until a deviation occurs in the liquid level in the evaporation tank 1. Therefore, there is a problem with control accuracy. Therefore, the second
The device shown in the figure performs cascade control so that the target value of the liquid supply flow rate controller 12 is controlled by the output of the level controller 9.

13は流量検出器である。13 is a flow rate detector.

この装置では、給液流量の外乱に対しては給液流量調節
計12で補正されるため、蒸発タンク1の液体レベルの
偏差を生じさせるこ石 となく制御できる。しかし、第
1図および第2図の装置は、レベル調節計9の出力で直
接又はカスケードにより給液流量調節弁10を制御する
ものであり、制御の特性はレベル検出信号のみに依存し
ている。
In this device, disturbances in the liquid supply flow rate are corrected by the liquid supply flow rate controller 12, so that the disturbances in the liquid level in the evaporation tank 1 can be controlled without any deviation. However, the devices shown in FIGS. 1 and 2 control the liquid supply flow rate control valve 10 directly or in cascade with the output of the level controller 9, and the control characteristics depend only on the level detection signal. .

ここに、蒸発器制御装置のプロセス特性として、レベル
の逆応答現象のあることは良く知られている。これは、
沸騰液に発生するボード量の増減による見かけのレベル
応答であつて、蒸発タンク1内の沸騰液に供給される給
液流量が増加すると、液に含まれるボードが冷却により
急速に減少するためレベルが一時的に下がる。また、加
熱蒸気流量が増加すると、液の沸騰が昂進されるためボ
ード量が増加し、レベルが一時的に上昇する。この現象
は、レベルが上がると給液流量を絞り、レベルが下がる
と給液流量を増加させる通常の制御動作方向に対し、発
散させる方向にあるため制御性を悪くしている。このレ
ベル逆応答特性の典型的な例を第3図に示す。
It is well known that a reverse level response phenomenon occurs as a process characteristic of the evaporator control device. this is,
This is an apparent level response due to an increase or decrease in the amount of board generated in the boiling liquid. When the flow rate of the liquid supplied to the boiling liquid in the evaporation tank 1 increases, the board contained in the liquid rapidly decreases due to cooling, so the level increases. decreases temporarily. Furthermore, when the heating steam flow rate increases, the boiling of the liquid is accelerated, so the amount of board increases and the level temporarily rises. This phenomenon worsens controllability because it is in the direction of divergence, as opposed to the normal control operation direction in which the flow rate of the liquid supply is throttled when the level rises and the flow rate of the liquid supply is increased when the level falls. A typical example of this level reverse response characteristic is shown in FIG.

第3図Aは、給液流量にステツプ変化された時、蒸発タ
ンク1のレベルが第3図Bのようにボードの減少により
一時低下するが、再び漸増する特性を示す。逆に、加熱
蒸気流量を第3図Cのようにステツプ変化させた時、蒸
発タンク1のレベルが第3図Dのようにボードの急増に
より一時上昇した後、下降していくことを示している。
第4図は第1図に示す装置の制御結果を示す図である。
同図は加熱蒸気を一定流量制御した時のレベルおよび給
液流量の特性を示すものであり、前述したようにレベル
の逆応答特性により、給液流量制御がH1リミツトかL
。リミツトのどちらかに発散し、オン・オフ動作を行な
つているものである。本発明は上記実情にかんがみてな
されたものであつて、蒸発器液レベルの逆応答性などの
非線形特性に対し、より安定な制御を行なうようにする
蒸発器制御装置を提供するものである。
FIG. 3A shows a characteristic that when the liquid supply flow rate is changed stepwise, the level of the evaporation tank 1 temporarily decreases as the board decreases as shown in FIG. 3B, but gradually increases again. Conversely, when the heating steam flow rate is changed in steps as shown in Figure 3C, the level of the evaporation tank 1 rises temporarily due to the sudden increase in the number of boards, and then decreases as shown in Figure 3D. There is.
FIG. 4 is a diagram showing control results of the apparatus shown in FIG. 1.
This figure shows the characteristics of the level and supply liquid flow rate when heating steam is controlled at a constant flow rate.As mentioned above, due to the reverse response characteristics of the level, the supply liquid flow rate control is at the H1 limit or at the L limit.
. It diverges to either limit and performs on/off operations. The present invention has been made in view of the above circumstances, and provides an evaporator control device that performs more stable control against nonlinear characteristics such as reverse responsiveness of the evaporator liquid level.

