JPS62103851A - Production of vertical magnetic recording medium - Google Patents

Production of vertical magnetic recording medium

Info

Publication number
JPS62103851A
JPS62103851A JP60244495A JP24449585A JPS62103851A JP S62103851 A JPS62103851 A JP S62103851A JP 60244495 A JP60244495 A JP 60244495A JP 24449585 A JP24449585 A JP 24449585A JP S62103851 A JPS62103851 A JP S62103851A
Authority
JP
Japan
Prior art keywords
gas
magnetic layer
evaporation
magnetic
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60244495A
Other languages
Japanese (ja)
Inventor
Tetsuo Oka
哲雄 岡
Takayoshi Akamatsu
孝義 赤松
Kenji Hayashi
健二 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP60244495A priority Critical patent/JPS62103851A/en
Publication of JPS62103851A publication Critical patent/JPS62103851A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Physical Vapour Deposition (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To prevent the cracking on the surface of a magnetic layer by specifying the ratio between gas having low chemical activity and gaseous oxygen to >=5vol% and <15vol% oxygen concn. and using Co as an essential component for a ferromagnetic material constituting an evaporation material. CONSTITUTION:The ratio between the gas having the low chemical activity and gaseous oxygen is specified to >=5vol% and <15vol% oxygen concn. and the Co is used as the essential component for the ferromagnetic material constituting the evaporation material in a process for producing the magnetic layer having magnetic anisotropy in the perpendicular direction on a substrate by simultaneously introducing the gas having the low chemical activity and gaseous oxygen into a vacuum atmosphere, using a ferromagnetic material as the evaporating material and executing vacuum deposition. The gas having the low chemical activity has preferably <=10kcal/mol heat of chemisorption of the evaporating material to the ferromagnetic material; more specifically, 1 or >=2 kinds of gases selected from N2, Ar, He, Ne, Xe, and Rn and used. The generation of the cracking in the surface of the magnetic layer is thereby eliminated and the excellent magnetic characteristics in the perpendicular direction are obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、真空蒸着法による垂直磁気記録媒体の製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method of manufacturing a perpendicular magnetic recording medium by a vacuum evaporation method.

[従来の技術] COを用い、酸素ガスを導入した真空雰囲気中で電子ビ
ーム蒸着法により、Co粒子と非強磁性のCoo粒子の
2相混合状態よりなるCo系の垂直磁気記録媒体が提案
されている(第7回応用磁気学会学術講演概案集、7 
aA−9〜7 aA−8,1983,11)。
[Prior Art] A Co-based perpendicular magnetic recording medium consisting of a two-phase mixed state of Co particles and non-ferromagnetic Co particles has been proposed using CO in a vacuum atmosphere with oxygen gas introduced by an electron beam evaporation method. (Collection of Abstracts of the 7th Academic Lectures of the Japan Society of Applied Magnetics, 7
aA-9-7 aA-8, 1983, 11).

上記製法は真空蒸着法であるため膜形成速度が速く、組
成制御が容易であり、また蒸着中の基板加熱の必要がな
いなどの特徴があるが、有機高分子フィルム長尺基体を
形成する際、ゲッタ作用による圧力変動が生じ、フィル
ム長尺方向の磁気特性、膜厚が変動することや、磁性層
に亀裂が生じるなどの欠点があった。
Since the above manufacturing method is a vacuum evaporation method, the film formation rate is fast, the composition can be easily controlled, and there is no need to heat the substrate during evaporation. However, there were drawbacks such as pressure fluctuations due to the getter action, variations in the magnetic properties and film thickness in the longitudinal direction of the film, and cracks in the magnetic layer.

上記製造方法の欠点を解決するため、本発明者等は化学
的活性の小さいガスと酸素ガスを用い、この両者のガス
を同時に導入し、かつガス導入時の圧力が1 x 10
−31’orr〜5 x 10−2Torrで真空蒸着
する製法を先に提案(特願昭59−214412)した
In order to solve the drawbacks of the above manufacturing method, the present inventors used a gas with low chemical activity and oxygen gas, introduced both gases at the same time, and set the pressure at the time of gas introduction to 1 x 10
A method of vacuum deposition at -31'orr to 5 x 10-2 Torr was previously proposed (Japanese Patent Application No. 59-214412).

[発明か解決しようとする問題点] しかし、上記改良された製法においても低倍率の顕微鏡
では児出し得ない非常に微細な連続的亀裂が発生ずると
いう問題かあった。
[Problems to be Solved by the Invention] However, even in the above-mentioned improved manufacturing method, there was a problem in that very fine continuous cracks were generated which could not be seen with a low-magnification microscope.

上記微細な亀裂は、記録密度が低い場合には、17■に
問題にならないが、高記録密度になってくるとヒラ1〜
エラーまたはドロップアラ1〜となるため、その解決が
待望されていた。
The above-mentioned fine cracks are not a problem when the recording density is low, but when the recording density becomes high, the
An error or a drop error occurs, and a solution to this problem has been long awaited.

