JPH07182644A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPH07182644A
JPH07182644A JP34794693A JP34794693A JPH07182644A JP H07182644 A JPH07182644 A JP H07182644A JP 34794693 A JP34794693 A JP 34794693A JP 34794693 A JP34794693 A JP 34794693A JP H07182644 A JPH07182644 A JP H07182644A
Authority
JP
Japan
Prior art keywords
magnetic
thin film
ferromagnetic metal
metal thin
magnetic layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34794693A
Other languages
Japanese (ja)
Inventor
Jiro Yoshinari
次郎 吉成
Koji Kobayashi
康二 小林
Mitsuru Takai
充 高井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP34794693A priority Critical patent/JPH07182644A/en
Publication of JPH07182644A publication Critical patent/JPH07182644A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve vertical coercive force and residual flux density by making the axis of facilitating magnetization approach a magnetic layer vertically in a magnetic recording medium having a magnetic layer formed by a slant evaporation method. CONSTITUTION:A magnetic layer is arranged on a base body. The magnetic layer has more than one layer of ferromagnetic metal thin films comprising columnar crystal particles formed by a slant evaporation method and a non- magnetic thin film existing between adjacent ferromagnetic metal thin films. The saturation magnetic flux density Bs of the magnetic layer is 2,000-4,000G and the thickness of the non-magnetic thin film is 0.15-0.50 times as much as an average value of the thickness of the ferromagnetic metal thin film. The direction of crystal growth of all the ferromagnetic metal thin films is almost the same and when the average value of an angle is represented by theta between the direction of the crystal growth of the films and the main face of the base body and the angle by E between the direction of an axis of facilitating magnetization of the magnetic layer and the main face of the base body. E-theta>0 deg..

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、斜め蒸着法により形成
された柱状結晶粒子からなる強磁性金属薄膜を磁性層と
して有する磁気記録媒体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording medium having as a magnetic layer a ferromagnetic metal thin film composed of columnar crystal grains formed by an oblique vapor deposition method.

【0002】[0002]

【従来の技術】近年、磁気記録媒体には高密度化が要求
されている。Coを主体としNi等を添加した合金から
なる強磁性金属薄膜は、飽和磁束密度が大きくしかも保
磁力が高く、蒸着が容易なので、高密度記録用の磁性層
として盛んに研究されている。Co−Ni薄膜は、通
常、斜め蒸着法により形成される。斜め蒸着法は、回転
する円筒状の冷却ドラム表面に非磁性基体を添わせて搬
送しながら、定置された強磁性金属源に電子ビーム等を
照射して蒸着を行なう方法であり、大面積の膜を一度に
形成することができるので、磁気テープの製造に好適で
ある。このような斜め蒸着法により、強磁性金属薄膜を
2層以上積層して多層構造とすることが提案されている
(特開昭61−145722号公報、特開平4−205
813号公報等)。
2. Description of the Related Art In recent years, magnetic recording media have been required to have a high density. A ferromagnetic metal thin film made of an alloy containing Co as a main component and containing Ni or the like has a large saturation magnetic flux density, a high coercive force, and is easy to deposit, so that it has been actively studied as a magnetic layer for high-density recording. The Co-Ni thin film is usually formed by the oblique vapor deposition method. The oblique vapor deposition method is a method of performing vapor deposition by irradiating a stationary ferromagnetic metal source with an electron beam or the like while transporting a non-magnetic substrate along with the surface of a rotating cylindrical cooling drum, which has a large area. Since the film can be formed at once, it is suitable for manufacturing a magnetic tape. It has been proposed to stack two or more ferromagnetic metal thin films to form a multilayer structure by such an oblique vapor deposition method (Japanese Patent Laid-Open No. 61-145722 and Japanese Patent Laid-Open No. 4-205).
813 publication).

【0003】斜め蒸着法において、強磁性金属が入射す
る方向と非磁性基体表面の法線とがなす角度を入射角と
呼び、通常、蒸着開始から終了まで入射角が漸減するよ
うに蒸着する。入射角が最も大きい蒸着開始時は蒸着速
度が最も低く、入射角が小さくなるにつれて蒸着速度は
急激に増加する。このため、強磁性金属薄膜中の柱状結
晶粒子は、非磁性基体側では非磁性基体表面と平行に近
く、非磁性基体表面から離れるに従って急激に立ち上が
り弧状に成長する。このような強磁性金属薄膜の磁化容
易軸の方向は、柱状結晶粒子の傾きに依存する。
In the oblique vapor deposition method, the angle formed by the direction in which the ferromagnetic metal is incident and the normal line to the surface of the non-magnetic substrate is called the incident angle. Usually, vapor deposition is performed so that the incident angle gradually decreases from the start to the end of vapor deposition. The vapor deposition rate is lowest at the start of vapor deposition with the largest incident angle, and the vapor deposition rate rapidly increases as the incident angle becomes smaller. Therefore, the columnar crystal grains in the ferromagnetic metal thin film are nearly parallel to the surface of the non-magnetic substrate on the non-magnetic substrate side, and rapidly rise in an arc shape with increasing distance from the surface of the non-magnetic substrate. The direction of the easy axis of magnetization of such a ferromagnetic metal thin film depends on the inclination of the columnar crystal grains.

【0004】高密度記録が可能な磁気記録方法として、
垂直磁気記録法が知られている。垂直磁気記録法では、
磁性層面内方向の反磁界の影響が避けられて高密度記録
が可能となる。従来、垂直磁気記録では単磁極ヘッドを
用いることが一般的であるが、磁化容易軸を垂直から若
干傾かせることにより、リングヘッド記録ができ、特に
優れた高密度記録特性が得られることが報告されている
{日本応用磁気学会誌vol.16,supplement,No.S1,pp51(1
992)}。
As a magnetic recording method capable of high density recording,
Perpendicular magnetic recording is known. In perpendicular magnetic recording,
The influence of the demagnetizing field in the in-plane direction of the magnetic layer is avoided, and high density recording becomes possible. Conventionally, a single magnetic pole head is generally used for perpendicular magnetic recording, but it has been reported that ring head recording can be performed by tilting the easy axis of magnetization slightly from the perpendicular, and particularly excellent high density recording characteristics can be obtained. (The Journal of Japan Applied Magnetics vol.16, supplement, No.S1, pp51 (1
992)}.

【0005】[0005]

【発明が解決しようとする課題】本発明は、斜め蒸着法
により形成された磁性層を有する磁気記録媒体におい
て、磁化容易軸を磁性層に垂直な方向に近づけ、垂直方
向の保磁力および残留磁束密度を向上させることを目的
とする。
SUMMARY OF THE INVENTION According to the present invention, in a magnetic recording medium having a magnetic layer formed by an oblique vapor deposition method, an easy axis of magnetization is brought close to a direction perpendicular to the magnetic layer, and a coercive force and a residual magnetic flux in the perpendicular direction are provided. The purpose is to improve the density.

