JPS61208623A - Production of vertical magnetic recording medium - Google Patents

Production of vertical magnetic recording medium

Info

Publication number
JPS61208623A
JPS61208623A JP4821485A JP4821485A JPS61208623A JP S61208623 A JPS61208623 A JP S61208623A JP 4821485 A JP4821485 A JP 4821485A JP 4821485 A JP4821485 A JP 4821485A JP S61208623 A JPS61208623 A JP S61208623A
Authority
JP
Japan
Prior art keywords
gas
magnetic recording
substrate
recording layer
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4821485A
Other languages
Japanese (ja)
Inventor
Tetsuo Oka
哲雄 岡
Takayoshi Akamatsu
孝義 赤松
Kenji Hayashi
健二 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP4821485A priority Critical patent/JPS61208623A/en
Publication of JPS61208623A publication Critical patent/JPS61208623A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To improve moisture resistance and wear resistance by introducing gas having small chemical activity from an upper stream side with respect to a substrate moving direction and gas contg. oxygen from a down stream side. CONSTITUTION:The gas having small chemical activity is introduced from the upper stream side with respect to the substrate moving direction and the gas contg. oxygen is introduced from the down stream side with respect to the substrate moving direction. The gas having small chemical reactivity refers to the gas which is not adsorbed to an evaporating material, i.e., ferromagnetic material or is adsorbed thereto at a low rate and is preferably the gas of which the chemical heat of adsorption to the evaporating material, i.e., ferromagnetic material is <=10kcal/mol at a room temp. More specifically, 1 or >=2 kinds of gases selected from N2, Ar, He, CH4, C2H6 are used. The ferromagnetic metal of the evaporating material is a ferromagnetic metal which exhibits ferromagnetism or ferrimagnetism at a room temp. and above all, the material having >=300emu/cc satd. magnetization Ms at a room temp. is preferable. The degree of oxidation near the surface layer of the magnetic recording layer is thereby increased and the corrosion resistance and wear resistance of the magnetic recording layer are improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は垂直磁気記録媒体の製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for manufacturing a perpendicular magnetic recording medium.

〔従来の技術〕[Conventional technology]

垂直磁化膜の製造方法として、  Goを用い、酸素ガ
スを導入した真空雰囲気中で電子ビーム蒸着法により、
垂直方向の Co粒子と非強磁性のCo。
The perpendicular magnetization film was manufactured using Go using electron beam evaporation in a vacuum atmosphere with oxygen gas introduced.
Perpendicularly oriented Co particles and non-ferromagnetic Co.

粒子の2相混合状態よりなる Co系の垂直磁気記録媒
体が提案されている(第7回応用磁気学会学術講演概要
集、 7aA−9〜7aA−B、 1983.11 )
A Co-based perpendicular magnetic recording medium consisting of a two-phase mixed state of particles has been proposed (Collection of Abstracts of the 7th Academic Conference of the Japan Society of Applied Magnetics, 7aA-9 to 7aA-B, November 1983).
.

該製造方法の場合、膜形成速度が速く、基板加熱の必要
がないなどの特長があるが、該製造方法においても次の
欠点がある。つまり、該製造方法では導入ガスに酸素ガ
スのみを使用しているため、  −蒸着時に基体あるい
は真空層の内壁などに付着する Co膜による酸素ガス
のゲッタ作用が生じ、真空雰囲気の圧力が著しく変動す
る。このため、膜の形成条件と形成される磁気記録層と
の磁気特性に再現性がない。さらに有機高分子フィルム
の長尺基体上に該磁気記録層を連続的に形成する際。
Although this manufacturing method has advantages such as a fast film formation rate and no need to heat the substrate, this manufacturing method also has the following drawbacks. In other words, since this manufacturing method uses only oxygen gas as the introduced gas, - a getter effect of oxygen gas occurs due to the Co film that adheres to the substrate or the inner wall of the vacuum layer during vapor deposition, and the pressure of the vacuum atmosphere fluctuates significantly. do. For this reason, there is no reproducibility in the film formation conditions and the magnetic properties of the formed magnetic recording layer. Furthermore, when the magnetic recording layer is continuously formed on a long substrate of an organic polymer film.

該フィルム長手方向の磁気特性・膜厚などが不均一とな
る問題点がある。その上形成された CoとGo  酸
化物より成る磁気記録層の表面には亀裂が生じ易い欠点
がある。
There is a problem that the magnetic properties, film thickness, etc. in the longitudinal direction of the film are non-uniform. Moreover, the surface of the magnetic recording layer formed of Co and Go oxides has the drawback of being prone to cracking.

上記欠点を解消する製造方法として9本発明者等は先に
真空雰囲気中にガスを導入し9強磁性体を蒸発材料とし
真空蒸着により基体上に垂直磁気記録層を形成するに際
して、前記ガスとして化学的活性の小さいガスと酸素ガ
スを用い、この両者のガスを同時に導入し、かつガス導
入時の基体近傍の圧力が1 x 10  Torr〜5
 x 10  Torrで真空蒸着する方法(特願昭5
9−214412号)を提案し念。
As a manufacturing method to eliminate the above drawbacks,9 the present inventors first introduced a gas into a vacuum atmosphere and used a ferromagnetic material as an evaporation material to form a perpendicular magnetic recording layer on a substrate by vacuum evaporation. A gas with low chemical activity and oxygen gas are used, both gases are introduced at the same time, and the pressure near the substrate at the time of gas introduction is 1 x 10 Torr to 5 Torr.
Vacuum deposition method at x 10 Torr (patent application 1973)
9-214412).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、かかる製造方法においても次の如き欠点がある
However, this manufacturing method also has the following drawbacks.

蒸発材料がGoの場合、耐食性に劣る。特に高湿下にお
いて磁気特性の劣化、具体的には飽和磁化(MS)が低
下して行き、長期間高温雰囲気中に放置すると磁性層が
消失してしまうという重大な欠点がある。
When the evaporation material is Go, the corrosion resistance is poor. In particular, under high humidity, the magnetic properties deteriorate, specifically, the saturation magnetization (MS) decreases, and if left in a high temperature atmosphere for a long period of time, the magnetic layer disappears, which is a serious drawback.

一方、蒸発材料が Feの場合、磁性層が酸化鉄主成分
であるためヘッドと磁性層の潤滑性には優れるが耐摩耗
性に劣る欠点がある。
On the other hand, when the evaporation material is Fe, the magnetic layer is mainly composed of iron oxide, so it has excellent lubricity between the head and the magnetic layer, but has the disadvantage of poor wear resistance.

本発明の目的は上記欠点を解決することであり。The aim of the invention is to overcome the above-mentioned drawbacks.