以下、本発明の一実施例について第5図を参照して説明
する。
An embodiment of the present invention will be described below with reference to FIG.

第5図は単胴式蒸発器に適用した制御構成の一例を示し
、第2図と同一部分は同一符号を付して一部その説明を
省略する。本装置において従来装置と特に異なるところ
は、給液流量の制御構成にある。この装置は、レベル調
節計9の出力を、バイアス係数設定用加減算器21およ
び補正係数設定用スケーラ一22を介してバイアスおよ
び係数の補正を行ない加減算器23の一方入力部に供給
している。また、流量検出器2の検出流量信号をバラン
ス係数設定用スケーラ一24でバランス補正を行なつて
前記加減算器23の他方入力部に供給している。そして
、この加減算器23により両入力信号を加算して給液流
量の目標値として用いる構成である。次に、以上のよう
に構成せる蒸発器制御装置の作用を説明する。
FIG. 5 shows an example of a control configuration applied to a single-barrel evaporator, and the same parts as in FIG. 2 are given the same reference numerals, and some explanations thereof are omitted. The difference between this device and the conventional device lies in the control configuration of the liquid supply flow rate. This device corrects the bias and coefficients of the output of the level controller 9 via an adder/subtractor 21 for setting bias coefficients and a scaler 22 for setting correction coefficients, and supplies the output to one input section of an adder/subtractor 23. Further, the detected flow rate signal of the flow rate detector 2 is subjected to balance correction by a balance coefficient setting scaler 24, and is supplied to the other input section of the adder/subtractor 23. The adder/subtractor 23 adds the two input signals and uses the resultant value as a target value of the liquid supply flow rate. Next, the operation of the evaporator control device configured as described above will be explained.

先ず、加熱蒸気流量の制御にあつては、第2図と同様流
量検出器2で流量信号Pを検出した後、流量調節計3に
入れて所定流量とすべく操作信号を得、これを用いて流
量調節弁5を操作し加熱蒸発流量の定値制御を行なうも
のである。一方、給液流量制御にあつては、レベル調節
計9から出力された操作信号MVを後続のバイアス係数
設定用加減算器21に入力し、ここでバイアス係数K1
の減算補正を行なう。
First, in controlling the heating steam flow rate, the flow rate signal P is detected by the flow rate detector 2 as shown in FIG. The flow control valve 5 is operated to perform constant value control of the heating evaporation flow rate. On the other hand, for liquid supply flow rate control, the operation signal MV output from the level controller 9 is input to the subsequent bias coefficient setting adder/subtractor 21, where the bias coefficient K1
Perform subtraction correction.

さらに、加減算器21から出力された信号を補正係数設
定用スケーラ一22に入れて補正係数K2を掛算し、加
減算器23に入力する。一方、流量検出器2で検出され
た流量信号PVはバランス係数設定用スケーラ一24に
入力され、ここでバランス係数K3の掛算を行なつた後
、加減算器23に入力される。
Further, the signal output from the adder/subtractor 21 is input into a correction coefficient setting scaler 22, multiplied by a correction coefficient K2, and inputted into an adder/subtracter 23. On the other hand, the flow rate signal PV detected by the flow rate detector 2 is input to the balance coefficient setting scaler 24, where it is multiplied by the balance coefficient K3 and then input to the adder/subtractor 23.

そして、この加減算器23により、レベル調節計9側の
出力信号と加熱蒸気流量系統の出力信号とを加算し、こ
の加算値を給液流量調節計12の制御目標値SVとする
ものである。従つて、この制御目標値SVの設定式は、
S−K3・PV+K2(M−K1) となる。
The adder/subtracter 23 adds the output signal from the level controller 9 side and the output signal from the heating steam flow rate system, and sets this added value as the control target value SV of the liquid supply flow rate controller 12. Therefore, the setting formula for this control target value SV is:
It becomes S-K3・PV+K2 (M-K1).