【0006】[0006]

【課題を解決するための手段】このような目的は、下記
(1)〜(7)の本発明により達成される。 (1)基体上に磁性層を有し、この磁性層が、斜め蒸着
法により形成された柱状結晶粒子からなる2層以上の強
磁性金属薄膜と、隣り合う強磁性金属薄膜の間に存在す
る非磁性薄膜とを有し、前記磁性層の飽和磁束密度Bs
が2000〜4000 Gであり、前記非磁性薄膜の厚さ
が強磁性金属薄膜の厚さの平均値の0.15〜0.50
倍であり、すべての強磁性金属薄膜の柱状結晶粒子の平
均成長方向がほぼ同方向であり、各強磁性金属薄膜の柱
状結晶粒子の成長方向と基体主面とのなす角度の平均値
をθ(ただし、0<θ<90°)とし、磁性層の磁化容
易軸の方向と基体主面とのなす角度をE(ただし、0<
E<90°)としたとき、E−θ>0°であることを特
徴とする磁気記録媒体。 (2)前記強磁性金属薄膜の厚さの平均値が1200 A
以下である上記(1)の磁気記録媒体。 (3)前記非磁性薄膜の厚さが100 A以上である上記
(1)または(2)の磁気記録媒体。 (4)前記非磁性薄膜が前記強磁性金属薄膜に含有され
る元素の酸化物を主成分とする上記(1)〜(3)のい
ずれかの磁気記録媒体。 (5)前記強磁性金属薄膜がCoを主成分として含有す
る上記(1)〜(4)のいずれかの磁気記録媒体。 (6)磁性層垂直方向の保磁力(Hc ⊥)と磁性層面内
方向の保磁力(Hc // )との比が (Hc ⊥)/(Hc //)≧1.1 である上記(1)〜(5)のいずれかの磁気記録媒体。 (7)磁性層垂直方向の残留磁束密度(Br ⊥)と磁性
層面内方向の残留磁束密度(Br //)との比が (Br ⊥)/(Br //)≧1.1 である上記(1)〜(6)のいずれかの磁気記録媒体。
These objects are achieved by the present invention described in (1) to (7) below. (1) It has a magnetic layer on a substrate, and this magnetic layer exists between two or more layers of ferromagnetic metal thin films composed of columnar crystal grains formed by oblique vapor deposition and adjacent ferromagnetic metal thin films. And a saturation magnetic flux density Bs of the magnetic layer.
Is 2000 to 4000 G, and the thickness of the non-magnetic thin film is 0.15 to 0.50 of the average value of the thickness of the ferromagnetic metal thin film.
The average growth direction of the columnar crystal grains of all ferromagnetic metal thin films is almost the same, and the average value of the angle between the growth direction of the columnar crystal grains of each ferromagnetic metal thin film and the main surface of the substrate is θ. (Where 0 <θ <90 °), and the angle formed by the direction of the easy axis of magnetization of the magnetic layer and the main surface of the substrate is E (where 0 <
A magnetic recording medium, wherein E-θ> 0 ° when E <90 °). (2) The average thickness of the ferromagnetic metal thin film is 1200 A
The magnetic recording medium according to (1) above, which is as follows. (3) The magnetic recording medium according to (1) or (2), wherein the thickness of the non-magnetic thin film is 100 A or more. (4) The magnetic recording medium according to any one of (1) to (3) above, wherein the non-magnetic thin film has an oxide of an element contained in the ferromagnetic metal thin film as a main component. (5) The magnetic recording medium according to any one of (1) to (4), wherein the ferromagnetic metal thin film contains Co as a main component. (6) The ratio of the coercive force in the perpendicular direction of the magnetic layer (Hc ⊥) to the coercive force in the in-plane direction of the magnetic layer (Hc //) is (Hc ⊥) / (Hc //)≧1.1. )-(5) magnetic recording medium. (7) The ratio of the residual magnetic flux density in the perpendicular direction of the magnetic layer (Br ⊥) to the residual magnetic flux density in the in-plane direction of the magnetic layer (Br //) is (Br ⊥) / (Br //)≧1.1 The magnetic recording medium according to any one of (1) to (6).

【0007】[0007]

【作用および効果】斜め蒸着法により形成された単層の
強磁性金属薄膜では、磁化容易軸の方向と基体主面との
なす角度は、反磁界のために、柱状結晶粒子の成長方向
と基体主面とのなす角度よりも小さくなる。これに対
し、結晶成長方向が同方向となるように2層の強磁性金
属薄膜を積層し、両膜の間に非磁性薄膜を設けると、両
強磁性金属薄膜間の相互作用により、磁化容易軸の向き
が垂直方向に近づく。
In the single-layer ferromagnetic metal thin film formed by the oblique vapor deposition method, the angle formed by the direction of the easy axis of magnetization and the main surface of the substrate is demagnetized because of the demagnetizing field and the growth direction of the columnar crystal grains and the substrate. It is smaller than the angle formed by the main surface. On the other hand, when two layers of ferromagnetic metal thin films are laminated so that the crystal growth directions are the same, and a nonmagnetic thin film is provided between both films, the interaction between both ferromagnetic metal thin films facilitates magnetization. The direction of the axis approaches the vertical direction.

【0008】本発明では、このような多層磁気記録媒体
において、非磁性薄膜の厚さを所定範囲とすることによ
り強磁性金属薄膜間の相互作用を制御し、かつ、磁性層
の飽和磁束密度Bs を所定範囲とすることにより反磁界
の影響を制御する。これにより、磁化容易軸を磁性層に
垂直な方向に近づけてE−θを上記範囲とすることがで
きるので、垂直磁気記録に適した磁気記録媒体が実現す
る。本発明の磁気記録媒体では、例えば、磁性層垂直方
向の保磁力(Hc ⊥)と磁性層面内方向の保磁力(Hc
//)との比を (Hc ⊥)/(Hc //)≧1.1 とでき、また、磁性層垂直方向の残留磁束密度(Br
⊥)と磁性層面内方向の残留磁束密度(Br //)との比
を (Br ⊥)/(Br //)≧1.1 とすることができる。
In the present invention, in such a multilayer magnetic recording medium, the interaction between the ferromagnetic metal thin films is controlled by setting the thickness of the nonmagnetic thin film within a predetermined range, and the saturation magnetic flux density Bs of the magnetic layer is controlled. The influence of the demagnetizing field is controlled by setting the range to a predetermined range. As a result, since the easy axis of magnetization can be brought close to the direction perpendicular to the magnetic layer and E-θ can be set within the above range, a magnetic recording medium suitable for perpendicular magnetic recording is realized. In the magnetic recording medium of the present invention, for example, the coercive force (Hc ⊥) in the perpendicular direction of the magnetic layer and the coercive force (Hc in the in-plane direction of the magnetic layer).
The ratio with //) can be (Hc ⊥) / (Hc //)≧1.1, and the residual magnetic flux density (Br
The ratio of ⊥) to the residual magnetic flux density in the in-plane direction of the magnetic layer (Br //) can be (Br ⊥) / (Br //)≧1.1.

【0009】なお、従来、斜め蒸着された強磁性金属薄
膜間に非磁性薄膜を設けることは提案されているが、磁
性層の飽和磁束密度を限定した上で所定厚さの非磁性薄
膜を設け、これにより磁化容易軸を垂直方向に近づける
という提案はなく、その示唆もない。例えば、上記した
特開昭61−145722号公報および特開平4−20
5813号公報には、それぞれ斜め蒸着により同方向に
強磁性金属薄膜を成長させた磁性層が開示されており、
強磁性金属薄膜間の非磁性薄膜についての記載はある
が、飽和磁束密度の絶対値は開示されていない。特開昭
61−145722号公報は、磁性層の耐食性向上を目
的としており、垂直磁気記録に関する記載はない。
Although it has been conventionally proposed to provide a non-magnetic thin film between obliquely vapor-deposited ferromagnetic metal thin films, a non-magnetic thin film having a predetermined thickness is provided after limiting the saturation magnetic flux density of the magnetic layer. , And there is no suggestion to bring the easy axis of magnetization closer to the perpendicular direction, nor is there any suggestion. For example, JP-A-61-145722 and JP-A-4-20 mentioned above.
Japanese Patent No. 5813 discloses a magnetic layer in which a ferromagnetic metal thin film is grown in the same direction by oblique vapor deposition,
Although there is a description of a non-magnetic thin film between ferromagnetic metal thin films, the absolute value of the saturation magnetic flux density is not disclosed. Japanese Unexamined Patent Publication No. 61-145722 aims to improve the corrosion resistance of the magnetic layer, and does not describe the perpendicular magnetic recording.