耐湿性・耐摩耗性に優れた垂直磁気記録媒体の製造方法
を提供するものである。
The present invention provides a method for manufacturing a perpendicular magnetic recording medium with excellent moisture resistance and abrasion resistance.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は次の構成を有する。すなわち本発明は真空容器
内部に長尺基体の供給装置、基体冷却ドラムおよび基体
巻取り装置からなる走行系を備えた蒸着装置を設け、該
真空容器の真空雰囲気中に化学的活性の小さいガスと酸
素を含むガスを導入しながら強磁性金属を蒸発材料とし
て真空蒸着により、走行する長尺基体上に垂直磁気記録
層を形成するに際して、上記化学的活性の小さいガスを
基体移動方向に対し上流側より導入し、上記酸素を含む
ガスを基体移動方向に対し下流側より導入して、これら
のガスを垂直磁気記録層形成領域に供給することを特徴
とする垂直磁気記録媒体の製造方法である。
The present invention has the following configuration. That is, the present invention provides a vapor deposition apparatus equipped with a running system consisting of a long substrate supply device, a substrate cooling drum, and a substrate winding device inside a vacuum container, and injects a gas with low chemical activity into the vacuum atmosphere of the vacuum container. When forming a perpendicular magnetic recording layer on a running long substrate by vacuum evaporation using a ferromagnetic metal as an evaporation material while introducing a gas containing oxygen, the gas with low chemical activity is applied to the upstream side in the direction of movement of the substrate. This method of manufacturing a perpendicular magnetic recording medium is characterized in that the oxygen-containing gas is introduced from the downstream side with respect to the direction of movement of the substrate, and these gases are supplied to the perpendicular magnetic recording layer forming region.

本発明の垂直磁気記録媒体の製造方法において真空雰囲
気中に導入されるガスは、化学的活性の小さいガスと酸
素ガスの両者である。
In the method for manufacturing a perpendicular magnetic recording medium of the present invention, the gases introduced into the vacuum atmosphere are both a gas with low chemical activity and an oxygen gas.

本発明において化学的活性の小さいガスとは。What is a gas with low chemical activity in the present invention?

蒸発材料である強磁性体に吸着されないガスまたは吸着
される速度の遅いガスであり、その内蒸発材料である強
磁性体への化学吸着熱が室温において10 Kcal 
/ mol  以下のガスが望ましく、具体的には、 
N2. Ar、 He、 Ne、 Xe、 Rn、 C
H4,C2M、6から選ばれる1種または2種以上のガ
スを使用することが望ましい。さらに入手が容易、安価
であることなどから工業的規模での使用ではN2.Ar
が最も適している。
A gas that is not adsorbed to the ferromagnetic material that is the evaporation material, or a gas that is adsorbed at a slow rate, and the heat of chemical adsorption to the ferromagnetic material that is the evaporation material is 10 Kcal at room temperature.
/ mol or less gas is desirable, specifically,
N2. Ar, He, Ne, Xe, Rn, C
It is desirable to use one or more gases selected from H4, C2M, and 6. Furthermore, because it is easy to obtain and inexpensive, N2. Ar
is the most suitable.

本発明に使用される蒸発材料の強磁性金属とは室温にお
いて7エロ磁性またはフェリ磁性を示す強磁性金属であ
るが、中でも室温における飽和磁化Msが300 em
u 10c以上の材料が好ましい。上記強磁性金属とし
てはFe、 Go、 Ni  などの強磁性金属または
その合金が挙げられる。
The ferromagnetic metal of the evaporation material used in the present invention is a ferromagnetic metal that exhibits 7 eromagnetism or ferrimagnetism at room temperature, and among them, the saturation magnetization Ms at room temperature is 300 em
Materials with a u 10c or higher are preferred. Examples of the ferromagnetic metal include ferromagnetic metals such as Fe, Go, and Ni, and alloys thereof.

具体的にはFe、 Go、 NiとFe−Go、 Fe
−Ni、、Go−Ni。
Specifically, Fe, Go, Ni and Fe-Go, Fe
-Ni,,Go-Ni.

Fe−Co−Ni  などの合金およびこれら単体金属
または合金と他の金属との合金である。他の金属として
は具体的にはMo’;Y’Tj’、 Cr、 Nb、 
Ta、 Ti、 Zr、 Re。
These include alloys such as Fe-Co-Ni and alloys of these single metals or alloys with other metals. Other metals specifically include Mo';Y'Tj', Cr, Nb,
Ta, Ti, Zr, Re.

Os、Pd、Pt、Rh、Ru、Zn、Mn、Ce、P
r、Nd、Pm。
Os, Pd, Pt, Rh, Ru, Zn, Mn, Ce, P
r, Nd, Pm.

Sm、 Eu、 aa、 ’rb、 Dy、 Ho、 
Er、 Tm、 Yk などである。
Sm, Eu, aa, 'rb, Dy, Ho,
These include Er, Tm, Yk, etc.

本発明では以上述べたような材料を使用できるが、これ
ら材料の内、結晶磁気異方性または形状磁気異方性が大
なるため、基体に対し垂直方向への磁気異方性を発現す
る上でFeまたはGoまたはこれらの合金を主成分とし
て用いることがさらに望ましく、最も望ましくはFeま
たはGoまたは両者の合金を75重量係以上として用い
るのが良い。
In the present invention, the above-mentioned materials can be used, but among these materials, since the magnetocrystalline anisotropy or shape magnetic anisotropy is large, it is difficult to express magnetic anisotropy in the direction perpendicular to the substrate. It is more desirable to use Fe or Go or an alloy thereof as the main component, and most preferably to use Fe or Go or an alloy of both in a weight ratio of 75 or more.

本発明で用いることのできる基体としては、特に限定さ
れるものではないが、アルミニウム、銅。
Substrates that can be used in the present invention include, but are not particularly limited to, aluminum and copper.

鉄、ステンレスなどで代表される金属、プラスチックフ
ィルムなどの有機重合体材料などがあげられる。特に加
工性、成形性、可撓性が重視される場合には、有機重合
体材料が適しており、中でもポリエチレンテレフタレー
ト、ポリエチレンナフタレート、ポリエチレンジカルボ
キシレート、などのポリエステル、ポリエチレン、ボリ
グロビレン、ポリブテンなどのポリオレフィン、ポリメ
チルメタア゛クリレート、ポリカーボネート、ポリスル
フォン、ポリアミド、芳香族ポリアミド、ポリフェニレ
ンスルフィド、ポリフェニレンオキサイド、ポリアミド
イミド、ポリイミド、ポリ塩化ビニル、ポリ塩化ビニリ
デン、ポリ弗化ビニリデン。
Examples include metals such as iron and stainless steel, and organic polymer materials such as plastic films. In particular, when processability, moldability, and flexibility are important, organic polymer materials are suitable, including polyesters such as polyethylene terephthalate, polyethylene naphthalate, and polyethylene dicarboxylate, polyethylene, polyglobylene, and polybutene. polyolefin, polymethyl methacrylate, polycarbonate, polysulfone, polyamide, aromatic polyamide, polyphenylene sulfide, polyphenylene oxide, polyamideimide, polyimide, polyvinyl chloride, polyvinylidene chloride, polyvinylidene fluoride.