本発明の目的は上記問題点を解消するものである。すな
わち磁性層の表面に亀裂の発生がなく、かつ磁気特性に
優れた垂直磁気記録媒体の製造方法を提供Uんとするも
のである。
The object of the present invention is to solve the above problems. That is, it is an object of the present invention to provide a method for manufacturing a perpendicular magnetic recording medium that is free from cracks on the surface of the magnetic layer and has excellent magnetic properties.

[問題点をVE決するための手段] 本発明は次の構成を有する。すなわら本発明は真空雰囲
気中に化学的活性の小さいガスと酸素ガスを同時に導入
し、強磁性体を蒸発材料とし、真空蒸着により基体上に
垂直方向に磁気異方性を有する磁性層を形成する製造方
法において、前記化学的活性の小さいガスと酸素ガスと
の比が酸素濃度で5体積%以上15体積%未満でおり、
上記蒸発何科を4111成する強磁性体の主成分がCo
であることを特徴とする垂直磁気記録媒体の製造方法で
ある。
[Means for resolving problems using VE] The present invention has the following configuration. In other words, the present invention simultaneously introduces a gas with low chemical activity and oxygen gas into a vacuum atmosphere, uses a ferromagnetic material as an evaporation material, and forms a magnetic layer having vertical magnetic anisotropy on a substrate by vacuum evaporation. In the manufacturing method, the ratio of the less chemically active gas to oxygen gas is 5% by volume or more and less than 15% by volume in terms of oxygen concentration,
The main component of the ferromagnetic material that makes up the above evaporation family 4111 is Co.
A method for manufacturing a perpendicular magnetic recording medium, characterized in that:

本発明において化学的活性の小さいガスとは、蒸発(A
料である強磁性体に吸着されないガスまたは吸着される
速度の遅いガスであり、その内蒸発vJ料である強磁性
体への化学吸着熱が至温において10Kca l /m
o l以下のガスが望ましく、具体的には、N2、Ar
、He、Ne、Xe、 Rnから運ばれる1種または2
種以上のガスを使用することが望ましい。さらに入手が
容易、安価であることなどから工業的規模での使用では
N2、Arか最も適している。“ 本発明において化学的活性の小さいガスと酸素ガスの比
は酸素濃度で5体積%以上15体積%未渦の範囲でおる
必要がある。酸素濃度が5体積%未満では垂直方向の保
磁力が低下し、異方性磁界も低下する。15体積%以上
では、磁性層に微細な亀裂を生じる場合がある。
In the present invention, the gas with low chemical activity refers to evaporation (A
It is a gas that is not adsorbed to the ferromagnetic material, or a gas that is adsorbed at a slow rate, and the heat of chemical adsorption to the ferromagnetic material, which is the evaporation vJ material, is 10 Kcal/m at the lowest temperature.
It is preferable to use a gas of less than o l, specifically, N2, Ar
, He, Ne, Xe, one or two types carried from Rn
It is desirable to use more than one species of gas. Furthermore, N2 and Ar are most suitable for use on an industrial scale because they are easily available and inexpensive. “In the present invention, the ratio of the less chemically active gas to the oxygen gas must be within the range of 5% by volume or more and 15% by volume of oxygen.If the oxygen concentration is less than 5% by volume, the coercive force in the vertical direction will decrease. At 15% by volume or more, fine cracks may occur in the magnetic layer.

本発明の製造方法で使用される蒸発材料は強磁性体であ
るCoを主成分とするものであるが、磁気特性値の調整
、耐摩耗性、耐食性などを向上する目的でFeまたはN
1などを添加しても良い。
The evaporation material used in the manufacturing method of the present invention is mainly composed of Co, which is a ferromagnetic material, but Fe or N is added to adjust the magnetic property values and improve wear resistance, corrosion resistance, etc.
1 etc. may be added.

ただし垂直方向保持力(Ho1)、異方性磁界(HK)
などを低下さl!ないため蒸発材料の内Coの占める割
合は、小吊比で80%以上が望ましく、さらに望ましく
は90%以上でおる。
However, vertical coercive force (Ho1), anisotropic magnetic field (HK)
And so on! Therefore, the proportion of Co in the evaporated material is desirably 80% or more, more desirably 90% or more.

本発明で用いることのできる基体としては、特に限定さ
れるものではないが、アルミニウム、銅、鉄、ステンレ
スなどで代表される金属、プラスチックフィルムなどの
有機重合体材料などが挙げられる。特に加工性、成形性
、可撓性が重視される場合には、有PAff1合体材お
1が適しており、中でもポリエチレンナレフタレー1〜
、ポリエチレンナフタレ−1〜、ポリヱチレンジ力ルポ
キシレート、ポリエヂレンα、Bヒス(2−クロルフェ
ノキシ)エタン−4,4−シカルボキシレー1〜などの
ポリエステル、ポリエチレン、ポリプロピレン、ポリブ
テンなどのポリオレフィン、ポリメチルメタアクリレ−
1へ、ポリカーボネート、ポリスルホン、ポリアミド、
芳香族ポリアミド、ポリフェニレンスルフィド、ポリフ
ェニレンオキサイド、ポリアミドイミド、ポリイミド、
あるいはこれらの混合物、共重合物などが適している。
Substrates that can be used in the present invention include, but are not particularly limited to, metals such as aluminum, copper, iron, and stainless steel, and organic polymer materials such as plastic films. In particular, when workability, moldability, and flexibility are important, PAff1 composite material 1 is suitable, and among them, polyethylene naphthalene 1~
, polyesters such as polyethylene naphthalene-1~, polyethylene dihydropoxylate, polyethylene α, B-his(2-chlorophenoxy)ethane-4,4-cycarboxylate 1~, polyolefins such as polyethylene, polypropylene, polybutene, polymethyl methane, etc. acrylic
To 1, polycarbonate, polysulfone, polyamide,
Aromatic polyamide, polyphenylene sulfide, polyphenylene oxide, polyamideimide, polyimide,
Alternatively, mixtures and copolymers of these are suitable.