従つて、本装置は、給液流量を蒸気流量に対しバランス
係数K3による比率で制御する一方、給液流量と蒸気流
量のバランス変化分をレベル調節計9の出力信号Mによ
り補正するものである。
Therefore, this device controls the feed liquid flow rate with the ratio of the steam flow rate using the balance coefficient K3, while correcting the balance change between the feed liquid flow rate and the steam flow rate using the output signal M of the level controller 9. .

また、レベル調節計9の出力信号Mは加減算器21によ
りバイアス係数K1だけ減算し、レベル調節計9の出力
による給液流量制御に補正効果を持たせている。以上の
ような本発明装置によれば、給液流量の蒸気流量に対す
る比率制御を基本とし、レベル偏差に対する調節動作を
補正係数により抑えているため、給液流量および蒸気流
量の外乱に対する蒸発タンクレベルの逆応答特性には、
急激な変化として制御結果に現われていない。
Further, the output signal M of the level controller 9 is subtracted by the bias coefficient K1 by the adder/subtractor 21, so that the liquid supply flow rate control based on the output of the level controller 9 has a correction effect. According to the device of the present invention as described above, the ratio control of the supply liquid flow rate to the steam flow rate is basically used, and the adjustment operation for level deviation is suppressed by a correction coefficient. The inverse response characteristic of
It does not appear in the control results as a sudden change.

これは、従来の蒸発タンクレベルの偏差のみに依存した
レベル制御の考え方を変え、蒸発プロセスの原理に戻り
、蒸発量に比例するパラメータである加熱蒸気流量に見
合つた給液流量の供給を基本としているためである。本
装置による実験結果は第6図で示すことができる。この
図から明らかなように、蒸発タンクレベルの偏差による
給液流量の調節動作は極めて緩かに行なわれていること
が分る。なお、本発明は上記実施例に限定されず種々変
形実施できる。
This changes the conventional concept of level control that relies only on the deviation of the evaporation tank level, returns to the principle of the evaporation process, and is based on supplying a feed liquid flow rate commensurate with the heating steam flow rate, which is a parameter proportional to the evaporation amount. This is because there is. The experimental results using this device can be shown in FIG. As is clear from this figure, it can be seen that the adjustment operation of the liquid supply flow rate due to the deviation in the evaporation tank level is performed extremely slowly. Note that the present invention is not limited to the above-mentioned embodiments, and can be implemented in various modifications.

第7図はその変形例の1つを示す。この装置は、給液流
量は定値制御とし、逆にレベル調節計9によるレベル制
御の操作量として加熱蒸気流量を調節する構成である。
この装置の利点は、蒸発器における処理量として直接給
液流量で設定できることである。すなわち、蒸気流量は
給液流量に対して比率制御されると同時に、レベル調節
計9の出力信号が補正分として設定値に加わるものであ
る。次に、第8図は同じく本装置の変形例を示す図であ
り、これは熱交換の行なう加熱タンク31と蒸発の行な
う蒸発タンクVとを別置しこれらを循環ポンプ32を介
して接続した、いわゆる強制循環形蒸発器に適用したも
のである。
FIG. 7 shows one of its modifications. This device has a configuration in which the liquid supply flow rate is controlled at a fixed value, and conversely, the heated steam flow rate is adjusted as a manipulated variable for level control by a level controller 9.
The advantage of this device is that the throughput in the evaporator can be set directly with the feed flow rate. That is, the steam flow rate is controlled in proportion to the liquid supply flow rate, and at the same time, the output signal of the level controller 9 is added to the set value as a correction amount. Next, FIG. 8 is a diagram showing a modification of the present device, in which a heating tank 31 for heat exchange and an evaporation tank V for evaporation are placed separately and connected via a circulation pump 32. This is applied to a so-called forced circulation type evaporator.

制御系の構成は第3図と同様であるので、ここではその
説明を省略する。その他、本発明はその要旨を逸脱しな
い範囲で種々変形実施できる。
Since the configuration of the control system is the same as that shown in FIG. 3, its explanation will be omitted here. In addition, the present invention can be modified in various ways without departing from the spirit thereof.

以上詳記したように本発明装置によれば次のような効果
を有する。
As detailed above, the apparatus of the present invention has the following effects.