【0010】特開平4−259909号公報では、斜め
蒸着法により形成された強磁性金属薄膜間の非磁性薄膜
の厚さを制御する提案がなされているが、同公報記載の
発明の目的は、長波長から短波長にわたって高い再生出
力と高いC/Nを得るためである。同公報には、磁性層
形成の際に、飽和磁化が約4500ガウス程度になるよ
うに真空槽に酸素を導入する旨の記載がある。同公報の
実施例では、下層磁性層および上層磁性層がいずれも4
500ガウス以上となっており、本発明とは異なる。ま
た、同公報には、すべての強磁性金属薄膜の結晶成長方
向を同じにする旨の明示はない。
Japanese Unexamined Patent Publication (Kokai) No. 4-259909 proposes to control the thickness of a non-magnetic thin film between ferromagnetic metal thin films formed by an oblique vapor deposition method, but the purpose of the invention described in the publication is to: This is to obtain a high reproduction output and a high C / N from a long wavelength to a short wavelength. The publication describes that oxygen is introduced into the vacuum chamber so that the saturation magnetization becomes about 4500 gauss when forming the magnetic layer. In the example of the publication, the lower magnetic layer and the upper magnetic layer are both 4
It is more than 500 gauss, which is different from the present invention. Further, this publication does not explicitly state that the crystal growth directions of all the ferromagnetic metal thin films are the same.

【0011】本発明において磁性層の飽和磁束密度を限
定するのは、飽和磁束密度の値によって磁性層に垂直な
方向の反磁界の強さが大きく変わるためである。従来、
磁性層面内方向の磁化を利用する面内記録媒体では、磁
性層の飽和磁束密度を大きくすることが求められてお
り、これは斜め蒸着法を用いた面内記録媒体においても
同様である。しかし、斜め蒸着法により形成された磁性
層では、飽和磁束密度が大きくなると磁化容易軸が面内
方向に近づくため、面内記録用としては高性能であって
も垂直磁気記録には不適である。
The reason why the saturation magnetic flux density of the magnetic layer is limited in the present invention is that the strength of the diamagnetic field in the direction perpendicular to the magnetic layer greatly changes depending on the value of the saturation magnetic flux density. Conventionally,
In an in-plane recording medium that utilizes magnetization in the in-plane direction of the magnetic layer, it is required to increase the saturation magnetic flux density of the magnetic layer, and this also applies to the in-plane recording medium using the oblique deposition method. However, in the magnetic layer formed by the oblique deposition method, the easy axis of magnetization approaches the in-plane direction when the saturation magnetic flux density increases, so that it is not suitable for perpendicular magnetic recording even though it has high performance for in-plane recording. .

【0012】ところで、信学技報、MR91-2,pp7(1991) に
は、「多層蒸着テープの磁気構造解析」の報告が記載さ
れている。同報告では、結晶成長方向が同じである2層
の磁性層と、これらの間の非磁性層とを有する蒸着テー
プについて磁気構造解析を行なっている。同報告第10
ページの図8(b)には、同方向積層膜モデルにおい
て、非磁性層が薄くなって層間相互作用が大きくなるほ
ど磁化容易軸が垂直に近づくことが示されている。同図
のモデルの磁性層の飽和磁束密度は400emu/cm3 (約
5000 G)であり、本発明とは異なる。このモデルに
おいて、層間係数c{各磁性層の厚さ/(非磁性層の厚
さ×2)}が0、すなわち非磁性層厚さが無限大で両磁
性層間に相互作用がないときは、反磁界の影響により磁
化容易軸は面内に近い方向を向いている。そして、非磁
性層が薄くなるほど磁化容易軸は垂直方向に近づき、層
間係数cが約2.5のとき結晶成長方向と磁化容易軸方
向とがほぼ一致し、さらに、層間係数cの増加(非磁性
層厚の減少)に伴なって磁化容易軸は垂直方向に近づい
ていく。
[0012] By the way, a report of "Magnetic structure analysis of multilayer vapor-deposited tape" is described in the Technical Bulletin, MR91-2, pp7 (1991). In this report, magnetic structure analysis is performed on a vapor deposition tape having two magnetic layers having the same crystal growth direction and a non-magnetic layer between them. Report 10
FIG. 8B on the page shows that in the same-direction laminated film model, the easier axis of magnetization approaches the perpendicular as the nonmagnetic layer becomes thinner and the interlayer interaction becomes larger. The saturation magnetic flux density of the magnetic layer of the model in the figure is 400 emu / cm 3 (about 5000 G), which is different from the present invention. In this model, the interlayer coefficient c {thickness of each magnetic layer / (thickness of nonmagnetic layer × 2)} is 0, that is, when the nonmagnetic layer thickness is infinite and there is no interaction between both magnetic layers, Due to the influence of the demagnetizing field, the easy axis of magnetization is oriented in the in-plane direction. As the non-magnetic layer becomes thinner, the easy axis of magnetization approaches the vertical direction, and when the interlayer coefficient c is about 2.5, the crystal growth direction and the easy axis of magnetization almost coincide with each other. As the magnetic layer thickness decreases), the easy axis of magnetization approaches the perpendicular direction.

【0013】このように、同報告には、磁性層間に存在
する非磁性層を薄くすることにより磁化容易軸を垂直に
近づけ得ることが記載されている。しかし、これはシミ
ュレーションモデルを用いたものであり、現実の磁気記
録媒体とは大きく異なる。同報告では、磁気構造解析に
一斉回転モデルを用いており、上層磁性層と下層磁性層
との間の相互作用については、交換相互作用を無視し、
双極子相互作用だけを考慮している。しかし、現実の磁
気記録媒体では、磁性層間の交換相互作用や、同一磁性
層内の柱状結晶粒子間の相互作用の影響もあるため、同
報告にも記載されているように、シミュレーションによ
る定量的な議論は不可能である。
As described above, the same report describes that the easy axis of magnetization can be made close to perpendicular by thinning the non-magnetic layer existing between the magnetic layers. However, this uses a simulation model, which is very different from the actual magnetic recording medium. In the same report, the simultaneous rotation model is used for the magnetic structure analysis, and regarding the interaction between the upper magnetic layer and the lower magnetic layer, the exchange interaction is ignored,
Only dipole interactions are considered. However, in an actual magnetic recording medium, exchange interaction between magnetic layers and interaction between columnar crystal grains in the same magnetic layer have an influence. Such a discussion is impossible.

【0014】これに対し本発明では、現実の磁気記録媒
体において垂直方向の磁気特性を良好とするためには、
非磁性薄膜を強磁性金属薄膜の0.15倍以上の厚さと
する必要があることを決定した。そして、磁性層の飽和
磁束密度を4000 G以下に抑えることにより、非磁性
薄膜を強磁性金属薄膜の0.50倍と厚くした場合で
も、垂直方向において良好な磁気特性が得られるように
した。非磁性薄膜をこのように厚くできるということ
は、高密度記録の際に有利である。高密度記録のために
は強磁性金属薄膜1層あたりの厚さを薄くする必要があ
るが、例えば、強磁性金属薄膜を500 A未満の厚さと
する場合、前記モデルにおいてc=2.5とすれば、非
磁性薄膜の厚さが100 Aを下回ってしまう。このよう
に薄い非磁性層を均一な厚さで形成することは極めて困
難であり、安定して量産することが難しい。特に、3層
以上の磁性層を積層する場合、磁性層1層あたりの厚さ
はさらに薄くなるため、このような問題はさらに顕著と
なる。
On the other hand, according to the present invention, in order to improve the magnetic characteristics in the perpendicular direction in an actual magnetic recording medium,
It was determined that the thickness of the non-magnetic thin film should be 0.15 times or more that of the ferromagnetic metal thin film. By suppressing the saturation magnetic flux density of the magnetic layer to 4000 G or less, good magnetic characteristics in the perpendicular direction can be obtained even when the nonmagnetic thin film is as thick as 0.50 times as thick as the ferromagnetic metal thin film. Being able to make the non-magnetic thin film thick in this way is advantageous in high-density recording. For high-density recording, it is necessary to reduce the thickness of one ferromagnetic metal thin film layer. For example, when the ferromagnetic metal thin film has a thickness of less than 500 A, c = 2.5 in the above model. Then, the thickness of the nonmagnetic thin film will be less than 100 A. It is extremely difficult to form such a thin non-magnetic layer with a uniform thickness, and stable mass production is difficult. In particular, when three or more magnetic layers are laminated, the thickness per magnetic layer is further reduced, so that such a problem becomes more remarkable.