特に二軸延伸されたフィルム、シート類は、平面性、寸
法安定性に優れ最も適しており、中でもポリエステル、
ポリフェニレンスルフィド、芳香族ポリアミドなどが最
も適している。基体の形状としては、ドラム状、ディス
ク状、シー1〜状、テープ状、カード状などいずれでも
良く、厚みら特に限定されるものではない。シー1〜状
、テープ状、カード状等の場合、加工性、寸法安定性の
点て、厚みは2μ〜500μ、中でも4μ〜200μの
範囲が好ましい。
In particular, biaxially stretched films and sheets are most suitable due to their excellent flatness and dimensional stability, and among them polyester,
Polyphenylene sulfide, aromatic polyamide, etc. are most suitable. The shape of the base body may be a drum shape, a disk shape, a sheet shape, a tape shape, a card shape, etc., and the thickness is not particularly limited. In the case of sheet shapes, tape shapes, card shapes, etc., the thickness is preferably in the range of 2 μ to 500 μ, particularly 4 μ to 200 μ, in terms of workability and dimensional stability.

本発明で用いられる基体は、次に述べる磁性層の形成に
先たち、易接着化、平面性改良、着色、帯電防止、耐摩
耗性付与等の目的で各種の表面処理や前処理か施されて
も良い。
Prior to the formation of the magnetic layer described below, the substrate used in the present invention is subjected to various surface treatments and pretreatments for the purpose of facilitating adhesion, improving flatness, coloring, preventing static electricity, imparting wear resistance, etc. It's okay.

本発明で述べる真空蒸着法としては、抵抗加熱蒸着、誘
導加熱蒸着、電子ビーム蒸着、イオンブレーティング、
イオンビーム蒸着、レーリ“−ビーム蒸着、アーク放電
蒸着などの真空蒸着法のいずれかの方法でも実施が可能
でおるが、保磁力、異方性磁界などの磁気特性を向上す
る上で、また高い製膜速度を得るために電子ビーム蒸着
、イオンブレーティングなどの方法が適しており、ざら
に操作性、量産性などの工業的観点から電子ビーム蒸着
が最も適している。
The vacuum evaporation methods described in the present invention include resistance heating evaporation, induction heating evaporation, electron beam evaporation, ion blating,
Vacuum deposition methods such as ion beam evaporation, Rayleigh beam evaporation, and arc discharge evaporation can be used; Methods such as electron beam evaporation and ion blating are suitable in order to obtain a film forming rate, and electron beam evaporation is most suitable from an industrial viewpoint such as ease of operation and mass production.

次に図面に基づいて本発明の製造方法の一例を説明する
。第1図は本発明の製造方法を実施する電子ビーム蒸着
装置の一例である。第1図において巻き出し軸1、ニッ
プロール2、主ドラム3、ニップロール4、巻き取り軸
5によって有機高分子より成る長尺フィルム6の走行系
が構成されている。巻き出し軸1にロール状に巻かれた
有機高分子フィルム6を配設する。フィルム6はニップ
ロール2、主ドラム3、ニップロール4を経て巻き取り
軸5に配設された巻き取りコアに巻き取られる。主ドラ
ム3は有機高分子フィルム6の裏面を50’C以下に保
つように、例えば通水などによる冷却機能(図示省略)
を有している。14は隔壁であり、該隔壁14にJ:つ
て真空槽10は上槽15と下槽16とに分けられ、各々
排気口11゜12により各々排気されるようになってい
る。7は蒸発蒸気流の入射角度を制限するための遮蔽板
である。入射角とは第2図において基体面Cに入射する
蒸発蒸気流Aと基体面Cに立てた法線Bとのなす角θで
ある。第1図における遮蔽板7は入射角が45度以下の
選ばれた角度を越える蒸発蒸気流が基体面に入射しない
ように開口部17を有している。8は凹部を有した電子
ビーム蒸着器である。
Next, an example of the manufacturing method of the present invention will be explained based on the drawings. FIG. 1 shows an example of an electron beam evaporation apparatus for carrying out the manufacturing method of the present invention. In FIG. 1, an unwinding shaft 1, a nip roll 2, a main drum 3, a nip roll 4, and a take-up shaft 5 constitute a running system for a long film 6 made of an organic polymer. An organic polymer film 6 wound into a roll is disposed on an unwinding shaft 1. The film 6 passes through the nip roll 2, the main drum 3, and the nip roll 4, and is then wound onto a winding core disposed on a winding shaft 5. The main drum 3 has a cooling function (not shown), for example, by passing water to keep the back surface of the organic polymer film 6 at 50'C or less.
have. Reference numeral 14 denotes a partition wall, and the partition wall 14 divides the vacuum tank 10 into an upper tank 15 and a lower tank 16, each of which is evacuated through exhaust ports 11 and 12, respectively. 7 is a shielding plate for limiting the angle of incidence of the evaporative vapor flow. The angle of incidence is the angle θ between the evaporated vapor flow A incident on the substrate surface C and the normal line B to the substrate surface C in FIG. The shielding plate 7 in FIG. 1 has an opening 17 to prevent the evaporated vapor flow from entering the substrate surface beyond a selected angle of incidence of 45 degrees or less. 8 is an electron beam evaporator having a recessed portion.