ポリテトラフルオロエチレン、酢酸セルローズ。Polytetrafluoroethylene, cellulose acetate.

メチルセルローズ、エチルセルローズ、エポキシ樹脂、
ウレタン樹脂あるいはこれらの混合物、共重合物などが
適している。特に二軸延伸されたフィルム、シート類は
、平面性1寸法安定性に優れ最も適しており、中でもポ
リエステル、ポリフェニレンスルフィド、芳香族ポリア
ミドなどが最も適している。基体の形状としては、ドラ
ム状、ディスク状、シート状、テープ状、カード状等い
ずれでも良く、厚みも特に限定されるものではない。
Methyl cellulose, ethyl cellulose, epoxy resin,
Urethane resins, mixtures thereof, copolymers, etc. are suitable. In particular, biaxially stretched films and sheets are most suitable because of their excellent flatness and one-dimensional stability, and among them, polyester, polyphenylene sulfide, aromatic polyamide, etc. are most suitable. The shape of the base body may be a drum shape, a disk shape, a sheet shape, a tape shape, a card shape, etc., and the thickness is not particularly limited.

シート状、テープ状、カード状等の場合、加工性。Processability for sheets, tapes, cards, etc.

寸法安定性の点で、厚みは2μ〜500μ、中でも4μ
〜200μの範囲が好ましい。
In terms of dimensional stability, the thickness is 2μ to 500μ, especially 4μ.
A range of ~200μ is preferred.

本発明で用いられる基体は9次に述べる磁気記録層の形
成に先だち、易接着化、平面性改良9着色、帯電防止、
耐摩耗性付与等の目的で各種の表面処理や前処理が施さ
れても良い。
9. Prior to the formation of the magnetic recording layer described in the next section, the substrate used in the present invention is prepared to facilitate adhesion, improve flatness, 9. be colored, prevent static electricity, etc.
Various surface treatments and pre-treatments may be performed for the purpose of imparting wear resistance and the like.

本発明で述べる真空蒸着法としては、抵抗加熱蒸着、誘
導加熱蒸着、電子ビーム蒸着、イオンブレーティング、
イオンビーム蒸着、レーザービーム蒸着、アーク放電蒸
着などの真空蒸着法のいずれの方法でも実施が可能であ
るが、保磁力・異方性磁界などの磁気特性を向上する上
で、また速い蒸発速度を得るために電子ビーム蒸着、イ
オンブレーティングなどの方法が適しており、さらに操
作性、量産性などの工業的観点から電子ビーム蒸着が最
も適している。  。
The vacuum evaporation methods described in the present invention include resistance heating evaporation, induction heating evaporation, electron beam evaporation, ion blating,
Any vacuum evaporation method such as ion beam evaporation, laser beam evaporation, or arc discharge evaporation can be used, but it is important to improve magnetic properties such as coercive force and anisotropic magnetic field, and to achieve a high evaporation rate. Methods such as electron beam evaporation and ion blating are suitable for obtaining this, and electron beam evaporation is most suitable from industrial viewpoints such as operability and mass productivity. .

次に図面に基づいて本発明の製造方法の一例を説明する
。第1図は本発明の製造方法を実施する電子ビーム蒸着
装置の一例である。第1図において基体供給装置1.ニ
ップロール2.基体冷却ドラム3.ニップロール4.基
体巻き取り装置5によって有機高分子より成る長尺フィ
ルム6の走行系が構成されている。基体供給装置1にロ
ール状に巻かれた有機高分子フィルム6を配設する。フ
ィルム6はニップロール2.基体冷却ドラム3゜ニップ
ロール4を経て基体巻き取り装置5に配設された巻取り
コアに巻き取られる。基体冷却ドラム6は有機高分子フ
ィルム6の裏面を50℃以下に保つように9例えば通水
などによる冷却機能(図示省略)を有している。
Next, an example of the manufacturing method of the present invention will be explained based on the drawings. FIG. 1 shows an example of an electron beam evaporation apparatus for carrying out the manufacturing method of the present invention. In FIG. 1, the substrate supply device 1. Nip roll 2. Substrate cooling drum 3. Nip roll 4. The substrate winding device 5 constitutes a running system for a long film 6 made of an organic polymer. An organic polymer film 6 wound into a roll is placed on the substrate supply device 1 . Film 6 is nip roll 2. After passing through the substrate cooling drum 3 and the nip roll 4, the substrate is wound onto a winding core disposed in a substrate winding device 5. The substrate cooling drum 6 has a cooling function (not shown) by, for example, passing water 9 so as to keep the back surface of the organic polymer film 6 at 50° C. or lower.

14は真空槽10を上槽15と下槽16に2分する隔壁
で、該隔壁14の中央部は図示の如く。
Reference numeral 14 denotes a partition wall that divides the vacuum chamber 10 into an upper tank 15 and a lower tank 16, and the central portion of the partition wall 14 is as shown in the figure.

ドラム近傍において下槽側に折り曲げられて所定長さの
側壁部20が形成されるとともに、該側壁部20の先端
に、S蔽板7の両端が連接される。
A side wall portion 20 of a predetermined length is formed by being bent toward the lower tank near the drum, and both ends of the S shield plate 7 are connected to the tip of the side wall portion 20.

上槽15と下槽16は各々排気口11.12より排気さ
れる。遮蔽板7は蒸発蒸気流の入射角度を制限するため
のもので、その中央には蒸発蒸気流入射用の開口部17
が形成されている。ここで入射角とは第2図において基
体面Cに入射する蒸発蒸気流人と基体面Cに立てた法線
Bとのなす角θである。蒸発蒸気流の内、入射角が45
度以下の選ばれた角度を越える蒸発蒸気流が基体面に入
射しないように該遮蔽板7を配するのがよい。
The upper tank 15 and the lower tank 16 are each exhausted from exhaust ports 11.12. The shield plate 7 is for restricting the incident angle of the evaporated vapor flow, and has an opening 17 in the center for the evaporated vapor inflow and injection.
is formed. Here, the incident angle is the angle θ formed by the evaporated vapor stream incident on the substrate surface C and the normal B to the substrate surface C in FIG. Of the evaporated vapor flow, the angle of incidence is 45
The shielding plate 7 is preferably arranged so that the evaporated vapor flow is not incident on the substrate surface beyond a selected angle of less than or equal to .degree.