【0015】[0015]

【具体的構成】以下、本発明の具体的構成について詳細
に説明する。
Specific Structure The specific structure of the present invention will be described in detail below.

【0016】本発明の磁気記録媒体は、基体上に磁性層
を有する。磁性層は、斜め蒸着法により形成された柱状
結晶粒子からなる強磁性金属薄膜と、隣り合う強磁性金
属薄膜の間に存在する非磁性薄膜とを有する。
The magnetic recording medium of the present invention has a magnetic layer on the substrate. The magnetic layer has a ferromagnetic metal thin film composed of columnar crystal grains formed by oblique vapor deposition and a nonmagnetic thin film existing between adjacent ferromagnetic metal thin films.

【0017】磁性層中の各強磁性金属薄膜の柱状結晶粒
子の成長方向は、ほぼ同方向である。本発明において柱
状結晶粒子の成長方向がほぼ同方向であるとは、磁気ヘ
ッドの走行方向に垂直な平面を考えたとき、各膜の成長
方向が前記平面の一方の側に存在していることを意味す
る。各膜の成長方向をこのような関係とするためには、
例えば後述する斜め蒸着法を用いる場合に、蒸着時の基
体走行方向をすべて同方向とすればよい。なお、本発明
では、各膜の成長方向や、各膜形成時の強磁性金属粒子
の最大入射角や最小入射角が一致している必要はない。
The columnar crystal grains of each ferromagnetic metal thin film in the magnetic layer grow in substantially the same direction. In the present invention, that the growth directions of the columnar crystal grains are substantially the same direction means that the growth direction of each film exists on one side of the plane when a plane perpendicular to the traveling direction of the magnetic head is considered. Means In order to make the growth direction of each film have such a relationship,
For example, when the oblique vapor deposition method described later is used, the substrate traveling directions during vapor deposition may all be the same direction. In the present invention, it is not necessary that the growth direction of each film and the maximum incident angle and the minimum incident angle of the ferromagnetic metal particles at the time of forming each film are the same.

【0018】各強磁性金属薄膜の柱状結晶粒子の成長方
向と基体主面とのなす角度の平均値をθとし、磁性層の
磁化容易軸の方向と基体主面とのなす角度をEとしたと
き、本発明ではE−θ>0°、好ましくはE−θ=10
〜22°である。ただし、0<θ<90°、0<E<9
0°である。22°を上回るE−θを得ようとすると磁
性層の飽和磁束密度を低くせざるを得ず、好ましくな
い。
The average value of the angle between the growth direction of the columnar crystal grains of each ferromagnetic metal thin film and the principal surface of the substrate is θ, and the angle between the easy axis of magnetization of the magnetic layer and the principal surface of the substrate is E. In the present invention, E-θ> 0 °, preferably E-θ = 10.
-22 °. However, 0 <θ <90 °, 0 <E <9
It is 0 °. Attempting to obtain E-θ exceeding 22 ° is not preferable because the saturation magnetic flux density of the magnetic layer must be lowered.

【0019】なお、柱状結晶粒子の成長方向と基体主面
とのなす角度の平均値θは、下記のようにして測定す
る。
The average value θ of the angle between the growth direction of the columnar crystal grains and the main surface of the substrate is measured as follows.

【0020】まず、磁気記録媒体を柱状結晶粒子の成長
方向を含む平面(通常、媒体主面に垂直で磁気ヘッドの
走行方向を含む平面である)で切断する。その断面に
は、各強磁性金属薄膜を構成する柱状結晶粒子の断面が
弧状に現われる。この断面に現われた柱状結晶粒子の側
面(隣り合う柱状結晶粒子の境界線)と基体主面とのな
す角度を、各強磁性金属薄膜毎に少なくとも柱状結晶粒
子100個について測定し、各強磁性金属薄膜における
それらの平均値を求める。これら各平均値を、各強磁性
金属薄膜における柱状結晶粒子の成長方向と基体主面と
のなす角度とし、さらにこれらの平均を求めてθとす
る。なお、θの測定位置は強磁性金属薄膜の厚さ方向の
中間点である。
First, the magnetic recording medium is cut along a plane including the growth direction of columnar crystal grains (generally, a plane perpendicular to the main surface of the medium and including the traveling direction of the magnetic head). In the cross section, columnar crystal grains forming each ferromagnetic metal thin film appear in an arc shape. The angle formed by the side surface of the columnar crystal grains appearing in this cross section (the boundary line between adjacent columnar crystal grains) and the main surface of the substrate was measured for at least 100 columnar crystal grains for each ferromagnetic metal thin film, and the Obtain their average value in the metal thin film. Each of these average values is taken as the angle formed by the growth direction of the columnar crystal grains in each ferromagnetic metal thin film and the main surface of the substrate, and the average of these is taken as θ. The measurement position of θ is an intermediate point in the thickness direction of the ferromagnetic metal thin film.

【0021】柱状結晶粒子の成長方向は、斜め蒸着法に
おける強磁性金属粒子の入射方向に依存し、特に最小入
射角に依存する。本発明ではθの範囲は特に限定され
ず、要求される保磁力や残留磁束密度等に応じて適宜選
択すればよいが、磁性層垂直方向で高保磁力かつ高残留
磁束密度を得るためには、好ましくはθ=35〜60°
とする。θが小さすぎると残留磁束密度が不十分とな
り、θが大きすぎると保磁力が不十分となる。
The growth direction of the columnar crystal particles depends on the incident direction of the ferromagnetic metal particles in the oblique vapor deposition method, and particularly depends on the minimum incident angle. In the present invention, the range of θ is not particularly limited and may be appropriately selected according to the required coercive force, residual magnetic flux density, etc., but in order to obtain high coercive force and high residual magnetic flux density in the direction perpendicular to the magnetic layer, Preferably θ = 35 to 60 °
And If θ is too small, the residual magnetic flux density will be insufficient, and if θ is too large, the coercive force will be insufficient.

【0022】磁性層の磁化容易軸の方向と基体主面との
なす角度Eは、VSM等により求めることができる。
The angle E formed by the direction of the easy axis of magnetization of the magnetic layer and the main surface of the substrate can be determined by VSM or the like.

【0023】磁性層の飽和磁束密度Bs は、2000〜
4000 G、好ましくは3000〜4000 Gである。
Bs が小さすぎると再生出力が減少し、Bs が大きすぎ
ると反磁界が大きくなりすぎ、磁化容易軸を垂直方向に
近づける作用を阻害する。
The saturation magnetic flux density Bs of the magnetic layer is 2000 to
It is 4000 G, preferably 3000-4000 G.
If Bs is too small, the reproduction output decreases, and if Bs is too large, the demagnetizing field becomes too large, which hinders the action of bringing the easy axis of magnetization closer to the perpendicular direction.