つまり、従来装置はレベル信号のみを制御入力として用
いているため、レベルの逆応答現象などの非線形特性の
影響が直接制御性を悪化させていた。これに対し、本発
明装置の場合、レベル信号はレベル制御の操作出力であ
る給液流量調節信号の補正分として作用し、主なる要素
は蒸気流量に対する比率で設定されるため、蒸気流量の
変動に対しては勿論のこと、給液流量や蒸発タンクレベ
ルの外乱による変動に対してもレベルの逆応答性など制
御系の不安定要素の影響を減することができ、制御の安
定化を図ることができる。これは、見方を変えれば、レ
ベルの急激な変化は無視し、緩やかに起るレベル変動の
みを長時間かけて補正することができることを示す。一
般に、原子力発電所の廃棄物処理システムの場合、一日
で発生した廃棄物を一日8時間で処理する運転方式をと
つており、蒸発器の処理量(給液流量)をその日の廃棄
量に応じて設定変更する必要があるため、処理量を設定
する加熱蒸気流量の設定変更は頻繁に行なわれる。また
、蒸発タンク中に濃縮された廃液が一定濃度に達すると
、濃縮液の一部分が排出されレベル変動が起こる。本発
明は以上のように蒸気量の変更やレベル変動に対し、途
中で運転を中断することなく安定なレベル制御を維持す
ることができ、運転効率の向上を図れる蒸発器制御装置
を提供できる。
In other words, since the conventional device uses only a level signal as a control input, the influence of nonlinear characteristics such as a level inverse response phenomenon deteriorates direct controllability. On the other hand, in the case of the device of the present invention, the level signal acts as a correction for the supply liquid flow rate adjustment signal, which is the operational output of level control, and the main element is set as a ratio to the steam flow rate, so fluctuations in the steam flow rate It is possible to reduce the influence of unstable elements in the control system, such as level reverse responsiveness, not only to fluctuations due to disturbances in the supply liquid flow rate and evaporation tank level, but also to stabilize control. be able to. Viewed from a different perspective, this shows that rapid changes in level can be ignored and only level fluctuations that occur gradually can be corrected over a long period of time. In general, waste treatment systems at nuclear power plants are operated in such a way that the waste generated in a day is processed in 8 hours a day, and the amount of waste processed by the evaporator (flow rate of liquid supplied) is calculated as the amount of waste generated on that day. Since it is necessary to change the setting according to the amount of heat generated, the setting of the heating steam flow rate, which sets the throughput, is frequently changed. Furthermore, when the concentrated waste liquid in the evaporation tank reaches a certain concentration, a portion of the concentrated liquid is discharged, causing level fluctuations. As described above, the present invention can provide an evaporator control device that can maintain stable level control without interrupting operation in response to changes in steam amount or level fluctuations, and can improve operational efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は従来装置の構成図、第3図A−D
および第4図は従来装置の動作を説明する特性図、第5
図は本発明に係る蒸発器制御装置の一実施例を示す構成
図、第6図は本発明装置によつて得られる特性図、第7
図および第8図は本発明装置の他の例を示す構成図であ
る。 1゛・・・・・蒸発タンク、2・・・・・・流量検出器
、3・・・・・・流量調節計、5・・・・・・流量調節
弁、8・・・・・ルベル伝送器、9・・・・・ルベル調
節計、10・・・・・・給液流量調節弁、12・・・・
・・給液流量調節計、13・・・・・・流量検出器、2
1・・・・・・バイアス係数設定用加減算器、22・・
・・・・補正係数設定用スケーラ一、23・・・・・・
加減算器、24・・・・・・バランス係数設定用スケー
ラ一。
Figures 1 and 2 are configuration diagrams of conventional equipment, and Figures 3A-D.
4 is a characteristic diagram explaining the operation of the conventional device, and FIG. 5 is a characteristic diagram explaining the operation of the conventional device.
The figure is a block diagram showing one embodiment of the evaporator control device according to the present invention, FIG. 6 is a characteristic diagram obtained by the device of the present invention, and FIG.
8 and 8 are configuration diagrams showing other examples of the device of the present invention. 1...Evaporation tank, 2...Flow rate detector, 3...Flow rate controller, 5...Flow rate control valve, 8...Level Transmitter, 9... Lebel controller, 10... Liquid supply flow rate control valve, 12...
...Liquid supply flow rate controller, 13...Flow rate detector, 2
1... Addition/subtraction device for bias coefficient setting, 22...
...Scaleler 1, 23 for setting correction coefficient...
Adder/subtractor, 24... Scaler for setting balance coefficient.