該遮蔽板7により制限されない蒸発蒸気流、すなわち垂
直に入射する成分が17の開口部を経て基体に入射する
。8は電子ビーム蒸着器、9は強磁性金属である。
The evaporated vapor flow not restricted by the shielding plate 7, ie the vertically incident component, enters the substrate through the opening 17. 8 is an electron beam evaporator, and 9 is a ferromagnetic metal.

側壁部20と遮蔽板7と基体冷却ドラム下端側周面に囲
まれる19A・19Bはガス供給室である。
Reference numerals 19A and 19B surrounded by the side wall portion 20, the shielding plate 7, and the lower end side peripheral surface of the substrate cooling drum are gas supply chambers.

該ガス供給室19A・19B  の密閉率を高めるため
図示の如く隔壁14の中央折り曲げ部、すなわち側壁部
20の上端は基体冷却ドラム面に密接して配置すること
が望ましく、また遮蔽板7と基体冷却ドラム下面とは可
能な限り近接することが望ましい、蒸着雰囲気へ導入さ
れるガスは13A・13Bのガスコントロールバルフt
−経テ、 18A、I BBのガス供給管を通り、ガス
供給室19A・19Bに導入される。ガスコントロール
パルプ13A・13Bはガス流量を検知し、かつコント
ロールする機能を有する。
In order to increase the sealing efficiency of the gas supply chambers 19A and 19B, it is desirable that the central bent portion of the partition wall 14, that is, the upper end of the side wall portion 20, be placed in close contact with the substrate cooling drum surface as shown in the figure. It is desirable that the gas introduced into the deposition atmosphere be as close as possible to the lower surface of the cooling drum.
- Through the gas supply pipes 18A and IBB, the gas is introduced into the gas supply chambers 19A and 19B. The gas control pulps 13A and 13B have the function of detecting and controlling the gas flow rate.

上記の装置を使用して9本発明の製造方法により垂直磁
気記録媒体を形成するものであるが、上記した装置にの
み限定されるものではない。
Although the above apparatus is used to form a perpendicular magnetic recording medium according to the manufacturing method of the present invention, the present invention is not limited to the above apparatus.

第1図に示した蒸着装置の長尺フィルム走行系に有機重
合体材料より成る長尺フィルム、例えばポリエチレンテ
レフタレートフィルムを配設シ。
A long film made of an organic polymer material, such as a polyethylene terephthalate film, is disposed in the long film running system of the vapor deposition apparatus shown in FIG.

電子ビーム蒸着器8の凹部に強磁性金属を配した状態に
て真空槽10を排気口11.12より各々排気する。上
槽15は圧力が5 x 1o  Torr  以下にな
るまで、またガス供給室19A・19B  は圧力が5
 x 10  Torr  以下になるまで各々排気口
11゜12より排気する。次いで、化学的活性の小さい
ガスをガス流量コントロールパルプ13Aよす導入管1
8Aを経て基体移動方向に対し上流側にあるガス供給室
19Aに導入し、同時に酸素を含むガスをガス流量コン
トロールパルプ13Bより導入管18Bを経て基体移動
方向に対し下流側にあるガス供給室19Bに導入する。
With the ferromagnetic metal placed in the recess of the electron beam evaporator 8, the vacuum chamber 10 is evacuated from the exhaust ports 11 and 12, respectively. The upper tank 15 has a pressure of 5 x 10 Torr or less, and the gas supply chambers 19A and 19B have a pressure of 5
The air is exhausted from the exhaust ports 11 and 12 until the pressure is below x 10 Torr. Next, a gas with low chemical activity is introduced into the gas flow rate control pulp 13A and the inlet pipe 1.
8A to the gas supply chamber 19A located on the upstream side in the direction of movement of the substrate, and at the same time, gas containing oxygen is introduced from the gas flow rate control pulp 13B to the gas supply chamber 19B located on the downstream side in the direction of movement of the substrate via the introduction pipe 18B. to be introduced.

上述のように化学的活性の小さいガスを基体移動方向に
対し上流側にあるガス供給室を経て磁気記録層の形成領
域へ供給し、同時に酸素を含むガスを基体移動方向に対
し下流側にあるガス供給室を経て磁気記録層の形成領域
へ供給する。この時ガス供給室19A・19B  の圧
力が所定の圧力になるようにガス流量コントロールパル
プ13A−13Bで調節する。
As mentioned above, a gas with low chemical activity is supplied to the formation region of the magnetic recording layer through the gas supply chamber located upstream in the direction of substrate movement, and at the same time, a gas containing oxygen is supplied downstream in the direction of substrate movement. The gas is supplied to the formation region of the magnetic recording layer through the gas supply chamber. At this time, the gas flow rate control pulps 13A-13B are used to adjust the pressure in the gas supply chambers 19A and 19B to a predetermined pressure.

かかる状態とした後、基体である前記ポリエチレンテレ
フタレートフィルムを走行させ、該フィルム上に電子ビ
ーム蒸着により強磁性金属を溶融蒸発せしめ連続的に垂
直方向に磁気異方性を有する磁気記録層を形成するもの
である。
After achieving this state, the polyethylene terephthalate film as a substrate is run, and a ferromagnetic metal is melted and evaporated on the film by electron beam evaporation to continuously form a magnetic recording layer having magnetic anisotropy in the perpendicular direction. It is something.

以上述べたように、化学的活性の小さいガスを基体移動
方向に対し上流側より、酸素を含むガスを基体移動方向
に対し下流側より各々導入し、垂直磁気記録層の形成領
域今供給することが本発明の重要な要件である。
As described above, a gas with low chemical activity is introduced from the upstream side in the direction of movement of the substrate, and a gas containing oxygen is introduced from the downstream side in the direction of movement of the substrate, and the perpendicular magnetic recording layer formation area is supplied immediately. is an important requirement of the present invention.

基体移動方向に対し下流側より導入するガスは酸素を含
むガスであり、酸素と化学的活性の小さいガスとの混合
ガスでも良く、さらに酸素主体が良く、酸素単独の導入
が最も望ましい。
The gas introduced from the downstream side with respect to the direction of movement of the substrate is a gas containing oxygen, and may be a mixed gas of oxygen and a gas with low chemical activity, preferably containing mainly oxygen, and most preferably introducing only oxygen.

化学的活性の小さいガスと酸素を含むガスを導入し走時
、ガス供給室の圧力はI X 10  Torr〜5 
x 10  Torrの範囲が望ましく、該範囲を逸脱
し低圧側では異方性磁界が低下し、ま九高圧側では蒸発
速度が低下し、垂直方向保磁力も低下する。
A gas containing a chemically less active gas and oxygen is introduced, and the pressure in the gas supply chamber is I x 10 Torr ~ 5 Torr.
A range of x 10 Torr is desirable, and outside this range, on the low pressure side, the anisotropic magnetic field decreases, and on the high pressure side, the evaporation rate decreases and the vertical coercive force also decreases.