【0024】強磁性金属薄膜の間に存在する非磁性薄膜
は、その両側の強磁性金属薄膜同士の磁気的相互作用を
調整する作用を有する。
The non-magnetic thin film existing between the ferromagnetic metal thin films has a function of adjusting the magnetic interaction between the ferromagnetic metal thin films on both sides thereof.

【0025】非磁性薄膜の厚さは、強磁性金属薄膜の厚
さの平均値の0.15〜0.50倍とする。強磁性金属
薄膜の厚さの平均値とは、磁性層中の強磁性金属薄膜の
合計厚さをその積層数で除した値である。強磁性金属薄
膜に対し非磁性金属薄膜が薄すぎると、強磁性金属薄膜
間の交換相互作用の影響が大きくなり、また、強磁性金
属薄膜に対し非磁性薄膜が厚すぎると、両側の強磁性金
属薄膜同士の相互作用が殆どなくなり、どちらの場合も
強磁性金属薄膜が単層のときと同様となって、本発明の
効果が実現しない。
The thickness of the non-magnetic thin film is 0.15 to 0.50 times the average value of the thickness of the ferromagnetic metal thin film. The average thickness of the ferromagnetic metal thin film is a value obtained by dividing the total thickness of the ferromagnetic metal thin films in the magnetic layer by the number of laminated layers. If the non-magnetic metal thin film is too thin with respect to the ferromagnetic metal thin film, the exchange interaction between the ferromagnetic metal thin films becomes large, and if the non-magnetic thin film is too thick with respect to the ferromagnetic metal thin film, the ferromagnetic materials on both sides The interaction between the metal thin films is almost eliminated, and in both cases, the effect of the present invention cannot be realized, as in the case where the ferromagnetic metal thin film is a single layer.

【0026】非磁性薄膜の厚さは、好ましくは100 A
以上、より好ましくは150 A以上とする。非磁性薄膜
が薄すぎると、後述するように強磁性薄膜形成の際に酸
素を導入する方法で形成した場合に、均一な厚さを安定
して得ることが難しくなる。また、強磁性金属薄膜間の
交換相互作用の影響が大きくなり、磁化容易軸が磁性層
面内に近づく傾向にある。なお、非磁性薄膜の厚さは、
好ましくは300 A以下とする。
The thickness of the non-magnetic thin film is preferably 100 A.
As described above, more preferably 150 A or more. If the non-magnetic thin film is too thin, it will be difficult to stably obtain a uniform thickness when the ferromagnetic thin film is formed by a method of introducing oxygen as described later. Further, the influence of exchange interaction between the ferromagnetic metal thin films becomes large, and the easy axis of magnetization tends to approach the plane of the magnetic layer. The thickness of the non-magnetic thin film is
It is preferably 300 A or less.

【0027】非磁性薄膜は、強磁性金属薄膜に含有され
る元素の酸化物を主成分とすることが好ましい。このよ
うな非磁性薄膜は、例えば、後述するような斜め蒸着法
により強磁性金属薄膜を形成する際に、成膜雰囲気中に
酸素ガスを導入する方法などにより形成することができ
る。この方法では高い生産性が得られ、また、強磁性金
属薄膜にも若干の酸素が取り込まれて保磁力が向上する
という効果もある。
The non-magnetic thin film preferably contains, as a main component, an oxide of an element contained in the ferromagnetic metal thin film. Such a non-magnetic thin film can be formed by, for example, a method of introducing oxygen gas into a film forming atmosphere when a ferromagnetic metal thin film is formed by an oblique evaporation method as described later. With this method, high productivity can be obtained, and a small amount of oxygen is also taken into the ferromagnetic metal thin film to improve the coercive force.

【0028】このような方法により形成された酸化物を
含有する非磁性薄膜は、強磁性金属薄膜との界面付近で
徐々に酸素濃度が変化しているが、本発明では非磁性薄
膜の厚さを以下のように規定する。すなわち、非磁性薄
膜の両側に存在する2層の強磁性金属薄膜の厚さ方向中
間点における酸素濃度の平均値をMave とし、非磁性薄
膜の最大酸素濃度をNmax とすると、非磁性薄膜の最大
酸素濃度点を含み(Nmax +Mave )/2以上の酸素濃
度を有する領域の厚さを非磁性薄膜の厚さとする。非磁
性薄膜の最大酸素濃度Nmax の値に特に制限はないが、
好ましくは20原子%以上とする。Nmax をこの範囲と
することにより、強磁性金属薄膜間の相互作用の調整お
よびそれによる磁化容易軸の方向の制御が容易となる。
なお、非磁性薄膜中の酸素濃度は、磁性層をエッチング
しながらオージェ分光分析等により元素分析を行なうこ
とにより測定することができる。
In the nonmagnetic thin film containing an oxide formed by such a method, the oxygen concentration gradually changes in the vicinity of the interface with the ferromagnetic metal thin film. Is defined as follows. That is, if the average value of the oxygen concentration at the midpoint in the thickness direction of the two ferromagnetic metal thin films existing on both sides of the non-magnetic thin film is Mave and the maximum oxygen concentration of the non-magnetic thin film is Nmax, the maximum of the non-magnetic thin film is The thickness of the region containing the oxygen concentration point and having the oxygen concentration of (Nmax + Mave) / 2 or more is defined as the thickness of the non-magnetic thin film. The maximum oxygen concentration Nmax of the non-magnetic thin film is not particularly limited,
It is preferably 20 atomic% or more. By setting Nmax within this range, it becomes easy to adjust the interaction between the ferromagnetic metal thin films and thereby control the direction of the easy axis of magnetization.
The oxygen concentration in the non-magnetic thin film can be measured by performing elemental analysis such as Auger spectroscopy while etching the magnetic layer.

【0029】本発明における非磁性薄膜は、上記したよ
うな酸化物を主成分とする薄膜に限らず、酸化物以外の
各種非磁性化合物や、あるいは非磁性金属を主成分とす
るものであってもよい。酸化物以外の各種化合物も、強
磁性金属薄膜に含有される元素の化合物であることが好
ましい。また、この場合の非磁性薄膜の厚さは、磁性層
中の窒素や炭素濃度を測定して、酸化物を主成分とする
上記非磁性薄膜の厚さ測定に準じて求めればよい。
The nonmagnetic thin film according to the present invention is not limited to the above-mentioned thin film containing an oxide as a main component, but includes various nonmagnetic compounds other than an oxide or a nonmagnetic metal as a main component. Good. Various compounds other than oxides are also preferably compounds of elements contained in the ferromagnetic metal thin film. The thickness of the non-magnetic thin film in this case may be determined according to the thickness measurement of the non-magnetic thin film containing oxide as a main component by measuring the nitrogen or carbon concentration in the magnetic layer.

【0030】非磁性薄膜は、隣り合う強磁性金属薄膜の
間だけでなく、基体と最下層の強磁性金属薄膜との間
や、最上層の強磁性金属薄膜の上に存在していてもよ
い。
The non-magnetic thin film may be present not only between the adjacent ferromagnetic metal thin films, but also between the substrate and the lowermost ferromagnetic metal thin film, or on the uppermost ferromagnetic metal thin film. .

【0031】強磁性金属薄膜の厚さの平均値は、120
0 A以下であることが好ましく、各強磁性金属薄膜の厚
さもこの範囲であることが好ましい。強磁性金属薄膜が
厚すぎると、保磁力を高くすることができず、ノイズも
増加する。なお、強磁性金属薄膜の厚さは、通常、30
0 A以上とすることが好ましい。強磁性金属薄膜が薄す
ぎると膜厚の制御が困難になり、さらに、トータル磁化
量が小さくなるために出力が減少する。
The average value of the thickness of the ferromagnetic metal thin film is 120
It is preferably 0 A or less, and the thickness of each ferromagnetic metal thin film is also preferably within this range. If the ferromagnetic metal thin film is too thick, the coercive force cannot be increased and noise also increases. The thickness of the ferromagnetic metal thin film is usually 30
It is preferably 0 A or more. If the ferromagnetic metal thin film is too thin, it becomes difficult to control the film thickness, and further, the total magnetization amount becomes small and the output decreases.