Claims (1)

【特許請求の範囲】[Claims] 1 加熱蒸気流量を検出して定値制御を行ないながら蒸
気タンク内の被濃縮液を蒸発させて濃縮化するとともに
、給液流量を検出制御して蒸発タンク内の液レベルを制
御するものにおいて、前記蒸気タンク内の液レベルの調
節信号をバイアス係数および補正係数で補正しレベル調
節計側出力信号として出力する手段と、前記加熱蒸気流
量をバランス係数で補正し、蒸気流量側出力信号を得る
バランス係数設定用スケーラーと、このスケーラーおよ
び上記手段とによつて得た両信号を加算して前記給液流
量の制御を行なう手段とを備えたことを特徴とする蒸発
器制御装置。
1. In the device which evaporates and concentrates the liquid to be concentrated in the steam tank while detecting the heated steam flow rate and performing fixed value control, and also controls the liquid level in the evaporation tank by detecting and controlling the supply liquid flow rate, the above-mentioned Means for correcting a liquid level adjustment signal in a steam tank using a bias coefficient and a correction coefficient and outputting it as a level controller side output signal; and a balance coefficient for correcting the heated steam flow rate with a balance coefficient to obtain a steam flow rate side output signal. An evaporator control device comprising: a setting scaler; and means for controlling the supply liquid flow rate by adding both signals obtained by the scaler and the above-mentioned means.
JP12674680A 1980-09-12 1980-09-12 Evaporator control device Expired JPS5914241B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12674680A JPS5914241B2 (en) 1980-09-12 1980-09-12 Evaporator control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12674680A JPS5914241B2 (en) 1980-09-12 1980-09-12 Evaporator control device

Publications (2)

Publication Number Publication Date
JPS5750501A JPS5750501A (en) 1982-03-25
JPS5914241B2 true JPS5914241B2 (en) 1984-04-03

Family

ID=14942876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12674680A Expired JPS5914241B2 (en) 1980-09-12 1980-09-12 Evaporator control device

Country Status (1)

Country Link
JP (1) JPS5914241B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59120201A (en) * 1982-12-27 1984-07-11 Motomura Seisakusho:Kk Liquid level adjusting apparatus of vacuum distillation apparatus
JPS59163604A (en) * 1983-03-09 1984-09-14 Toshiba Corp Process controller

Also Published As

Publication number Publication date
JPS5750501A (en) 1982-03-25

Similar Documents

Publication Publication Date Title
JPH0566601B2 (en)
JPS5914241B2 (en) Evaporator control device
JP2000179804A (en) Water level controller for boiler drum
JP2001027104A (en) Condensate flow control method for condensate steam turbine
JPH0280511A (en) Method for controlling dew point of atmospheric gas in furnace
JPH0410361B2 (en)
JP3290241B2 (en) Pressure control valve control device for cavitation prevention
JP4360900B2 (en) Pressure control equipment in nuclear power plants.
JP3716443B2 (en) Auxiliary steam pressure controller for soot blower
JPS5936804A (en) Automatic correcting method of feedforward model
JPS61190602A (en) Regulator
JPS57127401A (en) Method for controlling concentrating vessel
SU1372463A1 (en) Method of automatic control of overflow of power between two parts of power system
JPS59128602A (en) Process control device
JPS62219001A (en) Controller
JPS6149683B2 (en)
JPH0397014A (en) Process control system
JPH08234804A (en) Automatic controller
JPH07224610A (en) Load control device for steam turbine
JPS62218604A (en) Pressure control device for multiple stage pressure reducing line
SU1047834A1 (en) Apparatus for automatic control of process of ammonia trapping from coking gas
JPS6175402A (en) Adjusting method of process control system
JPH0781684B2 (en) Boiler load distribution control device
JPS61111101A (en) Concentration control system of evaporator
JPS6275002A (en) Control device for feed water pump driving turbine