さらに磁気特性を向上し、速い蒸発速度を得るためには
、ガス供給室の圧力が2x10  Torr〜2×10
  Torr  の範囲が望ましい。
In order to further improve the magnetic properties and obtain a fast evaporation rate, the pressure in the gas supply chamber must be between 2x10 Torr and 2x10 Torr.
A range of Torr is desirable.

また、真空槽内に導入する酸素ガスと酸素ガス以外のガ
スの流量比は90/10〜15/85の範囲が望ましい
。上記範囲を逸脱し酸素ガスの流量が多くなると、酸素
ガスが激しくゲッタ作用を受けるため槽内圧力が変動し
磁気特性が安定せず、また形成された磁気記録層表面に
亀裂が生じ、垂直方向保磁力・異方性磁界も低下する。
Further, the flow rate ratio of oxygen gas and gas other than oxygen gas introduced into the vacuum chamber is preferably in the range of 90/10 to 15/85. If the flow rate of oxygen gas exceeds the above range, the oxygen gas will be subjected to a violent getter action, causing the pressure inside the tank to fluctuate and the magnetic properties to become unstable.Furthermore, cracks will occur on the surface of the magnetic recording layer that has been formed, causing vertical Coercive force and anisotropy field also decrease.

一方上記範囲を逸脱し、酸素以外のガスの流量が増える
と。
On the other hand, if it deviates from the above range and the flow rate of gases other than oxygen increases.

蒸発速度が遅くなるので望ましくない。This is undesirable because it slows down the evaporation rate.

なお本発明の製造方法により得られる磁気記録層の厚さ
は、特に限定されるものでないが実用的には0,02μ
WI〜5μmの範囲であり、可撓性。
The thickness of the magnetic recording layer obtained by the manufacturing method of the present invention is not particularly limited, but it is practically 0.02 μm.
WI ~5μm range, flexible.

磁気ヘッドとの接触、および該磁気記録層の成膜速度を
考慮した場合0,05μm〜2.0μmの範囲が望まし
い。
When considering the contact with the magnetic head and the deposition rate of the magnetic recording layer, a range of 0.05 μm to 2.0 μm is desirable.

〔作用〕[Effect]

本発明の製造方法によれば、基体移動方向に対し上流側
から化学的活性の小さいガスを導入することにより磁気
記録層形成領域付近の圧力を高め。
According to the manufacturing method of the present invention, the pressure near the magnetic recording layer formation region is increased by introducing a gas with low chemical activity from the upstream side in the direction of movement of the substrate.

柱状構造粒子の初期の成長を促し、よって垂直方向への
磁気特性を向上し、−力差体移動方向に対し下流側から
酸素を含むガスを導入することで。
By promoting the initial growth of columnar structured grains and thereby improving the magnetic properties in the vertical direction, - by introducing a gas containing oxygen from the downstream side in the direction of movement of the force difference body.

形成されつつある磁気記録層表層付近の酸化度を高め、
よって磁気記録層の耐食性・耐摩耗性を向上することに
寄与するものと考えられる。
Increases the degree of oxidation near the surface layer of the magnetic recording layer that is being formed,
Therefore, it is thought that it contributes to improving the corrosion resistance and wear resistance of the magnetic recording layer.

〔特性の測定方法・評価基準〕[Measurement method and evaluation criteria of characteristics]

(1)保磁力、異方性磁界の測定方法 磁気記録層の磁気特性は、、TIS  C−2561で
示されている振動試料型磁力計法や、自記磁束計法によ
って測定できる。磁気特性の測定方法について振動試料
型磁力計(理研電子■製、Bl(V−30>によって測
定する方法を第3図により説明する。
(1) Method for measuring coercive force and anisotropic magnetic field The magnetic properties of the magnetic recording layer can be measured by the vibrating sample magnetometer method specified in TIS C-2561 or the self-recording magnetometer method. The method of measuring magnetic properties using a vibrating sample magnetometer (manufactured by Riken Denshi, Bl (V-30) will be explained with reference to FIG. 3.

第3図において0は原点、たて軸は磁化された磁気記録
層の磁化量CM)を示し、よこ軸は磁気記録層に印加す
る外部磁界(H)を示す。
In FIG. 3, 0 indicates the origin, the vertical axis indicates the amount of magnetization (CM) of the magnetized magnetic recording layer, and the horizontal axis indicates the external magnetic field (H) applied to the magnetic recording layer.

磁化されていない測定試料の磁気記録層に外部磁界(H
)を一方向に絶えず増加しつつ印加すると、外部磁界(
H)の増加に従って破線矢印の如く磁化量(M)は増大
していく。外部磁界(H)がある値以上になると、それ
以上外部磁界(H)を増しても磁化量CM)は飽和して
、それ以上増大しなくなる。第3図におけるD点がこの
点である。D点における磁化量CM)を飽和磁化(M8
)と呼ぶ。さらにD点より出発して、逆に外部磁界(イ
)を実線矢印の如く減少させていくと、磁化量CM)も
減少をはじめる。外部磁界(H)を0の状態にしても磁
化量(M)は0とならず残留磁化(Mr)の値を残す。
An external magnetic field (H
) is applied constantly increasing in one direction, the external magnetic field (
As H) increases, the amount of magnetization (M) increases as indicated by the broken line arrow. When the external magnetic field (H) exceeds a certain value, even if the external magnetic field (H) is increased further, the magnetization amount CM) is saturated and will not increase any further. Point D in FIG. 3 is this point. The amount of magnetization CM at point D is changed to the saturation magnetization (M8
). Furthermore, starting from point D, when the external magnetic field (A) is decreased as indicated by the solid arrow, the magnetization amount CM) also begins to decrease. Even if the external magnetic field (H) is set to 0, the amount of magnetization (M) does not become 0 but remains the value of residual magnetization (Mr).

さらに外部磁界(H)を0を越えて負方向に増大させて
いくと、磁化量CM)は0となる。この時の外部磁界(
H)の強さを保磁力(Ha )と呼ぶ。さらに外部磁界
(H)を負方向に増大すると磁化量CM)はある値で飽
和する。この値が負の飽和磁化(第3図E点)である。
When the external magnetic field (H) is further increased in the negative direction beyond 0, the magnetization amount CM) becomes 0. The external magnetic field at this time (
The strength of H) is called the coercive force (Ha). When the external magnetic field (H) is further increased in the negative direction, the magnetization amount CM) is saturated at a certain value. This value is negative saturation magnetization (point E in Figure 3).

