JPS63138519A - Perpendicular magnetic recording medium - Google Patents

Perpendicular magnetic recording medium

Info

Publication number
JPS63138519A
JPS63138519A JP28417486A JP28417486A JPS63138519A JP S63138519 A JPS63138519 A JP S63138519A JP 28417486 A JP28417486 A JP 28417486A JP 28417486 A JP28417486 A JP 28417486A JP S63138519 A JPS63138519 A JP S63138519A
Authority
JP
Japan
Prior art keywords
film
cobalt
magnetic recording
recording medium
perpendicular magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28417486A
Other languages
Japanese (ja)
Inventor
Tetsuo Oka
哲雄 岡
Kenji Hayashi
健二 林
Takayoshi Akamatsu
孝義 赤松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP28417486A priority Critical patent/JPS63138519A/en
Publication of JPS63138519A publication Critical patent/JPS63138519A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase reproduction output at the time of executing recording and reproducing with a ring head by using crystalline Co as the Co to be incorporated into a perpendicularly magnetized layer. CONSTITUTION:The perpendicularly magnetized layer essentially consisting of the Co and the oxide thereof is formed on a substrate (e.g.: PE terephthalate film) and the Co in said film is made crystalline. The crystalline Co in the magnetized layer is hexagonal and the dispersion angle ( theta50) of the C axis is preferably <=15 deg.. Fe, Ni or the oxide thereof is preferably incorporated into the magnetized layer in order to adjust magnetic characteristics or to improve corrosion resistance. Then, the medium having the large reproduction output by the ring head is obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は薄膜型の垂直磁気記録媒体に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a thin film type perpendicular magnetic recording medium.

[従来の技術] コバルトおよびその酸化物から主として成る垂直磁化膜
を備えた垂直磁気記録媒体の例としては、例えば特開昭
59−140629号、特開昭59−162622号あ
るいは本発明者らによる特開昭61−57028などが
ある。これら従来のコバルトおよびその酸化物から主と
して成る垂直磁化膜の静磁気特性はC−Crから成る垂
直磁化膜と比べて遜色のない優れたちのである。
[Prior Art] Examples of perpendicular magnetic recording media equipped with a perpendicularly magnetized film mainly composed of cobalt and its oxides include those disclosed in Japanese Patent Application Laid-open Nos. 140629-1982, 162622-1980, and those by the present inventors. There is Japanese Patent Application Laid-open No. 61-57028. The magnetostatic properties of these conventional perpendicularly magnetized films mainly made of cobalt and its oxides are comparable to those of perpendicularly magnetized films made of C--Cr.

[発明が解決しようとする問題点] しかし、かかる従来のコバルトとその酸化物より主とし
て成る垂直磁化膜を備えた垂直磁気記録媒体では、リン
グヘッドで記録再生を行なった場合、再生出力が小さい
という欠点があった。
[Problems to be Solved by the Invention] However, in the conventional perpendicular magnetic recording medium equipped with a perpendicularly magnetized film mainly composed of cobalt and cobalt oxides, when recording and reproducing are performed using a ring head, the reproducing output is small. There were drawbacks.

長手記録媒体で実績・信頼性のあるリングヘッドで再生
出力が小さいという欠点は垂直磁気記録媒体を実用に供
する上で単大な問題点である。
Although the ring head has a proven track record and is reliable for longitudinal recording media, its low reproduction output is a major problem in putting perpendicular magnetic recording media into practical use.

本発明の目的は、上記欠点を改良したもの、すなわちリ
ングヘッドにより記録再生を行なった時の再生出力が大
きく実用に供し得る垂直磁気記録媒体を提供することに
ある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a perpendicular magnetic recording medium which has improved the above-mentioned drawbacks, that is, has a large reproduction output when recording and reproduction is performed using a ring head and can be put to practical use.

[問題点を解決するための手段] すなわち本発明は、基体上に、膜面に対して垂直方向に
磁気異方性を有するコバルトおよびその酸化物から主と
して成る垂直磁化膜を備えた垂直磁気記録媒体において
、前記垂直磁化膜中のコバルトが結晶質であることを特
徴とする垂直磁気記録媒体である。
[Means for Solving the Problems] That is, the present invention provides a perpendicular magnetic recording system having a perpendicularly magnetized film mainly made of cobalt and its oxides, which has magnetic anisotropy in the direction perpendicular to the film surface, on a substrate. The perpendicular magnetic recording medium is characterized in that cobalt in the perpendicular magnetization film is crystalline.