上記の装置を使用して、本発明の製造方法により垂直磁
気記録媒体を形成するのであるが、上記した装置にのみ
限定されるものではない。
Although the above apparatus is used to form a perpendicular magnetic recording medium by the manufacturing method of the present invention, it is not limited to the above apparatus.

第1図に示した蒸着装置の長尺フィルム走行系に有機重
合体材料より成る長尺フィルム、例えばポリエチレンテ
レフタレートフィルムを配設し、電子ビーム蒸着器8の
凹部に例えばCOを配した状態にて真空槽10を排気口
11.12より各々排気する。上槽15は圧力が5 x
 10 ’Torr以下になるまで、下槽基体近傍圧力
は5X10−5T。
A long film made of an organic polymer material, such as a polyethylene terephthalate film, is disposed in the long film running system of the vapor deposition apparatus shown in FIG. The vacuum chambers 10 are evacuated through exhaust ports 11 and 12, respectively. Upper tank 15 has a pressure of 5 x
The pressure near the base of the lower tank is 5X10-5T until it becomes 10'Torr or less.

rr以下になるまで各々排気する。Each is evacuated until it becomes below rr.

次いでバリアプルリークバルブ13より、化学的活性の
小さいガスと酸素ガスを基体近傍の圧力が1 x 10
 ’Torr 〜5 x 10−”Torrの範囲の内
所定の圧力となるように導入管18を経て基体近傍に導
入する。かかる状態とした後、基体である前記ポリエチ
レンテレフタレートフィルムを走行さけ、該フィルム上
に電子ビーム蒸着により例えばCoを溶融蒸発ヒしめ連
続的に垂直方向に磁気異方性を有する磁性層を形成する
のである。
Next, a gas with low chemical activity and oxygen gas are pumped through the barrier pull leak valve 13 until the pressure near the substrate is 1 x 10.
It is introduced into the vicinity of the substrate through the introduction pipe 18 so as to achieve a predetermined pressure within the range of 'Torr to 5 x 10-'' Torr. For example, Co is melted and evaporated thereon by electron beam evaporation to continuously form a magnetic layer having magnetic anisotropy in the perpendicular direction.

真空層内に導入する化学的活性の小さいガスと酸素ガス
は導入時の基体近傍の圧力が1X10−3卸「r〜5 
x 10−2Torrの範囲を外れた場合、低圧側では
異方性磁界が低下し、また高圧側では蒸発速度か低下し
、垂直方向保磁力も低下する。
Gases with low chemical activity and oxygen gas introduced into the vacuum layer have a pressure near the substrate of 1X10-3 at the time of introduction.
When outside the range of x 10-2 Torr, the anisotropic magnetic field decreases on the low pressure side, the evaporation rate decreases on the high pressure side, and the vertical coercive force also decreases.

さらに磁気特性を向上し、高い成膜速度を得るためには
、基体近傍の圧力が2 x 10−3Torr〜2X1
0−2Torrの範囲が望ましい。
In order to further improve the magnetic properties and obtain a high deposition rate, the pressure near the substrate must be between 2 x 10-3 Torr and 2 x 1
A range of 0-2 Torr is desirable.

なお本発明の製造方法により得られる磁性層の厚さは、
特に限定するものではないが実用的には0.03μm〜
5μmの範囲であり、可撓性、磁気ヘッドとの接触、お
よび該磁性層の成膜速度を考慮した場合、0.05μm
〜2.0μmの範囲が望ましい。
The thickness of the magnetic layer obtained by the manufacturing method of the present invention is:
Although not particularly limited, practically 0.03 μm or more
The range is 5 μm, and when considering flexibility, contact with the magnetic head, and film formation speed of the magnetic layer, it is 0.05 μm.
A range of ~2.0 μm is desirable.