さらにE点より出発して再び外部磁界(H)を正方向に
印加をはじめると、磁化量CM)は再び正方向に実線矢
印の如く増大しはじめ、負方向の残留磁化点(−Mr 
)を経て、磁化量(M)は0となり、再び最初の正の飽
和磁化点(第3図り点)に戻る。
Furthermore, when starting from point E and starting to apply the external magnetic field (H) again in the positive direction, the magnetization amount CM) begins to increase again in the positive direction as shown by the solid arrow, and the residual magnetization point in the negative direction (-Mr
), the magnetization amount (M) becomes 0 and returns to the initial positive saturation magnetization point (third magnetization point).

以上のようにして得られる曲線は、ヒステリシスループ
と呼ばれており、このヒステリシスループにより保磁力
(Ha)を得る。振動試料型磁力計今使用し、外部磁界
を基体面の垂直方向と平行方向に加えた場合のヒステリ
シスループをそれぞれ記録し、垂直方向保磁力・平行方
向保磁力を得る。
The curve obtained as described above is called a hysteresis loop, and the coercive force (Ha) is obtained by this hysteresis loop. Using a vibrating sample magnetometer, we record the hysteresis loops when an external magnetic field is applied perpendicularly and parallelly to the substrate surface to obtain the perpendicular coercive force and parallel coercive force.

次に異方性磁界の測定方法について説明する。Next, a method for measuring the anisotropic magnetic field will be explained.

垂直磁気記録媒体の垂直方向への磁気異方性をあられす
指標として異方性磁界(Hk )があり、この値が大き
いほど垂直方向に磁化されやすい優れた垂直磁気記録媒
体と言える。異方性磁界(Hk )の測定方法について
第4図により説明する。第4図において0は原点、たて
軸は磁化された磁気記録層の磁化量CM)を示し、よこ
軸は磁気記録層に印加する外部磁界(H)を示す。第4
図は、試料とする磁気記録層表面に平行方向に外部磁界
を加えた場合のヒステリシスループである。原点0より
ヒステリシスループに引いた接線と、正の飽和磁化点り
を通り、外部磁界軸(H)と平行に引いた直線との交点
Pの外部磁界(H)の値が異方性磁界(Hk)である。
There is an anisotropic magnetic field (Hk) as an index of the perpendicular magnetic anisotropy of a perpendicular magnetic recording medium, and the larger this value is, the better the perpendicular magnetic recording medium can be magnetized in the perpendicular direction. The method for measuring the anisotropic magnetic field (Hk) will be explained with reference to FIG. In FIG. 4, 0 indicates the origin, the vertical axis indicates the amount of magnetization (CM) of the magnetized magnetic recording layer, and the horizontal axis indicates the external magnetic field (H) applied to the magnetic recording layer. Fourth
The figure shows a hysteresis loop when an external magnetic field is applied in parallel to the surface of the magnetic recording layer used as a sample. The value of the external magnetic field (H) at the intersection point P of the tangent drawn from the origin 0 to the hysteresis loop and the straight line drawn parallel to the external magnetic field axis (H) passing through the positive saturation magnetization point is the anisotropic magnetic field ( Hk).

なお外部磁界(H)、保磁力(Ha) 、異方性磁界(
Hk)の単位は Oeである。
In addition, external magnetic field (H), coercive force (Ha), anisotropic magnetic field (
The unit of Hk) is Oe.

(2)  ガス供給室の圧力測定方法 ガス供給室の圧力測定位置は、該ガス供給室が密閉に近
い構造となっているため該ガス供給室の内部であればい
ずれでも良いが、基体面への磁気記録層形成を妨げない
範囲で、できるだけ基体面近傍に近接し圧力測定子を配
設した。圧力測定には酸素ガスの悪影響を受けない隔膜
型真空計を使用した。
(2) Method for measuring the pressure in the gas supply chamber The pressure measurement position in the gas supply chamber can be anywhere inside the gas supply chamber since the gas supply chamber has a nearly hermetically sealed structure, but The pressure probe was placed as close to the substrate surface as possible without interfering with the formation of the magnetic recording layer. A diaphragm-type vacuum gauge, which is not affected by the adverse effects of oxygen gas, was used for pressure measurement.

(3)導入ガス流量の制御および流量測定真空槽内に導
入するガスの流量は質量流量計とガス流量コントロール
バルブの組み合せにより行なった。具体的にはエステツ
ク■製1マスフローコントローラ(SECシリーズ)1
を使用した。
(3) Control of flow rate of introduced gas and measurement of flow rate The flow rate of gas introduced into the vacuum chamber was controlled by a combination of a mass flow meter and a gas flow rate control valve. Specifically, 1 mass flow controller (SEC series) manufactured by Estes
It was used.

(4)耐湿試験方法 磁気記録媒体を30x30mmに切り出し試験試料とす
る。該試料を60℃、90%RH雰囲気中に一週間放置
し、磁気記録層の腐食状態を目視で判定する。磁気記録
層の変色、錆、ふくれ、はがれを腐食とした。なお実施
例、比較例中の表−1には上記腐食がまったくガいもの
を○で、腐食発生は有るが試料全面積の1/2以下の場
合Δで1丁を越えるものを×で表示した。
(4) Moisture resistance test method A magnetic recording medium is cut out to a size of 30 x 30 mm and used as a test sample. The sample is left in an atmosphere of 60° C. and 90% RH for one week, and the state of corrosion of the magnetic recording layer is visually determined. Corrosion refers to discoloration, rust, blistering, and peeling of the magnetic recording layer. In addition, in Table 1 in Examples and Comparative Examples, cases where the above corrosion is completely severe are indicated by ○, and cases where corrosion has occurred but is less than 1/2 of the total area of the sample are indicated by Δ, and those exceeding 1 tooth are indicated by ×. did.

(5)耐摩耗試験方法 試験試料を5.25インチのフロッピーディスク状に打
ち抜き、フッ化炭素系の潤滑剤を約20OA厚さコーテ
ィングしジャケットに納める。
(5) Wear resistance test method A test sample is punched out in the shape of a 5.25-inch floppy disk, coated with a fluorocarbon lubricant to a thickness of about 20 OA, and placed in a jacket.

上記のものをフロッピーディスク耐久性試験機(東京エ
ンジニアリング■製’5K−429B”型)と市販のフ
ロッピーディスクドライブ(机下通信工業■製”JA5
51″)を用い、同一トラックを10万回走行させる。
The above items were combined with a floppy disk durability tester (model '5K-429B' manufactured by Tokyo Engineering Corporation) and a commercially available floppy disk drive (manufactured by Kishita Tsushin Kogyo Corporation 'JA5').
51'') and run the same truck 100,000 times.

10万回走行後の磁気記録層の透過価の有無により耐摩
耗性を判定した。
Wear resistance was determined by the presence or absence of permeability of the magnetic recording layer after running 100,000 times.

上記試験に使用したヘッドはボタン型形状のものであり
、ヘッド荷重は約15gである。またフロッピーディス
クの回転数は毎分600回転である。
The head used in the above test was button-shaped, and the head load was about 15 g. The rotational speed of the floppy disk is 600 revolutions per minute.