本発明で用いることのできる基体としては、特に限定さ
れるものではないが、有機重合体材料が適しており、中
でもポリエチレンテレフタレート、ポリエチレンナフタ
レート、ポリエチレンジカルボキシレートなどのポリエ
ステル、芳香族ポリアミド、ポリフェニレンスルフィド
などが適している。特に前記有機重合体材料の二軸延伸
されたフィルム、シート類が平面性、寸法安定性に優れ
最も適している。
The substrate that can be used in the present invention is not particularly limited, but suitable organic polymer materials include polyesters such as polyethylene terephthalate, polyethylene naphthalate, and polyethylene dicarboxylate, aromatic polyamides, and polyphenylene. Sulfide etc. are suitable. In particular, biaxially stretched films and sheets made of the above-mentioned organic polymer materials are most suitable because of their excellent flatness and dimensional stability.

基体の厚さも特に限定されるものではないが、シート状
、テープ状、カード状等の場合、加工性、寸法安定性の
点で3〜500μ、中でも4〜200μの範囲が望まし
い。
The thickness of the substrate is also not particularly limited, but in the case of sheets, tapes, cards, etc., it is preferably in the range of 3 to 500 μm, particularly 4 to 200 μm, from the viewpoint of workability and dimensional stability.

本発明で用いられる基体は、後に述べる垂直磁化膜の形
成に先立ち、易接着化、平面性改良、着色・帯電防止、
耐磨耗性付与等の目的で各種の表面処理、前処理が施さ
れても良い。
Prior to forming the perpendicularly magnetized film, which will be described later, the substrate used in the present invention is prepared to facilitate adhesion, improve flatness, prevent coloring and antistatic properties, etc.
Various surface treatments and pre-treatments may be performed for the purpose of imparting wear resistance and the like.

本発明において膜面に対して垂直方向に磁気異方性を有
する垂直磁化膜とは、異方性磁界(Hk)の値が2.0
KO8以上のものでおり、該垂直磁化膜は基体面に対し
ておおむね垂直に配向した柱状構造粒子と空隙よりなる
ものである。
In the present invention, a perpendicularly magnetized film having magnetic anisotropy in the direction perpendicular to the film surface is defined as having an anisotropic magnetic field (Hk) value of 2.0.
The perpendicularly magnetized film has a KO of 8 or more, and the perpendicularly magnetized film is composed of columnar structured grains and voids oriented approximately perpendicularly to the substrate surface.

本発明の垂直磁気記録媒体は、その垂直磁化膜の主成分
の一つを構成するコバルトが結晶質であることが必要で
ある。ここで結晶質のコバルトとはX線回折により回折
像の得られるものを指し、具体的にはX線回折図形にコ
バルト(六方晶〉の(002>面の回折ピークが出現す
るものをいう。
In the perpendicular magnetic recording medium of the present invention, it is necessary that cobalt, which constitutes one of the main components of the perpendicular magnetization film, be crystalline. Here, crystalline cobalt refers to one whose diffraction image can be obtained by X-ray diffraction, and specifically refers to one in which a diffraction peak of the (002> plane of cobalt (hexagonal crystal) appears in the X-ray diffraction pattern.

再生出力、記録密度特性をざらに向上させるためには垂
直磁化膜中の結晶コバルトのC軸分数句(Δθ50)が
15°以下であることが望ましい。
In order to roughly improve reproduction output and recording density characteristics, it is desirable that the C-axis fractional angle (Δθ50) of crystalline cobalt in the perpendicularly magnetized film is 15° or less.

本発明において垂直磁化膜の主成分の他の一つを構成す
るコバルトの酸化物とは、具体的にはCo0.CO2O
3、CO3O4等をいい、非化学量論的な組成を有する
コバルトの過酸化物、亜酸化物も含まれる。
In the present invention, the cobalt oxide constituting another main component of the perpendicularly magnetized film is specifically Co0. CO2O
3. refers to CO3O4, etc., and also includes cobalt peroxides and suboxides having non-stoichiometric compositions.