【0032】上記したような強磁性金属薄膜と非磁性薄
膜からなる磁性層の厚さに特に制限はないが、記録媒体
として必要な出力を得るためには、通常、1000 A以
上とすることが好ましい。また、磁性層は、通常、25
00 A以下とすることが好ましい。磁性層が厚すぎると
記録減磁、厚み損失が大きくなり、出力が減少する。
The thickness of the magnetic layer comprising the ferromagnetic metal thin film and the non-magnetic thin film as described above is not particularly limited, but in order to obtain the output required as a recording medium, it is usually 1000 A or more. preferable. The magnetic layer is usually 25
It is preferably set to 00 A or less. If the magnetic layer is too thick, recording demagnetization and thickness loss increase, and the output decreases.

【0033】強磁性金属薄膜の積層数に特に制限はな
く、磁気特性や生産性を考慮して、2層、3層あるいは
4層以上の構成を適宜選択すればよい。
There is no particular limitation on the number of layers of the ferromagnetic metal thin film, and in consideration of magnetic characteristics and productivity, a structure of two layers, three layers or four layers or more may be appropriately selected.

【0034】本発明では、強磁性金属薄膜はCoを主成
分として含有するCo基合金であることが好ましく、強
磁性金属薄膜中のCo含有率は、60原子%以上である
ことが好ましい。Co基合金としては、CoおよびNi
を主成分とするか、またはCo、NiおよびCrを主成
分とする合金が好ましい。
In the present invention, the ferromagnetic metal thin film is preferably a Co-based alloy containing Co as a main component, and the Co content in the ferromagnetic metal thin film is preferably 60 atom% or more. Co-based alloys include Co and Ni
Alloys containing as the main component or containing Co, Ni and Cr as the main components are preferred.

【0035】各強磁性金属薄膜は、それぞれ斜め蒸着法
により形成される。斜め蒸着装置および方法に特に制限
はなく、通常のものを用いればよい。
Each ferromagnetic metal thin film is formed by an oblique vapor deposition method. There is no particular limitation on the oblique vapor deposition apparatus and method, and ordinary ones may be used.

【0036】斜め蒸着法は、例えば、供給ロールから繰
り出された長尺フィルム状の非磁性基体を回転する冷却
ドラムの表面に添わせて送りながら、一個以上の定置金
属源から斜め蒸着をし、巻き取りロールに巻き取るもの
である。この場合、強磁性金属粒子の入射角は、蒸着初
期の最大入射角θmax から最終の最小入射角θmin まで
連続的に変化する。そして、非磁性基体表面にCoを主
成分とする強磁性金属の柱状結晶粒子が弧状に成長し、
整列する。磁性層を多層構成とする場合は、この工程を
繰り返して行なう。
In the oblique vapor deposition method, for example, a long film-shaped non-magnetic substrate fed from a supply roll is sent along with the surface of a rotating cooling drum to perform oblique vapor deposition from one or more stationary metal sources, It is to be wound up on a winding roll. In this case, the incident angle of the ferromagnetic metal particles continuously changes from the maximum incident angle θmax at the beginning of vapor deposition to the final minimum incident angle θmin. Then, columnar crystal grains of ferromagnetic metal containing Co as a main component grow in an arc shape on the surface of the non-magnetic substrate,
Line up. When the magnetic layer has a multilayer structure, this step is repeated.

【0037】非磁性薄膜を形成する方法に特に制限はな
いが、成膜雰囲気中に酸素ガスを導入して蒸着を行なえ
ば、強磁性金属薄膜構成元素の酸化物を主成分とする非
磁性薄膜を極めて容易に形成することができる。
The method for forming the non-magnetic thin film is not particularly limited, but if oxygen gas is introduced into the film forming atmosphere to perform vapor deposition, the non-magnetic thin film containing an oxide of a ferromagnetic metal thin film constituent element as a main component. Can be formed extremely easily.

【0038】また、この他、強磁性金属薄膜表面を酸素
ガスやそのプラズマによって表面処理する方法などによ
り、酸化物を主成分とする非磁性薄膜を形成することも
できる。
In addition, a non-magnetic thin film containing an oxide as a main component can be formed by a method of surface-treating the surface of the ferromagnetic metal thin film with oxygen gas or its plasma.

【0039】あるいは、Al、Cr、Ag、Au、P
t、Ti、W等の非磁性金属を主成分とする非磁性薄膜
を蒸着する工程を、強磁性金属薄膜形成後に独立して設
けてもよい。
Alternatively, Al, Cr, Ag, Au, P
The step of depositing a non-magnetic thin film containing a non-magnetic metal such as t, Ti or W as a main component may be provided independently after forming the ferromagnetic metal thin film.

【0040】本発明で用いる基体は非磁性であればその
材質に特に制限はなく、強磁性金属薄膜蒸着時の熱に耐
える各種フィルム、例えばポリエチレンテレフタレート
等を用いることができる。また、特開昭63−1031
5号公報に記載の各種材料が使用可能である。
There are no particular restrictions on the material of the substrate used in the present invention so long as it is non-magnetic, and various films, such as polyethylene terephthalate, which can withstand the heat of deposition of the ferromagnetic metal thin film can be used. In addition, JP-A-63-1031
Various materials described in Japanese Patent No. 5 can be used.

【0041】本発明で用いる基体の表面には、微小な突
起が設けられることが好ましい。磁性層は蒸着膜であり
極めて薄いため、基体表面の性状が磁性層表面に直接的
に現われる。従って、基体表面に微小な突起を設ければ
磁性層表面にも微小な突起を出現させることができる。
磁性層表面の突起は磁性層の摩擦を低下させてテープ化
したときの走行性を向上させ、また、媒体の耐久性を高
める。
It is preferable that minute protrusions are provided on the surface of the substrate used in the present invention. Since the magnetic layer is a vapor-deposited film and is extremely thin, the properties of the substrate surface appear directly on the magnetic layer surface. Therefore, if minute protrusions are provided on the surface of the substrate, minute protrusions can appear on the surface of the magnetic layer.
The protrusions on the surface of the magnetic layer reduce the friction of the magnetic layer, improve the running property when formed into a tape, and enhance the durability of the medium.

【0042】基体表面の微小な突起の性状および形成方
法は特に限定されないが、突起の配設パターンや突起形
成後の基体の表面粗さが磁性層の磁気特性、特に保磁力
に影響を与えるので、微細粒子を基体表面に配設するこ
とにより突起を設けることが好ましい。
The nature and formation method of the minute protrusions on the surface of the substrate are not particularly limited, but the arrangement pattern of the protrusions and the surface roughness of the substrate after the formation of the protrusions affect the magnetic characteristics of the magnetic layer, particularly the coercive force. It is preferable to provide the protrusions by arranging the fine particles on the surface of the substrate.

【0043】本発明の磁気記録媒体の磁性層上には、磁
性層の保護および耐食性向上のために公知の種々のトッ
プコート層が設けられることが好ましい。また、テープ
化したときの走行性を確保するために、非磁性基体の磁
性層と反対側には公知の種々のバックコート層が設けら
れることが好ましい。
Various known top coat layers are preferably provided on the magnetic layer of the magnetic recording medium of the present invention to protect the magnetic layer and improve corrosion resistance. Further, in order to secure the running property when formed into a tape, it is preferable to provide various known back coat layers on the side opposite to the magnetic layer of the non-magnetic substrate.