なお実施例、比較例中の表−1には上記試験の結果につ
いて、透過傷発生の認められなかったものを○で表示し
、透過傷が発生したものをXで表示した。
In Table 1 of Examples and Comparative Examples, regarding the results of the above tests, those in which no transmission scratches were observed are indicated by ◯, and those in which transmission scratches were observed are indicated by X.

〔実施例〕〔Example〕

以下実施例に基づいて本発明の製造方法の一実施態様を
説明する。
An embodiment of the manufacturing method of the present invention will be described below based on Examples.

実施例1〜6.比較例1〜8 第1図に示した電子ビーム蒸着装置の上槽圧力。Examples 1-6. Comparative examples 1 to 8 Upper tank pressure of the electron beam evaporation apparatus shown in FIG.

ガス供給室圧力を各々5 x 10  Torr  以
下、5×iQ  Torr  以下になるまで排気し9
次いで基体移動方向に対し上流側より化学的活性の小さ
いガスを導入し、同時に下流側より酸素を含むガスを導
入して、厚さ50μの2軸延伸されたポリエチレンテレ
フタレートフィルムを所定の走行速度で走行させ、電子
ビーム蒸着により強磁性金属を溶融蒸発せしめ、前記フ
ィルム上に連続的に磁気記録層を形成する。なお該電子
ビーム蒸着装置内部には蒸発蒸気流の入射角が26″以
下となるよう開口部を有する遮蔽板を配設し、また前記
ポリエチレンテレフタレートフィルムの裏面は50℃以
下になるよう冷却ドラムにより冷却した。電子ビーム蒸
着器としては日本真空技術■製EGL−110型を使用
し、該電子ビーム蒸着器用電源として日本真空技術■製
、HP−1610Fを使用した。該電子ビーム蒸着器の
凹部には純度999%以上の蒸着金属を使用した。
Evacuate the gas supply chamber pressure until it becomes 5 x 10 Torr or less and 5 x iQ Torr or less.9
Next, a gas with less chemical activity is introduced from the upstream side in the direction of movement of the substrate, and at the same time a gas containing oxygen is introduced from the downstream side, and a biaxially stretched polyethylene terephthalate film with a thickness of 50 μm is passed at a predetermined running speed. The magnetic recording layer is continuously formed on the film by melting and vaporizing the ferromagnetic metal by electron beam evaporation. A shielding plate with an opening is provided inside the electron beam evaporation apparatus so that the incident angle of the evaporated vapor flow is 26" or less, and a cooling drum is provided so that the back surface of the polyethylene terephthalate film is kept at 50° C. or less. The electron beam evaporator used was model EGL-110 manufactured by Japan Vacuum Technology Co., Ltd., and the power source for the electron beam evaporator was HP-1610F manufactured by Nippon Vacuum Technology Co., Ltd. A vapor-deposited metal with a purity of 999% or higher was used.

上述した製造方法により、蒸着金属、基体移動方向に対
し上流側から導入のガスと、下流側から導入のガス、該
両者のガスの流量比(上流側から導入のガス流量/下流
側からのガス流量)、基体近傍の圧力等を表−1に示す
ように変えて磁気記録層を形成した。得られた磁気記録
媒体を実施例1〜6とする。実施例1〜6の下流側から
導入のガスはいずれも酸素単独あるいは酸素を含む混合
ガスである。
By the above-mentioned manufacturing method, the gas introduced from the upstream side and the gas introduced from the downstream side with respect to the direction of movement of the evaporated metal and the substrate, and the flow rate ratio of the two gases (gas flow rate introduced from the upstream side / gas introduced from the downstream side) A magnetic recording layer was formed by changing the flow rate), the pressure near the substrate, etc. as shown in Table 1. The obtained magnetic recording media are referred to as Examples 1 to 6. In Examples 1 to 6, the gas introduced from the downstream side was either oxygen alone or a mixed gas containing oxygen.

実施例1〜乙に使用した電子ビーム蒸着装置を使用し、
基体移動方向に対し下流側からは化学的活性の小さいガ
スを導入し、あるいはガスの供給をせずしてその他は実
施例1〜6で述べたと同様の製造方法により厚さ50μ
の2軸延伸されたポリエチレンテレフタレートフィルム
上に連続的に磁気記録層を形成した。
Using the electron beam evaporation equipment used in Examples 1 to B,
A gas with low chemical activity was introduced from the downstream side in the direction of movement of the substrate, or a gas with a thickness of 50 μm was produced using the same manufacturing method as described in Examples 1 to 6, except that no gas was supplied.
A magnetic recording layer was continuously formed on the biaxially stretched polyethylene terephthalate film.

得られた磁気記録媒体を比較例1〜6とする。The obtained magnetic recording media are referred to as Comparative Examples 1 to 6.

比較例1〜6の蒸着金属、導入ガス、流量比、基体近傍
の圧力等も表−1に示す。
Table 1 also shows the vapor deposited metal, introduced gas, flow rate ratio, pressure near the substrate, etc. of Comparative Examples 1 to 6.

なお磁気記録層の膜厚は2000〜3000Aになるよ
うに基体であるポリエチレンテレフタレートフィルムの
走行速度を変えて調整した。また実施例1〜6.比較例
1〜6の電子ビーム蒸着器への投入電力は、4kW一定
で実施した。
The thickness of the magnetic recording layer was adjusted to 2,000 to 3,000 Å by changing the running speed of the polyethylene terephthalate film that was the base. Further, Examples 1 to 6. The power input to the electron beam evaporator in Comparative Examples 1 to 6 was constant at 4 kW.

以上のようにして得られた実施例1〜6および比較例1
〜乙の磁気記録媒体について垂直方向保磁力、異方性磁
界、耐湿試験の結果、耐摩耗試験の結果についても表−
1に一括して示す。
Examples 1 to 6 and Comparative Example 1 obtained as above
~Tables also include the results of perpendicular coercive force, anisotropic magnetic field, moisture resistance test, and abrasion resistance test for the magnetic recording medium in Part B.
They are all shown in 1.

表−1に示した結果より明らかなように本発明の製造方
法により形成された実施例1〜6の磁気記録媒体はいず
れも垂直方向の磁気特性に優れ。
As is clear from the results shown in Table 1, the magnetic recording media of Examples 1 to 6 formed by the manufacturing method of the present invention all have excellent magnetic properties in the perpendicular direction.

また耐湿性、i4摩耗性に優れた垂直磁気記録媒体であ
った。
It was also a perpendicular magnetic recording medium with excellent moisture resistance and i4 abrasion resistance.