なお本発明の垂直磁化膜中には主成分であるコバルトお
よびその酸化物の他に磁気特性を調整する目的おるいは
耐蝕性を改善する目的で、鉄、ニッケルあるいはこれら
の酸化物が含まれることは望ましく、リングヘッドに適
した垂直磁化膜の保磁力とするために鉄を添加すること
が有効であり、また耐蝕性改善のためにニッケルを添加
することは有用である。
In addition to cobalt and its oxides, which are the main components, the perpendicularly magnetized film of the present invention contains iron, nickel, or oxides thereof for the purpose of adjusting magnetic properties or improving corrosion resistance. This is desirable, and it is effective to add iron to make the perpendicular magnetization film have a coercive force suitable for a ring head, and it is useful to add nickel to improve corrosion resistance.

鉄および/またはニッケルを添加せしめる場合、垂直磁
化膜中のコバルト、鉄、ニッケル金属原子の組手量に対
する鉄、ニッケル金属原子の割合は用量比で20重量%
以下であることが、異方性磁界(ト1k)を低下させな
いために望ましい。
When iron and/or nickel are added, the ratio of iron and nickel metal atoms to the amount of cobalt, iron and nickel metal atoms in the perpendicularly magnetized film is 20% by weight in terms of dosage ratio.
The following is desirable in order not to reduce the anisotropic magnetic field (T1k).

本発明の垂直磁気記録媒体は化学的活性の小さいガスと
酸素ガスの両者を真空雰囲気中に導入して蒸着を行なう
、いわゆる反応性真空蒸着法により形成できる。真空蒸
着法としては、抵抗加熱蒸着、誘導加熱蒸着、電子ビー
ム蒸着、イオンブレーティングなどいずれの方法も使用
できるが、高速蒸着が可能・制御が容易であるため電子
ビーム蒸着による方法が最も適している。
The perpendicular magnetic recording medium of the present invention can be formed by a so-called reactive vacuum deposition method in which vapor deposition is performed by introducing both a gas with low chemical activity and oxygen gas into a vacuum atmosphere. Any method such as resistance heating evaporation, induction heating evaporation, electron beam evaporation, or ion brating can be used as a vacuum evaporation method, but electron beam evaporation is the most suitable method because it is capable of high-speed evaporation and is easy to control. There is.

本発明において、垂直磁化膜中に結晶質のコバルトを形
成する方法としては、膜が形成される基体部分の近傍の
圧力をある程度高めるとともに供給するガス中の酸素ガ
スの絶対量をある程度少なくしてやることが望ましく、
具体的には上記基体近傍の圧力が1 、 Qx 10−
3 To r r 〜2.0x10″″2Torrの範
囲であり、供給する酸素ガスの間は酸素ガス供給量/蒸
発速度の比で10cc/μm以上70CC/μm未満に
することが望ましい。
In the present invention, the method of forming crystalline cobalt in the perpendicularly magnetized film is to increase the pressure near the base portion where the film is formed to some extent and to reduce the absolute amount of oxygen gas in the supplied gas to some extent. is desirable,
Specifically, the pressure near the base is 1, Qx 10-
The range is 3 Torr to 2.0x10''''2 Torr, and it is desirable that the ratio of oxygen gas supply amount/evaporation rate is 10 cc/μm or more and less than 70 CC/μm during the supply of oxygen gas.

以上の製法は一例であり必ずしもこれに限定されるもの
ではない。。
The above manufacturing method is an example and is not necessarily limited to this. .

次に図面に基づいて”JJ”?j方法の一例について説
明する。第2図は本発明の垂直磁気記録媒体を製造する
ための電子ビーム蒸着装置の一例を示ず概略図である。
Next is “JJ” based on the drawing? An example of method j will be explained. FIG. 2 is a schematic diagram without showing an example of an electron beam evaporation apparatus for manufacturing the perpendicular magnetic recording medium of the present invention.

蒸着装置内部には基体である有機高分子の長尺フィルム
の走行系が配されている。
A running system for a long organic polymer film serving as a base is arranged inside the vapor deposition apparatus.

第2図において、1は基体供給装置であり、コアにロー
ル状に巻かれた有機高分子フィルム6が装着されている
。該フィルム6はニップロール2、主ドラム3、ニップ
ロール4を経て基体巻き取り装置5に配設された巻取り
コアに巻き取られる。
In FIG. 2, reference numeral 1 denotes a substrate supply device, and an organic polymer film 6 wound into a roll is attached to a core. The film 6 passes through the nip roll 2, the main drum 3, and the nip roll 4, and is then wound onto a winding core provided in a substrate winding device 5.