[発明の作用] 第3図、第4図は本発明によらない磁性層の表面電子顕
微鏡写真(倍率: 5000倍)、第5図は本発明の磁
性層の表面電子顕微鏡写真(倍率:5000倍)である
[Function of the invention] FIGS. 3 and 4 are surface electron micrographs (magnification: 5000 times) of a magnetic layer not according to the present invention, and FIG. 5 is a surface electron micrograph (magnification: 5000 times) of a magnetic layer according to the present invention. times).

磁性層に発生する亀裂については、十分解明できていな
いが、発明者らが鋭意検討した結果から次の点が明らか
となった。
Although the cracks that occur in the magnetic layer have not been fully elucidated, the following points have become clear as a result of intensive study by the inventors.

即ち、ガスを導入しないで強磁性体を真空蒸着した場合
、また酸素ガスのみを導入して強磁性体を真空蒸着した
場合では、第3図に示すような、幅の広いマクロな亀裂
を生じる。一方窒素ガス・Arガスなど化学的活性の小
さいガスのみを導入して、強磁性体を真空蒸着した場合
では亀裂の発生は全くない。しかし、この場合得られた
磁性層の垂直方向の保磁力・異方性磁界は著しく低下し
、いわゆる垂直磁化膜は形成できない。また窒素ガスな
どの化学的活性の小さいガスと酸素ガスの両者を同量程
度、同時に導入して強磁性体を真空蒸着した場合では、
垂直磁化膜は形成可能で、またマクロな亀裂の発生もな
い。しかし、第4図に示ずような幅の狭い微細かつ連続
的亀裂の発生がある。微細かつ連続的な亀裂の程度・発
生傾度については化学的活性の小さいガスと酸素ガスの
比および供給量との相関があり、本発明の製造方法に示
すように酸素濃度が5体積%以上15体積%未満のガス
組成の範囲とすれば、第5図に示すように、亀裂の発生
が全くなく、かつ垂直方向の保磁力・磁気異方性も充分
な垂直磁気記録媒体が得られる。断面透過電子顕微鏡な
どにより該亀裂のない磁性層をB!察した結果では、柱
状構造の微細化が進/νでおり、この柱状構造の微細化
により磁性層内部応力が緩和され、亀裂発生が抑制され
るものと推定される。
In other words, when a ferromagnetic material is vacuum-deposited without introducing gas, or when a ferromagnetic material is vacuum-deposited by introducing only oxygen gas, wide macroscopic cracks as shown in Figure 3 occur. . On the other hand, when a ferromagnetic material is vacuum-deposited by introducing only a gas with low chemical activity such as nitrogen gas or Ar gas, no cracks occur at all. However, in this case, the perpendicular coercive force and anisotropy field of the obtained magnetic layer are significantly reduced, making it impossible to form a so-called perpendicularly magnetized film. In addition, when a ferromagnetic material is vacuum-deposited by simultaneously introducing the same amount of a gas with low chemical activity such as nitrogen gas and oxygen gas,
A perpendicularly magnetized film can be formed, and macroscopic cracks do not occur. However, as shown in FIG. 4, narrow, fine and continuous cracks occur. The degree and occurrence tendency of fine and continuous cracks are correlated with the ratio of chemically active gas to oxygen gas and the supply amount, and as shown in the production method of the present invention, when the oxygen concentration is 5% by volume or more If the gas composition is within a range of less than vol. %, a perpendicular magnetic recording medium with no cracking at all and sufficient perpendicular coercive force and magnetic anisotropy can be obtained, as shown in FIG. The crack-free magnetic layer was examined using a cross-sectional transmission electron microscope (B!). The observed results show that the columnar structure becomes finer at a rate of /v, and it is presumed that the internal stress of the magnetic layer is alleviated by this finer columnar structure, thereby suppressing the occurrence of cracks.

[特性の測定方法・評価基Q=] ■ 磁性層の亀裂発生確認方法 磁性層の亀裂有無の確認は走査型電子顕微鏡((株)明
石製作所製、l5I−DS130、走査型電子顕微鏡)
により磁性層表面写真を躍影(拡大倍率1000倍〜1
0000倍)し、亀裂の有無を確認した。
[Method for measuring characteristics/Evaluation basis Q=] ■ Method for confirming the occurrence of cracks in the magnetic layer Confirm the presence or absence of cracks in the magnetic layer using a scanning electron microscope (manufactured by Akashi Seisakusho Co., Ltd., 15I-DS130, scanning electron microscope)
The photograph of the surface of the magnetic layer is taken by
0000 times) to confirm the presence or absence of cracks.

■ 保磁力・異方性磁界の測定方法 磁性層の磁気特性は、JIS  (、−2561で示さ
れている振動試料型磁力計法や、自記磁束h4法によっ
て測定することができる。本発明においては撮動試料型
磁力計(理研電子(株)製、BHV−30>によって測
定した。
■ Method for measuring coercive force and anisotropic magnetic field The magnetic properties of the magnetic layer can be measured by the vibrating sample magnetometer method specified in JIS (, -2561) or the self-recording magnetic flux h4 method. was measured using a moving sample magnetometer (manufactured by Riken Denshi Co., Ltd., BHV-30).