【0044】本発明の磁気記録媒体は、磁性層垂直方向
の磁化がなされる各種垂直磁気記録に好適である。ま
た、垂直方向の磁化成分の多い磁気記録、例えばリング
ヘッドを用いた短波長記録にも好適である。また、アナ
ログ磁気記録およびデジタル磁気記録のいずれにも好ま
しく適用可能である。
The magnetic recording medium of the present invention is suitable for various types of perpendicular magnetic recording in which magnetization is performed in the direction perpendicular to the magnetic layer. It is also suitable for magnetic recording having a large amount of perpendicular magnetization component, for example, short wavelength recording using a ring head. Further, it is preferably applicable to both analog magnetic recording and digital magnetic recording.

【0045】[0045]

【実施例】以下、本発明の具体的実施例を示し、本発明
をさらに詳細に説明する。
EXAMPLES The present invention will be described in more detail below by showing specific examples of the present invention.

【0046】[実施例1]供給ロールから基体(厚さ7
μm のポリエチレンテレフタレート)を繰り出して、回
転する円筒状冷却ドラムの周面に添わせて移動させ、強
磁性金属を斜め蒸着して下層の強磁性金属薄膜を形成
し、巻き取りロールに巻き取った。次いで、基体を巻き
取りロールから供給ロールに巻き戻し、下層の強磁性金
属薄膜上に上層の強磁性金属薄膜を斜め蒸着して、磁気
記録媒体サンプルとした。上層および下層の強磁性金属
薄膜形成の際にはArガスとO2 ガスとの混合ガスを真
空槽内に流し、真空槽内の圧力を10-4Torrに保った。
混合ガスは、最小入射角付近で蒸着される部分の基体に
吹き付けるように流した。この混合ガスの吹き付けによ
り、下層と上層との界面および上層表層部に、非磁性薄
膜を形成した。
[Example 1] From a supply roll to a substrate (thickness: 7)
(μm polyethylene terephthalate) was fed out and moved along the peripheral surface of the rotating cylindrical cooling drum, the ferromagnetic metal was obliquely vapor-deposited to form a lower ferromagnetic metal thin film, and the film was wound on a winding roll. . Then, the substrate was rewound from the winding roll to the supply roll, and the upper ferromagnetic metal thin film was obliquely vapor-deposited on the lower ferromagnetic metal thin film to obtain a magnetic recording medium sample. At the time of forming the ferromagnetic metal thin films of the upper and lower layers, a mixed gas of Ar gas and O 2 gas was caused to flow in the vacuum chamber, and the pressure in the vacuum chamber was kept at 10 −4 Torr.
The mixed gas was made to flow so as to blow onto the substrate in the portion to be vapor-deposited near the minimum incident angle. By spraying this mixed gas, a nonmagnetic thin film was formed on the interface between the lower layer and the upper layer and on the surface layer of the upper layer.

【0047】なお、比較のために、下層の強磁性金属薄
膜形成後、巻き戻しをせずに巻き取りロールから基体を
繰り出して上層の強磁性金属薄膜を形成し、柱状結晶粒
子の平均成長方向が上層と下層とで逆方向のサンプルも
作製した。
For comparison, after forming the ferromagnetic metal thin film of the lower layer, the substrate is unrolled from the winding roll without unwinding to form the ferromagnetic metal thin film of the upper layer, and the average growth direction of the columnar crystal grains is increased. Samples in which the upper and lower layers were in opposite directions were also prepared.

【0048】混合ガス中のO2 ガス濃度を変えて、複数
のサンプルを作製した。
A plurality of samples were prepared by changing the O 2 gas concentration in the mixed gas.

【0049】各サンプルの上層形成および下層形成に
は、Co90原子%、Ni10原子%の組成を有する強
磁性金属を用いた。
A ferromagnetic metal having a composition of Co 90 atomic% and Ni 10 atomic% was used for forming the upper layer and the lower layer of each sample.

【0050】各サンプルの上層厚さ、下層厚さ、上層厚
さと下層厚さとの平均値(tm )、非磁性薄膜の厚さ
(tn )、およびtn /tm を、表1に示す。非磁性薄
膜の厚さは、磁性層中の酸素濃度分布をオージェ分光分
析で測定し、この結果に基づいて前述した方法により求
めた。なお、表1では、基体を巻き戻してから上層の強
磁性金属薄膜を蒸着したサンプルを「同方向」として、
また、基体を巻き戻さずに上層の強磁性金属薄膜を蒸着
したサンプルを「逆方向」として示している。
Table 1 shows the upper layer thickness, the lower layer thickness, the average value of the upper layer thickness and the lower layer thickness (t m ), the thickness of the nonmagnetic thin film (t n ), and t n / t m of each sample. Show. The thickness of the nonmagnetic thin film was obtained by measuring the oxygen concentration distribution in the magnetic layer by Auger spectroscopic analysis, and based on this result, the method described above. In Table 1, the sample in which the upper layer of the ferromagnetic metal thin film is vapor-deposited after the substrate is rewound is defined as “in the same direction”.
Further, a sample in which the ferromagnetic metal thin film of the upper layer is vapor-deposited without rewinding the substrate is shown as "reverse direction".

【0051】各サンプルについて、前述した方法により
θを測定した。柱状結晶粒子の測定数は各強磁性金属薄
膜について100個とした。結果を表1に示す。
For each sample, θ was measured by the method described above. The number of columnar crystal grains measured was 100 for each ferromagnetic metal thin film. The results are shown in Table 1.

【0052】各サンプルについて、磁化容易軸方向と基
体主面とのなす角度Eを、VSMにより求めた。角度E
およびE−θを表1に示す。
For each sample, the angle E formed by the direction of the easy axis of magnetization and the main surface of the substrate was determined by VSM. Angle E
And E-θ are shown in Table 1.

【0053】各サンプルについて、磁性層のBs 、(H
c ⊥)、(Hc //)、(Br ⊥)、(Br //)を測定
し、保磁力比(Hc ⊥)/(Hc //)および残留磁束密
度比(Br ⊥)/(Br //)を求めた。これらの結果を
表1に示す。なお、磁気特性測定時の最大磁界強度は1
0 kOeとした。
For each sample, Bs, (H
c ⊥), (Hc //), (Br ⊥), (Br //) are measured, and coercive force ratio (Hc ⊥) / (Hc //) and residual magnetic flux density ratio (Br ⊥) / (Br / /) Was asked. The results are shown in Table 1. The maximum magnetic field strength when measuring magnetic properties is 1
It was set to 0 kOe.

【0054】また、各サンプルの電磁変換特性を測定し
た。電磁変換特性は、Hi8規格VTRのSONY E
V−S900を用いて7MHz の単一信号を記録したとき
のRF出力を基準テープのRF出力と比較し、下記の評
価基準により判定した。Hi8規格VTRにおける7MH
z 信号は垂直磁化成分の割合が高く、磁気記録媒体の垂
直方向の電磁変換特性評価に好適である。結果を「電
特」として表1に示す。
The electromagnetic conversion characteristics of each sample were measured. The electromagnetic conversion characteristics of Sony E of Hi8 standard VTR
The RF output when a single signal of 7 MHz was recorded using V-S900 was compared with the RF output of the reference tape, and the evaluation was made according to the following evaluation criteria. 7 MH in Hi8 standard VTR
The z signal has a high ratio of the perpendicular magnetization component and is suitable for evaluating the electromagnetic conversion characteristics of the magnetic recording medium in the perpendicular direction. The results are shown in Table 1 as "electric characteristics".