14は真空槽10を上槽15と下槽16に2分する隔壁
で、該隔壁14の中央部は図示の如く、ドラム近傍にお
いて下槽側に折り曲げられて所定長さの側壁部20が形
成されるとともに、該側壁部20の先端に、遮断板7の
両端が連接される。
Reference numeral 14 denotes a partition wall that divides the vacuum chamber 10 into an upper tank 15 and a lower tank 16. As shown in the figure, the central part of the partition wall 14 is bent toward the lower tank near the drum to form a side wall portion 20 of a predetermined length. At the same time, both ends of the blocking plate 7 are connected to the tip of the side wall portion 20.

上槽15と下槽16は各々排気口11.12より排気さ
れる。遮断板7は蒸発蒸気流の入射角度を制限するため
のもので、その中央には蒸発蒸気流入射用の開口部17
が形成されており、該蒸発蒸気流の内、基体フィルムに
斜めに入射する成分が入射しないようになされている。
The upper tank 15 and the lower tank 16 are each exhausted from exhaust ports 11.12. The blocking plate 7 is for restricting the incident angle of the evaporated vapor flow, and has an opening 17 in the center for the evaporated vapor inflow and injection.
is formed to prevent components of the evaporated vapor flow from obliquely entering the base film.

即ち該遮断板7により制限されない蒸発蒸気流、つまり
基体フィルムに対しおおむね垂直に入射する成分が17
の同口部を経て、基体に入射されるa8は電子ビーム蒸
着器、9は蒸発材料であり、例えばコバルトである。
That is, the evaporated vapor flow not restricted by the shield plate 7, that is, the component incident approximately perpendicularly to the substrate film is 17
A8 is an electron beam evaporator, and 9 is an evaporation material, for example cobalt.

側壁部20と遮断板7と主ドラム3の下端側周面で囲ま
れる空間19はガス供給室である。
A space 19 surrounded by the side wall portion 20, the blocking plate 7, and the lower end side peripheral surface of the main drum 3 is a gas supply chamber.

蒸着雰囲気に供給されるガスの内、一種(例えば酸素ガ
ス)は13Aのガスコントロールバルブから、他の一種
(例えば窒素ガス)は13Bのガスコントロールバルブ
からガスミキサー21に入り、該ガスミキサー21内で
混合攪拌された後、ガス供給管18を経て、ガス供給室
19に供給される。
Among the gases supplied to the deposition atmosphere, one type (e.g., oxygen gas) enters the gas mixer 21 from the gas control valve 13A, and the other type (e.g., nitrogen gas) enters the gas mixer 21 from the gas control valve 13B. After being mixed and stirred in the gas supply pipe 18, the gas is supplied to the gas supply chamber 19.

第2図に示した蒸着装置の長尺フィルム走行系に長尺フ
ィルム、例えばポリエチレンテレフタレートフィルムを
配設し、電子ビーム蒸着器8の凹部に例えばコバルトを
配した状態にて真空槽10を排気口11.12より各々
排気する。上槽15は圧力が5×10″″4 To r
 r以下になるまで、またガス供給室19は圧力が5X
10−”Torr以下になるまで各々排気口11.12
より排気する。
A long film, such as a polyethylene terephthalate film, is disposed in the long film running system of the vapor deposition apparatus shown in FIG. From 11.12 onwards, the air will be evacuated. The pressure of the upper tank 15 is 5×10''4 Torr.
The pressure in the gas supply chamber 19 is maintained at 5X until the pressure is below r.
Each exhaust port 11.12 until the pressure is below 10-” Torr.
Exhaust more.

ついで、基体であるポリエチレンテレフタレートフィル
ムを走行させつつ、電子ビーム蒸着により所定量のコバ
ルトを溶融蒸発せしめるが、この時酸素ガスと窒素ガス
の流量がそれぞれ所定流量になるようにコントロールバ
ルブ13Aおよび13Bにより調部することにより、基
体近傍の圧力、即ちガス供給室19内の圧力を所定圧力
に設定するとともに上記電子ビーム蒸着器のビーム電流
値を適切に設定することにより酸素量/蒸発速度の比を
所定のレベルに設定するものである。以上のようにして
基体フィルム上に連続的に結晶質コバルトを有する垂直
磁化膜を形成することができる。
Next, a predetermined amount of cobalt is melted and evaporated by electron beam evaporation while running the polyethylene terephthalate film that is the base. By adjusting the pressure near the substrate, that is, the pressure in the gas supply chamber 19, is set to a predetermined pressure, and by appropriately setting the beam current value of the electron beam evaporator, the ratio of oxygen amount/evaporation rate can be adjusted. It is set to a predetermined level. As described above, a perpendicularly magnetized film containing crystalline cobalt can be continuously formed on the base film.