■ 導入ガス流口の制御および流量測定真空槽内に導入
するガスの流量は質量流旧劇とガス流量コン1−ロール
バルブの組み合Uにより行なった。具体的にはエステツ
ク(株〉製“マスフローコントローラ”(SECシリー
ズ〉を使用した。
(2) Control of inlet gas flow port and measurement of flow rate The flow rate of gas introduced into the vacuum chamber was controlled by a combination U of a mass flow control valve and a gas flow rate control valve. Specifically, a "mass flow controller" (SEC series) manufactured by Estech Co., Ltd. was used.

[実施例] 以下実施例に基づいて本発明の製造方法の一実施態様を
説明する。
[Example] An embodiment of the manufacturing method of the present invention will be described below based on an example.

実施例1〜4、比較例1〜4 第1図に示した電子ビーム蒸着装置の上槽圧力、下II
基体近傍圧力を各々5 x 10−4Torr以下、1
x 10−5Torr以下になるまで排気し、次いで窒
素と酸素の混合ガスをバリアプルリークバルブを経て下
槽内に導入し、厚さ50μの2軸延伸されたポリエチレ
ンテレフタレートフィルムを所定の走行速度で走行させ
、電子ビーム蒸着によりGoを溶融蒸発けじめ、前記フ
ィルム上に連続的に磁気記録層を形成する。なお該電子
ビーム蒸着装置内部には蒸発蒸気流の入射角が26°以
下となるような間口部を有する遮蔽板を配設し、また前
記ポリエチレンテレフタジ−1〜フイルムの裏面は50
°C以下になるよう主ドラムにより冷却した。電子ビー
ム蒸着器としては日本真空技術(株)製EGL−110
型を使用し、該電子ビーム蒸着器用電源として日本真空
技術(株)製、HP−1610Fを使用した。該電子ビ
ーム蒸着型凹部には純度99.9%以上のC○を使用し
た。
Examples 1 to 4, Comparative Examples 1 to 4 Upper tank pressure and lower II of the electron beam evaporation apparatus shown in FIG.
The pressure near the base is 5 x 10-4 Torr or less, 1
x 10-5 Torr or less, then a mixed gas of nitrogen and oxygen was introduced into the lower tank through the barrier pull leak valve, and a biaxially stretched polyethylene terephthalate film with a thickness of 50μ was run at a predetermined running speed. The magnetic recording layer is continuously formed on the film by melting and evaporating Go by electron beam evaporation. A shielding plate having a frontage such that the incident angle of the evaporated vapor flow is 26 degrees or less is disposed inside the electron beam evaporation apparatus, and the back surfaces of the polyethylene terephthalate films 1 to 5
It was cooled by the main drum to below °C. The electron beam evaporator is EGL-110 manufactured by Japan Vacuum Technology Co., Ltd.
HP-1610F manufactured by Japan Vacuum Technology Co., Ltd. was used as a power source for the electron beam evaporator. C○ with a purity of 99.9% or more was used for the electron beam evaporation type recess.

上述した製造方法により、導入ガスの窒素と酸N必るい
はアルゴンと酸素の混合ガスの組成を酸素濃度が5%以
上、15%未満の範囲で変えて磁性層を形成した例を実
施例1〜4とする。ガスの組成を上記に示した範囲外と
したほかは同様の方法で、磁性層を形成した例を比較例
1〜4とする。
Example 1 shows an example in which a magnetic layer was formed by the above-mentioned manufacturing method by changing the composition of the introduced gas, a mixed gas of nitrogen and acid N or argon and oxygen, so that the oxygen concentration was in the range of 5% or more and less than 15%. ~4. Comparative Examples 1 to 4 are examples in which magnetic layers were formed in the same manner except that the gas composition was outside the range shown above.

実施例1〜4、比較例1〜4の基体近傍圧力は1x 1
0  Torr 〜5 x 10 ’Torrの範囲内
であり、各実施例は各々ガス導入量をパラメータとした
The pressure near the substrate in Examples 1 to 4 and Comparative Examples 1 to 4 was 1x 1
It was within the range of 0 Torr to 5 x 10' Torr, and each example used the amount of gas introduced as a parameter.

なお磁性層の膜厚は2000〜3000人になるJ:う
に基体であるポリエチレンテレフタレートフィルムの走
行速度を変えて調整した。また実施例1〜4、比較例1
〜4の電子ビーム蒸着器への投入電力は、4にW一定で
実施した。
The thickness of the magnetic layer was adjusted by changing the running speed of the polyethylene terephthalate film, which is a sea urchin substrate. In addition, Examples 1 to 4, Comparative Example 1
The power input to the electron beam evaporator in steps 4 to 4 was constant at W.

実施例1〜4の導入ガスの種類、および酸素濃度、ガス
導入団と1qられた磁性層の垂直方向保磁力・異方性磁
界と磁性層表面の亀裂の有無について第1表〜第4表に
示す。比較例1〜4についても同様に第5表〜第8表に
示す。
Tables 1 to 4 regarding the type of gas introduced in Examples 1 to 4, oxygen concentration, perpendicular coercive force and anisotropic magnetic field of the magnetic layer 1q with the gas introduction group, and the presence or absence of cracks on the surface of the magnetic layer. Shown below. Comparative Examples 1 to 4 are also shown in Tables 5 to 8.