一方、基体移動方向に対し下流側から酸素ガスの導入の
ない比較例1〜6のうち Coを蒸着材料とした比較例
1〜4は60℃、90%RH雰囲気中で短期間に腐食が
生じ問題があり、reを蒸着材料とした比較例5〜6は
耐摩耗性に欠点があり。
On the other hand, among Comparative Examples 1 to 6 in which oxygen gas was not introduced from the downstream side with respect to the substrate movement direction, Comparative Examples 1 to 4 in which Co was used as the vapor deposition material suffered corrosion in a short period of time in an atmosphere of 60°C and 90% RH. Comparative Examples 5 and 6 in which re was used as the vapor deposition material had a drawback in abrasion resistance.

比較例1〜6のいずれも垂直磁気記録媒体として耐久性
の点で実用に供し難いものであった。
All of Comparative Examples 1 to 6 were difficult to put to practical use as perpendicular magnetic recording media in terms of durability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の製造方法を実施する為の電子ビーム蒸
着装置の一例を示す概略図、第2図は蒸発蒸気流の入射
角の説明図、第3図は磁気記録層の保磁力をあられすヒ
ステリシスループの測定例を示す模式図、第4図は磁気
記録層の異方性磁界をあられすヒステリシスループの測
定例を示す模式図である。 1:基体供給装置   3:基体冷却ドラム5:基体巻
取り装置  6:有機高分子フィルム7:遮蔽板   
   8:電子ビーム蒸着器9二強磁性金属    1
0:真空槽 11:排気口      12:排気口13A、13B
  :カス流量コントロールパルプ18A、18B  
:ガス供給管 19A、19B  :ガス供給室 A:蒸発蒸気流    B:基体面に立てた法線C:基
体面      θ:入射角 0:原 点      M:琳什暑 H:外部磁界    Hk:異方性磁界特許出願人  
東 し 株 式 会 社p目
Fig. 1 is a schematic diagram showing an example of an electron beam evaporation apparatus for carrying out the manufacturing method of the present invention, Fig. 2 is an explanatory diagram of the incident angle of the evaporated vapor flow, and Fig. 3 is an illustration of the coercive force of the magnetic recording layer. FIG. 4 is a schematic diagram showing a measurement example of a hysteresis loop that detects the anisotropic magnetic field of a magnetic recording layer. 1: Substrate supply device 3: Substrate cooling drum 5: Substrate winding device 6: Organic polymer film 7: Shielding plate
8: Electron beam evaporator 9 Two ferromagnetic metals 1
0: Vacuum chamber 11: Exhaust port 12: Exhaust port 13A, 13B
: Dregs flow rate control pulp 18A, 18B
: Gas supply pipes 19A, 19B : Gas supply chamber A: Evaporated vapor flow B: Normal line to the substrate surface C: Substrate surface θ: Incident angle 0: Origin M: Rinka H: External magnetic field Hk: Anisotropy Sexual magnetic field patent applicant
Higashishi Co., Ltd. Pth

Claims (1)

【特許請求の範囲】[Claims] (1)真空容器内部に長尺基体の供給装置、基体冷却ド
ラムおよび基体巻取り装置からなる走行系を備えた蒸着
装置を設け、該真空容器の真空雰囲気中に化学的活性の
小さいガスと酸素を含むガスを導入しながら強磁性金属
を蒸発材料として真空蒸着により、走行する長尺基体上
に垂直磁気記録層を形成するに際して、上記化学的活性
の小さいガスを基体移動方向に対し上流側より導入し、
上記酸素を含むガスを基体移動方向に対し下流側より導
入してこれらのガスを垂直磁気記録層形成領域に供給す
ることを特徴とする垂直磁気記録媒体の製造方法。
(1) A vapor deposition device equipped with a running system consisting of a long substrate supply device, a substrate cooling drum, and a substrate winding device is provided inside the vacuum container, and a gas with low chemical activity and oxygen is contained in the vacuum atmosphere of the vacuum container. When forming a perpendicular magnetic recording layer on a running elongated substrate by vacuum evaporation using a ferromagnetic metal as an evaporation material while introducing a gas containing introduced,
A method for manufacturing a perpendicular magnetic recording medium, characterized in that the gas containing oxygen is introduced from the downstream side in the direction of movement of the substrate and supplied to a perpendicular magnetic recording layer forming region.
JP4821485A 1985-03-13 1985-03-13 Production of vertical magnetic recording medium Pending JPS61208623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4821485A JPS61208623A (en) 1985-03-13 1985-03-13 Production of vertical magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4821485A JPS61208623A (en) 1985-03-13 1985-03-13 Production of vertical magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS61208623A true JPS61208623A (en) 1986-09-17

Family

ID=12797158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4821485A Pending JPS61208623A (en) 1985-03-13 1985-03-13 Production of vertical magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS61208623A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02105332A (en) * 1988-10-14 1990-04-17 Nec Corp Production of magnetic recording medium
JPH05339704A (en) * 1992-06-05 1993-12-21 Toray Ind Inc Production of transparent gas barrier film

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58158030A (en) * 1982-03-15 1983-09-20 Matsushita Electric Ind Co Ltd Magnetic recording medium

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58158030A (en) * 1982-03-15 1983-09-20 Matsushita Electric Ind Co Ltd Magnetic recording medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02105332A (en) * 1988-10-14 1990-04-17 Nec Corp Production of magnetic recording medium
JPH05339704A (en) * 1992-06-05 1993-12-21 Toray Ind Inc Production of transparent gas barrier film

Similar Documents

Publication Publication Date Title
US4239835A (en) Magnetic recording medium
US4835070A (en) Magnetic recording medium and method of producing the same
JPS61208623A (en) Production of vertical magnetic recording medium
JPS6194237A (en) Preparation of vertical magnetic recording medium
JPH01125723A (en) Production of perpendicular magnetic recording medium
JPH0475577B2 (en)
JPS62103851A (en) Production of vertical magnetic recording medium
JPH0311531B2 (en)
JPS61276124A (en) Production of vertical magnetic recording medium
JPS62229522A (en) Magnetic recording medium
JPH01204219A (en) Production of perpendicular magnetic recording medium
JPS6334740A (en) Production of perpendicular magnetic recording medium
JPS63138519A (en) Perpendicular magnetic recording medium
JPS62150518A (en) Magnetic recording medium
JPS60160027A (en) Magnetic recording medium
JPS61214115A (en) Magnetic recording medium and its production
JPH01149218A (en) Perpendicular magnetic recording medium
JPH01319120A (en) Magnetic recording medium
JPS63181115A (en) Perpendicular magnetic recording medium
JPH01303623A (en) Magnetic recording medium
JPS63197026A (en) Magnetic recording medium
JPH0528482A (en) Production of magnetic recording medium
JPH0729143A (en) Magnetic recording medium and its manufacture
JPS6154044A (en) Manufacture and its device of magnetic recording medium
JPS62298017A (en) Magnetic recording medium and its production