なお本発明の垂直磁化膜の厚さは、特に限定されるもの
ではないが実用的には0.02μm〜5μmの範囲であ
り、可撓性、磁気ヘッドとの接触、および該磁気記録層
の成膜速度を考慮した場合0゜05μm〜2.0μmの
範囲が望ましい。
The thickness of the perpendicular magnetization film of the present invention is not particularly limited, but is practically in the range of 0.02 μm to 5 μm, and is suitable for flexibility, contact with the magnetic head, and the thickness of the magnetic recording layer. When considering the film formation rate, a range of 0.05 μm to 2.0 μm is desirable.

[発明の作用] 従来のコバルトおよびコバルト酸化物から成る垂直磁化
膜のリングヘッドでの再生出力が小さい原因については
不明であるが、これらの膜の結晶性、配向性が悪く、X
線回折図形にもコバルト(002>面のピークは現われ
ないか、あるいは現われても非常に小さいものである。
[Operation of the invention] The reason why the reproduction output of conventional perpendicularly magnetized films made of cobalt and cobalt oxides in ring heads is low is unknown, but these films have poor crystallinity and orientation, and
The peak of the cobalt (002> plane) does not appear in the line diffraction pattern, or even if it does appear, it is very small.

本発明者らが鋭意検討した結果、結晶性・配向性の改善
された垂直磁化膜を得ることができた。
As a result of intensive studies by the present inventors, it was possible to obtain a perpendicularly magnetized film with improved crystallinity and orientation.

該改善された本発明の結晶質コバルトを膜中に備えた垂
直磁気記録媒体としたことで、再生出力を増大させるこ
とができたものと考えられる。
It is considered that by using a perpendicular magnetic recording medium containing the improved crystalline cobalt of the present invention in a film, it was possible to increase the reproduction output.

[特性の評価方法コ ■結晶性の評価方法 コバルトの結晶性の評価はX線回折図形の六方晶コバル
トの面指数(002>に回折線のピークが出現するか否
か、によって判定した。なお六方晶コバルトの面指数(
002>は回折角(2θ)は約44.4°でおる。
[Method for evaluating properties ① Method for evaluating crystallinity The crystallinity of cobalt was determined by whether or not a peak of the diffraction line appeared at the plane index (002>) of hexagonal cobalt in the X-ray diffraction pattern. Surface index of hexagonal cobalt (
002>, the diffraction angle (2θ) is approximately 44.4°.

xm回折図形は広角X線回折(ディフラクトメータ)法
により得た。測定装置および測定条件を下記に示す。
The xm diffraction pattern was obtained by wide-angle X-ray diffraction (diffractometer) method. The measuring device and measurement conditions are shown below.

X線発生装置:理学電機■製 RU−2008(回転対
陰極型)、X線源:CLIKα線、出カニ40KV、1
00mA ゴニオメータ:理学電機■製 2155D型、検出機ニ
シンチレーションカウンター 計数記録装置:理学電機■製 RAD−B型またコバル
トC軸の分散角(Δθ5゜)は試料の(002>ピーク
に角度を設定して試料を固定し、θ軸を2°/minの
速度で移動して回折強度曲線(ロッキングカーブ〉を得
るロッキングカーブ法により測定した。得られた回折強
度曲線の半価幅(Δθ50)がコバルトC軸の分散角で
ある。
X-ray generator: Rigaku Denki RU-2008 (rotating anode cathode type), X-ray source: CLIKα ray, output 40KV, 1
00mA Goniometer: 2155D model manufactured by Rigaku Denki ■ Detector Niscintillation counter counting recording device: RAD-B type manufactured by Rigaku Denki Also, the dispersion angle (Δθ5°) of the cobalt C axis is set at the (002>peak of the sample). The measurement was carried out using the rocking curve method, in which the sample was fixed at a position and the θ axis was moved at a speed of 2°/min to obtain a diffraction intensity curve (rocking curve).The half width (Δθ50) of the obtained diffraction intensity curve was This is the dispersion angle of the C axis.

使用した装置は広角X線回折法に使用した装置と同一の
装置である。
The equipment used was the same equipment used for wide-angle X-ray diffraction.