第1表〜第4表で明らかなように本発明の装3h方法に
よれば磁性層表面に微細な亀裂の発生がなく、また磁気
特性は垂直方向に磁気異方性を有し垂直磁気記録方式が
目的とする高密度記録に適した磁気記録媒体を得ること
ができた。
As is clear from Tables 1 to 4, according to the 3h method of the present invention, there are no minute cracks on the surface of the magnetic layer, and the magnetic properties have magnetic anisotropy in the perpendicular direction, making it possible to record perpendicular magnetic recording. A magnetic recording medium suitable for high-density recording, which is the objective of this method, was obtained.

一方、第5表、第6表で明らかなように、比較例1,2
は垂直方向の磁気特性は優れるものの磁性層の表面には
微細な連続的亀裂の発生があり、また酸素ガスのみを導
入した比較例3では第7表に示すように磁性層表面にマ
クロな亀裂の発生があった。酸素濃度の低い実施例4で
は第8表に示すように磁性層表面の亀裂の発生はないが
、磁性特性に劣り、比較例1〜4は高密度記録を目的と
する垂直磁気記録媒体として実用に供し難いものであっ
た。
On the other hand, as is clear from Tables 5 and 6, Comparative Examples 1 and 2
Although the magnetic properties in the perpendicular direction are excellent, there are continuous fine cracks on the surface of the magnetic layer, and in Comparative Example 3 where only oxygen gas is introduced, there are macroscopic cracks on the surface of the magnetic layer as shown in Table 7. There was an occurrence of As shown in Table 8, in Example 4 with a low oxygen concentration, no cracks occurred on the surface of the magnetic layer, but the magnetic properties were poor, and Comparative Examples 1 to 4 were not put to practical use as perpendicular magnetic recording media for the purpose of high-density recording. It was difficult to serve.

第1表:実施例1 導入ガス:N2102、酸素濃度14%第2表:実施例
2 導入ガス:N2102、酸素m1度10%第3表:実施
例3 導入ガス:Ar102、酸素)開度5%第4表:実施例
4 導入ガス:Ar102、酸素濃度10%第5表:比較例
] 導入ガス:N2102、酸素濃度20%第6表:比較例
2 導入ガス:N2102、酸素濃度70%第7表:比較例
3 導入ガス:02、酸素濃度100% 第8表:比較例4 導入ガス:N2102、酸素濃度2% [発明の効果] 以上述べたように、本発明の垂直磁気記録媒体のI!A
造方決方法れば、磁性層表面に亀裂の発生がなく、かつ
垂直方向の磁気特性に優れた垂直磁気記録媒体を1qる
ことかできた。
Table 1: Example 1 Introduced gas: N2102, oxygen concentration 14% Table 2: Example 2 Introduced gas: N2102, oxygen m1 degree 10% Table 3: Example 3 Introduced gas: Ar102, oxygen) Opening degree 5 % Table 4: Example 4 Introduced gas: Ar102, oxygen concentration 10% Table 5: Comparative example] Introduced gas: N2102, oxygen concentration 20% Table 6: Comparative example 2 Introduced gas: N2102, oxygen concentration 70% Table 7: Comparative Example 3 Introduced gas: 02, oxygen concentration 100% Table 8: Comparative Example 4 Introduced gas: N2102, oxygen concentration 2% [Effects of the Invention] As described above, the perpendicular magnetic recording medium of the present invention I! A
Based on the manufacturing method, it was possible to produce 1q of perpendicular magnetic recording media with no cracks on the surface of the magnetic layer and excellent magnetic properties in the perpendicular direction.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の製造方法を実施するための電子ビーム
蒸着装、置の一例を示す概略図、第2図は蒸発蒸気流の
入射角の説明図である。 第3図、第4図は本発明によらない磁性層表面の粒子構
造を示す電子顕微鏡写真、第5図は本発明の製造方法に
よる磁性層表面の粒子構造を示す電子顕微鏡写真である
。 1:巻き出し軸  3:主ドラム 5:巻き取り軸  6:有機高分子フィルム7:遮蔽板
    8:電子ビーム蒸着器9:蒸発vJ利  10
:真空槽 11:排気口   12:排気口 13:バリアプルリークバルブ 17:開口部    A:蒸発蒸気流 B;阜体面に立てた法線  C:基体面O:入用角 14許出願人   東し株式会社 g< 2 In 第:、p’、’yp、 b′j・ε・、″i
FIG. 1 is a schematic diagram showing an example of an electron beam evaporation apparatus and apparatus for carrying out the manufacturing method of the present invention, and FIG. 2 is an explanatory diagram of the incident angle of the evaporated vapor flow. 3 and 4 are electron micrographs showing the grain structure on the surface of the magnetic layer not according to the present invention, and FIG. 5 is an electron micrograph showing the grain structure on the surface of the magnetic layer according to the manufacturing method of the present invention. 1: Unwinding shaft 3: Main drum 5: Winding shaft 6: Organic polymer film 7: Shielding plate 8: Electron beam evaporator 9: Evaporation vJ profit 10
: Vacuum chamber 11: Exhaust port 12: Exhaust port 13: Barrier pull leak valve 17: Opening A: Evaporated vapor flow B; Normal line on the body surface C: Base surface O: Entry angle 14 Applicant East Co., Ltd. g< 2 In No.:, p', 'yp, b'j・ε・,″i