【0055】◎:2.0 dB ≦RF出力 ○:0 dB ≦RF出力<2.0 dB △:−1.0 dB ≦RF出力<0 dB ×:RF出力<−1.0 dB⊚: 2.0 dB ≦ RF output ◯: 0 dB ≦ RF output <2.0 dB Δ: −1.0 dB ≦ RF output <0 dB ×: RF output <−1.0 dB

【0056】[0056]

【表1】 [Table 1]

【0057】表1に示される結果から、本発明の効果が
明らかである。すなわち、飽和磁束密度Bs が本発明範
囲を上回るサンプルNo. 12、厚さ比tn /tm が本発
明範囲を下回るサンプルNo. 13、逆方向蒸着のサンプ
ルNo. 14では、いずれもE−θがマイナスとなってお
り、保磁力比および残留磁束密度比が共に低い。これに
対し本発明サンプルでは、いずれも良好な結果が得られ
ている。
From the results shown in Table 1, the effect of the present invention is clear. That is, in the sample No. 12 having a saturation magnetic flux density Bs exceeding the range of the present invention, the sample No. 13 having a thickness ratio t n / tm less than the range of the present invention, and the sample No. 14 of the backward vapor deposition, all of the E- θ is negative and both the coercive force ratio and the residual magnetic flux density ratio are low. On the other hand, in the samples of the present invention, good results were obtained.

【0058】なお、3層以上の強磁性金属薄膜を積層し
た場合でも、非磁性薄膜の厚さと磁性層の飽和磁束密度
とを所定範囲とすることにより、角度θと角度Eとの関
係を本発明範囲とすることができた。
Even when three or more ferromagnetic metal thin films are laminated, the relationship between the angle θ and the angle E can be determined by setting the thickness of the non-magnetic thin film and the saturation magnetic flux density of the magnetic layer within a predetermined range. It was possible to set it as the invention range.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 基体上に磁性層を有し、この磁性層が、
斜め蒸着法により形成された柱状結晶粒子からなる2層
以上の強磁性金属薄膜と、隣り合う強磁性金属薄膜の間
に存在する非磁性薄膜とを有し、 前記磁性層の飽和磁束密度Bs が2000〜4000 G
であり、 前記非磁性薄膜の厚さが強磁性金属薄膜の厚さの平均値
の0.15〜0.50倍であり、 すべての強磁性金属薄膜の柱状結晶粒子の平均成長方向
がほぼ同方向であり、各強磁性金属薄膜の柱状結晶粒子
の成長方向と基体主面とのなす角度の平均値をθ(ただ
し、0<θ<90°)とし、磁性層の磁化容易軸の方向
と基体主面とのなす角度をE(ただし、0<E<90
°)としたとき、E−θ>0°であることを特徴とする
磁気記録媒体。
1. A magnetic layer is provided on a substrate, and the magnetic layer comprises:
It has two or more layers of ferromagnetic metal thin films composed of columnar crystal grains formed by the oblique deposition method and a non-magnetic thin film existing between adjacent ferromagnetic metal thin films, and the saturation magnetic flux density Bs of the magnetic layer is 2000-4000 G
The thickness of the non-magnetic thin film is 0.15 to 0.50 times the average value of the thickness of the ferromagnetic metal thin film, and the average growth direction of the columnar crystal grains of all the ferromagnetic metal thin films is almost the same. And the average value of the angle between the growth direction of the columnar crystal grains of each ferromagnetic metal thin film and the main surface of the substrate is θ (where 0 <θ <90 °), and the direction of the easy axis of magnetization of the magnetic layer The angle formed by the main surface of the substrate is E (where 0 <E <90
Magnetic recording medium, wherein E-θ> 0 °.
【請求項2】 前記強磁性金属薄膜の厚さの平均値が1
200 A以下である請求項1の磁気記録媒体。
2. The average value of the thickness of the ferromagnetic metal thin film is 1
The magnetic recording medium according to claim 1, which has a current density of 200 A or less.
【請求項3】 前記非磁性薄膜の厚さが100 A以上で
ある請求項1または2の磁気記録媒体。
3. The magnetic recording medium according to claim 1, wherein the nonmagnetic thin film has a thickness of 100 A or more.
【請求項4】 前記非磁性薄膜が前記強磁性金属薄膜に
含有される元素の酸化物を主成分とする請求項1〜3の
いずれかの磁気記録媒体。
4. The magnetic recording medium according to claim 1, wherein the non-magnetic thin film is mainly composed of an oxide of an element contained in the ferromagnetic metal thin film.
【請求項5】 前記強磁性金属薄膜がCoを主成分とし
て含有する請求項1〜4のいずれかの磁気記録媒体。
5. The magnetic recording medium according to claim 1, wherein the ferromagnetic metal thin film contains Co as a main component.
【請求項6】 磁性層垂直方向の保磁力(Hc ⊥)と磁
性層面内方向の保磁力(Hc // )との比が (Hc ⊥)/(Hc //)≧1.1 である請求項1〜5のいずれかの磁気記録媒体。
6. The ratio of the coercive force (Hc ⊥) in the perpendicular direction of the magnetic layer to the coercive force (Hc //) in the in-plane direction of the magnetic layer is (Hc ⊥) / (Hc //)≧1.1. Item 7. A magnetic recording medium according to any one of items 1 to 5.
【請求項7】 磁性層垂直方向の残留磁束密度(Br
⊥)と磁性層面内方向の残留磁束密度(Br //)との比
が (Br ⊥)/(Br //)≧1.1 である請求項1〜6のいずれかの磁気記録媒体。
7. A residual magnetic flux density (Br
7. The magnetic recording medium according to claim 1, wherein the ratio of ⊥) to the residual magnetic flux density in the in-plane direction of the magnetic layer (Br //) is (Br ⊥) / (Br //)≧1.1.
JP34794693A 1993-12-24 1993-12-24 Magnetic recording medium Pending JPH07182644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34794693A JPH07182644A (en) 1993-12-24 1993-12-24 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34794693A JPH07182644A (en) 1993-12-24 1993-12-24 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH07182644A true JPH07182644A (en) 1995-07-21

Family

ID=18393684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34794693A Pending JPH07182644A (en) 1993-12-24 1993-12-24 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH07182644A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002266290A (en) * 2001-03-15 2002-09-18 Dainippon Printing Co Ltd Forgery prevention thread, and forgery prevention paper and method for judging truth using the tread

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002266290A (en) * 2001-03-15 2002-09-18 Dainippon Printing Co Ltd Forgery prevention thread, and forgery prevention paper and method for judging truth using the tread

Similar Documents

Publication Publication Date Title
WO2002039433A1 (en) Magnetic recording medium and magnetic recording apparatus
US5453886A (en) Digital recording method using a specified magnetic recording medium
JP2897840B2 (en) Magnetic recording media
JPH1049853A (en) Magnetic recording medium and its manufacture
JPH07182644A (en) Magnetic recording medium
JP3867544B2 (en) Magnetic recording medium and method for manufacturing the same
JPH0475577B2 (en)
JP2004046928A (en) Magnetic recording medium
JP2977618B2 (en) Magnetic recording method
JP2977617B2 (en) Magnetic recording media
JP3167129B2 (en) Magnetic recording media
JPH08315347A (en) Thin film perpendicular magnetic recording medium
JP2004326888A (en) Magnetic recording medium
JP2006048840A (en) Magnetic recording medium, its manufacturing method and recording and reproducing method of magnetic recording medium
JPH01125723A (en) Production of perpendicular magnetic recording medium
EP0471360A1 (en) Magnetic recording medium and method of manufacturing the same
JPH033118A (en) Production of magnetic recording medium
JP2004039195A (en) Magnetic recording medium
JPH07192245A (en) Magnetic recording medium
JPH11259845A (en) Magnetic record medium and its production
JP2000163733A (en) Magnetic recording medium
JPH0648533B2 (en) Method of manufacturing perpendicular magnetic recording body
JPH06282841A (en) Magnetic recording medium and manufacture thereof
JP2000163744A (en) Production of magnetic recording medium
JPH08315348A (en) Magnetic recording medium

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20011120