■膜中の金属原子の定量分析方法 試料に塩酸を加えて膜を溶解し、下記のICP発光分光
分析装置により定量分析を行なった。
(2) Quantitative analysis method for metal atoms in the film Hydrochloric acid was added to the sample to dissolve the film, and quantitative analysis was performed using the ICP emission spectrometer described below.

分析装@二■第二精工舎製5PS1100プラズマ発光
分析装置。
Analyzer @2 ■ 5PS1100 plasma emission spectrometer manufactured by Daini Seikosha.

■再生出力の測定方法 得られた磁器記録媒体に潤滑剤を塗布し、市販の5.2
5インチナイズのフロッピーディスク形状に打ち抜き試
験材料とする。
■Measurement method of playback output Apply lubricant to the obtained porcelain recording medium, and
The test material is punched out in the shape of a 5-inch floppy disk.

記録・再生装置として市販のフロッピーディスクドライ
ブ(キャノン電子■製“MDD516A”)を使用し、
記録・再生特性曲線を得た。
A commercially available floppy disk drive (“MDD516A” manufactured by Canon Electronics) was used as a recording/playback device.
Recording/reproducing characteristic curves were obtained.

記録は最適記録電流で行ない、記録周波数の範囲は10
0KHz 〜3.5MHzでおる。実施例、比較例に使
用した再生出力は記録周波数が2.5MH2の時の値を
使用し相対値で示した。
Recording was performed at the optimum recording current, and the recording frequency range was 10
0KHz to 3.5MHz. The reproduction output used in Examples and Comparative Examples is expressed as a relative value using the value when the recording frequency was 2.5 MH2.

なお使用ヘッドはギャップ長0.25μm、巻線数30
ターンのフェライト製リングヘッドを使用した。ヘッド
−媒体間の相対速度は1.28m/secである。
The head used has a gap length of 0.25 μm and a number of windings of 30.
A turn ferrite ring head was used. The relative speed between the head and the medium is 1.28 m/sec.

[実施例] 本発明を実施例に基づいて説明する。[Example] The present invention will be explained based on examples.

実施例1.2 比較例1.2 第2図に示した電子ビーム蒸着装置を使用し、表1に示
す製造条件にて実施例1.2および比較例1.2の垂直
磁気記録媒体を得た。
Example 1.2 Comparative Example 1.2 The perpendicular magnetic recording media of Example 1.2 and Comparative Example 1.2 were obtained using the electron beam evaporation apparatus shown in FIG. 2 and under the manufacturing conditions shown in Table 1. Ta.

実施例および比較例に使用した基体は厚さ50μmの2
軸延伸したポリエチレンテレフタレートフィルムである
。蒸発速度はビーム電流で調節し、垂直磁化膜の膜厚は
約3000人になるようにフィルム速度で調節した。
The substrate used in the Examples and Comparative Examples was 50 μm thick 2
It is an axially stretched polyethylene terephthalate film. The evaporation rate was adjusted by the beam current, and the film speed was adjusted so that the thickness of the perpendicularly magnetized film was approximately 3,000 mm.

実施例1.2は酸素ガスと窒素ガスをガスミキサーを経
て供給し、蒸発速度に対する酸素ガスの供給量を少なく
し、かつガス供給室の圧力を高くして基体上に垂直磁化
膜を得た例である。また比較例1は酸素ガスのみを供給
し、低圧力下で形成した例、比較例2は酸素ガスと窒素
ガスをガスミキサーを経て供給した例であるが、蒸発速
度に対する酸素ガスの供給mlを相対的に多くし、ガス
供給室が低い圧力になるようにして基体上に垂直磁化膜
を得た例である。
In Example 1.2, oxygen gas and nitrogen gas were supplied via a gas mixer, the amount of oxygen gas supplied was reduced relative to the evaporation rate, and the pressure in the gas supply chamber was increased to obtain a perpendicularly magnetized film on the substrate. This is an example. In addition, Comparative Example 1 is an example in which only oxygen gas is supplied and formed under low pressure, and Comparative Example 2 is an example in which oxygen gas and nitrogen gas are supplied through a gas mixer. This is an example in which a perpendicularly magnetized film is obtained on a substrate by relatively increasing the amount of gas and making the pressure in the gas supply chamber low.

第1図に実施例1.2、比較例1.2で得られた垂直磁
気記録媒体のX線回折図形を基体のポリエチレンテレフ
タレートフィルムと合わせて示す。
FIG. 1 shows the X-ray diffraction patterns of the perpendicular magnetic recording media obtained in Example 1.2 and Comparative Example 1.2 together with the polyethylene terephthalate film as the substrate.