Claims (2)

【特許請求の範囲】[Claims] (1)真空雰囲気中に化学的活性の小さいガスと酸素ガ
スを同時に導入し、強磁性体を蒸発材料とし、真空蒸着
により基体上に垂直方向に磁気異方性を有する磁性層を
形成する製造方法において、前記化学的活性の小さいガ
スと酸素ガスとの比が酸素濃度で5体積%以上15体積
%未満であり、上記蒸発材料を構成する強磁性体の主成
分がCoであることを特徴とする垂直磁気記録媒体の製
造方法。
(1) Production in which a gas with low chemical activity and oxygen gas are simultaneously introduced into a vacuum atmosphere, a ferromagnetic material is used as the evaporation material, and a magnetic layer having vertical magnetic anisotropy is formed on the substrate by vacuum evaporation. The method is characterized in that the ratio of the gas with low chemical activity to the oxygen gas is 5% by volume or more and less than 15% by volume in terms of oxygen concentration, and the main component of the ferromagnetic material constituting the evaporation material is Co. A method for manufacturing a perpendicular magnetic recording medium.
(2)ガス導入時の基体近傍の圧力が1×10^−^3
Torr〜5×10^−^2Torrである特許請求の
範囲第(1)項記載の垂直磁気記録媒体の製造方法。
(2) The pressure near the substrate when gas is introduced is 1×10^-^3
The method for manufacturing a perpendicular magnetic recording medium according to claim (1), wherein Torr to 5×10^-^2 Torr.
JP60244495A 1985-10-31 1985-10-31 Production of vertical magnetic recording medium Pending JPS62103851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60244495A JPS62103851A (en) 1985-10-31 1985-10-31 Production of vertical magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60244495A JPS62103851A (en) 1985-10-31 1985-10-31 Production of vertical magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS62103851A true JPS62103851A (en) 1987-05-14

Family

ID=17119513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60244495A Pending JPS62103851A (en) 1985-10-31 1985-10-31 Production of vertical magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS62103851A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01232536A (en) * 1988-03-11 1989-09-18 Hitachi Ltd Production of perpendicular magnetic recording medium
JPH02105332A (en) * 1988-10-14 1990-04-17 Nec Corp Production of magnetic recording medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5755534A (en) * 1980-09-20 1982-04-02 Hitachi Maxell Ltd Production of magnetic recording medium
JPS5898843A (en) * 1981-12-07 1983-06-11 Tdk Corp Manufacture of magnetic recording medium

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5755534A (en) * 1980-09-20 1982-04-02 Hitachi Maxell Ltd Production of magnetic recording medium
JPS5898843A (en) * 1981-12-07 1983-06-11 Tdk Corp Manufacture of magnetic recording medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01232536A (en) * 1988-03-11 1989-09-18 Hitachi Ltd Production of perpendicular magnetic recording medium
JPH02105332A (en) * 1988-10-14 1990-04-17 Nec Corp Production of magnetic recording medium

Similar Documents

Publication Publication Date Title
US4726988A (en) Vertical magnetic recording medium
US4239835A (en) Magnetic recording medium
US4975324A (en) Perpendicular magnetic film of spinel type iron oxide compound and its manufacturing process
JPS62103851A (en) Production of vertical magnetic recording medium
JP3323660B2 (en) Magnetic recording medium and thin film manufacturing method and thin film manufacturing apparatus
JPS6334740A (en) Production of perpendicular magnetic recording medium
JPS61276124A (en) Production of vertical magnetic recording medium
JP2001143235A (en) Magnetic recording medium, its manufacturing method and manufacturing device
JPS61208623A (en) Production of vertical magnetic recording medium
JPS6194237A (en) Preparation of vertical magnetic recording medium
JPS62250625A (en) Manufacture of ferrite thin-film
JPS63138519A (en) Perpendicular magnetic recording medium
JPH01125723A (en) Production of perpendicular magnetic recording medium
JPS59167834A (en) Magnetic recording medium
JPS59157826A (en) Production of magnetic recording medium
JPS5841442A (en) Manufacture of magnetic recording medium
JPH01319119A (en) Magnetic recording medium
JPH01303623A (en) Magnetic recording medium
JPS60160027A (en) Magnetic recording medium
JPS6246435A (en) Method and apparatus for producing magnetic recording medium
JPS592232A (en) Production of magnetic recording medium
JPS62109218A (en) Vertical magnetic recording medium and its manufacture
JPS63108534A (en) Production of perpendicular magnetic recording medium
JPH02244421A (en) Thin-film magnetic disk and production thereof
JPS63197026A (en) Magnetic recording medium