第1図において縦軸は相対回折強度、横軸は回折角(2
θ)で必る。また第1図において20が約44.4°が
六方晶コ゛バルトの(002>面に相当する。また第1
図の各図において20が約47°、54°に見られる小
ピークは基体ポリエチレンテレフタレートフィルムに由
来するピークである。
In Figure 1, the vertical axis is the relative diffraction intensity, and the horizontal axis is the diffraction angle (2
θ). In addition, in Fig. 1, 20 corresponds to the (002> plane of hexagonal cobalt at approximately 44.4°.
In each of the figures, the small peaks seen at about 47° and 54° of 20 are peaks originating from the base polyethylene terephthalate film.

第1図から明らかなとおり実施例1.2は六方晶コバル
ト(002>面の回折ピークがおり、コバルトは結晶質
となっているが、比較例1はコバルト(002)面の回
折ピークがなく、比較例2は回折ピークがあるものの非
常に小ざく比較例1.2の垂直磁化膜中に結晶質のコバ
ルトは含まれていないことが明らかであった。
As is clear from Figure 1, Example 1.2 has a diffraction peak of the hexagonal cobalt (002> plane, and the cobalt is crystalline), but Comparative Example 1 has no diffraction peak of the cobalt (002) plane. Although Comparative Example 2 had a diffraction peak, it was very small, and it was clear that crystalline cobalt was not contained in the perpendicularly magnetized film of Comparative Example 1.2.

実施例1.2および比較例1.2の六方晶コバルト(0
02>面のピークの有無、コバルトC軸分散角(△θ5
o)、および比較例1の再生出力を基準値とした時の再
生出力(相対値〉についても表1に示す。
Hexagonal cobalt (0
02> Presence or absence of peak of plane, cobalt C-axis dispersion angle (△θ5
Table 1 also shows the reproduction output (relative value) when the reproduction output of Comparative Example 1 is taken as the reference value.

表1に示すように、実施例1.2は再生出力が大きく、
結晶性・配向性が良くなった効果が現われたが、比較例
1.2は結晶性に劣り再生出力が小ざく、垂直磁気記録
媒体として実用に供することは難しいものである。
As shown in Table 1, Example 1.2 has a large reproduction output;
Although the effects of improved crystallinity and orientation were seen, Comparative Examples 1 and 2 had poor crystallinity and small reproduction output, making it difficult to put them to practical use as perpendicular magnetic recording media.

[発明の効果] 以上述べたようにコバルトの結晶性・配向性を改善した
本発明の垂直磁気記録媒体により、再生出力を増大させ
る効果を得ることができ、実用に供し得る垂直磁気記録
媒体を提供することができた。
[Effects of the Invention] As described above, the perpendicular magnetic recording medium of the present invention in which the crystallinity and orientation of cobalt are improved can obtain the effect of increasing the reproduction output, and a perpendicular magnetic recording medium that can be put to practical use can be obtained. I was able to provide it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明と比較例の垂直磁気記録媒体の結晶性を
説明するためのX線回折図であり、縦軸は相対回折強度
、横軸は回折角(2θ)である。 第2図は本発明の垂直磁気記録媒体を製造するための真
空蒸着装置の一例を示す概略図である。 1:基体供給装@  3:主ドラム 5:基体巻取り装@ 6:有機高分子フィルム7:遮断
板     8:電子ビーム蒸着器9:蒸発材料   
 10:真空槽 11:排気口     12:排気口 13A、 13B :ガス流量コントロールバルブ18
:ガス供給管   19:ガス供給至21ニガスミキサ
FIG. 1 is an X-ray diffraction diagram for explaining the crystallinity of perpendicular magnetic recording media of the present invention and a comparative example, in which the vertical axis represents relative diffraction intensity and the horizontal axis represents diffraction angle (2θ). FIG. 2 is a schematic diagram showing an example of a vacuum evaporation apparatus for manufacturing the perpendicular magnetic recording medium of the present invention. 1: Substrate supply device @ 3: Main drum 5: Substrate winding device @ 6: Organic polymer film 7: Blocking plate 8: Electron beam evaporator 9: Evaporation material
10: Vacuum chamber 11: Exhaust port 12: Exhaust port 13A, 13B: Gas flow rate control valve 18
: Gas supply pipe 19: Gas supply to 21 Nigas mixer

Claims (3)

【特許請求の範囲】[Claims] (1)基体上に、膜面に対して垂直方向に磁気異方性を
有するコバルトおよびその酸化物から主として成る垂直
酸化膜を備えた垂直磁気記録媒体において、前記垂直磁
化膜中のコバルトが結晶質であることを特徴とする垂直
磁気記録媒体。
(1) In a perpendicular magnetic recording medium provided with a perpendicular oxide film mainly composed of cobalt and its oxide having magnetic anisotropy perpendicular to the film surface on a substrate, the cobalt in the perpendicular magnetization film is crystallized. A perpendicular magnetic recording medium characterized by high quality.
(2)垂直磁化膜中の結晶質コバルトが六方晶であり、
該コバルトのC軸の分散角(Δθ_5_0)が15°以
下であることを特徴とする特許請求範囲第(1)項記載
の垂直磁気記録媒体。
(2) The crystalline cobalt in the perpendicularly magnetized film is hexagonal,
The perpendicular magnetic recording medium according to claim 1, wherein the cobalt has a C-axis dispersion angle (Δθ_5_0) of 15° or less.
(3)垂直磁化膜が鉄、ニッケルおよびこれらの酸化物
を含み、かつ全金属原子に対する鉄およびニッケル金属
原子の割合が重量比で20重量%以下であることを特徴
とする特許請求の範囲第(1)項記載の垂直磁気記録媒
体。
(3) Claim 1, characterized in that the perpendicularly magnetized film contains iron, nickel, and oxides thereof, and the proportion of iron and nickel metal atoms to all metal atoms is 20% by weight or less. The perpendicular magnetic recording medium described in (1).
JP28417486A 1986-12-01 1986-12-01 Perpendicular magnetic recording medium Pending JPS63138519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28417486A JPS63138519A (en) 1986-12-01 1986-12-01 Perpendicular magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28417486A JPS63138519A (en) 1986-12-01 1986-12-01 Perpendicular magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS63138519A true JPS63138519A (en) 1988-06-10

Family

ID=17675137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28417486A Pending JPS63138519A (en) 1986-12-01 1986-12-01 Perpendicular magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS63138519A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0490669A2 (en) * 1990-12-12 1992-06-17 Kabushiki Kaisha Toshiba A magnetic recording system
US5244751A (en) * 1988-03-11 1993-09-14 Hitachi, Ltd. Perpendicular magnetic recording medium, its fabrication method and read-write machine using it

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5244751A (en) * 1988-03-11 1993-09-14 Hitachi, Ltd. Perpendicular magnetic recording medium, its fabrication method and read-write machine using it
EP0490669A2 (en) * 1990-12-12 1992-06-17 Kabushiki Kaisha Toshiba A magnetic recording system

Similar Documents

Publication Publication Date Title
EP0156625B1 (en) Vertical magnetic recording medium and process for preparation thereof
US5453886A (en) Digital recording method using a specified magnetic recording medium
US4990361A (en) Method for producing magnetic recording medium
JPS63138519A (en) Perpendicular magnetic recording medium
JPH06150289A (en) Magnetic recording medium and its manufacture
US4652460A (en) Process for preparing magnetic recording medium
JPH0462163B2 (en)
JP2004046928A (en) Magnetic recording medium
JPS60195737A (en) Magnetic recording body and its manufacture
JPS62103851A (en) Production of vertical magnetic recording medium
JPS6334740A (en) Production of perpendicular magnetic recording medium
JP2946748B2 (en) Manufacturing method of magnetic recording medium
JPS6194237A (en) Preparation of vertical magnetic recording medium
JPH01125723A (en) Production of perpendicular magnetic recording medium
JPH08335309A (en) Magnetic recording medium
JPS61208623A (en) Production of vertical magnetic recording medium
JPH07182644A (en) Magnetic recording medium
JPH0196823A (en) Production of magnetic recording medium
JPH04219622A (en) Magnetic recording medium and production thereof
JPS62150518A (en) Magnetic recording medium
JPH10162358A (en) Production of magnetic metallic thin-film type magnetic recording medium and apparatus for production therefor
JPS5975427A (en) Magnetic recording medium
JPS63244313A (en) Production of perpendicular magnetic recording medium
JPH01319120A (en) Magnetic recording medium
JPS6194238A (en) Preparation of magnetic recording medium