JPH01149218A - Perpendicular magnetic recording medium - Google Patents
Perpendicular magnetic recording mediumInfo
- Publication number
- JPH01149218A JPH01149218A JP30803687A JP30803687A JPH01149218A JP H01149218 A JPH01149218 A JP H01149218A JP 30803687 A JP30803687 A JP 30803687A JP 30803687 A JP30803687 A JP 30803687A JP H01149218 A JPH01149218 A JP H01149218A
- Authority
- JP
- Japan
- Prior art keywords
- film
- substrate
- perpendicularly magnetized
- magnetized film
- magnetic recording
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 68
- 239000000758 substrate Substances 0.000 claims abstract description 70
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 51
- 239000001301 oxygen Substances 0.000 claims abstract description 51
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 51
- 238000009826 distribution Methods 0.000 claims abstract description 30
- 238000005259 measurement Methods 0.000 claims description 12
- 239000003302 ferromagnetic material Substances 0.000 claims description 10
- 239000000126 substance Substances 0.000 claims 1
- 239000010408 film Substances 0.000 description 137
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 18
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 16
- 230000005415 magnetization Effects 0.000 description 16
- 238000000034 method Methods 0.000 description 16
- 238000001704 evaporation Methods 0.000 description 15
- 230000008020 evaporation Effects 0.000 description 15
- 239000010410 layer Substances 0.000 description 14
- 239000007789 gas Substances 0.000 description 11
- 239000010941 cobalt Substances 0.000 description 9
- 229910017052 cobalt Inorganic materials 0.000 description 9
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical group [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 9
- 210000003128 head Anatomy 0.000 description 9
- 229910052742 iron Inorganic materials 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 229910052759 nickel Inorganic materials 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 238000000151 deposition Methods 0.000 description 7
- 230000008021 deposition Effects 0.000 description 7
- 238000005192 partition Methods 0.000 description 7
- 239000002344 surface layer Substances 0.000 description 5
- 238000011144 upstream manufacturing Methods 0.000 description 5
- 230000005294 ferromagnetic effect Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000004804 winding Methods 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- -1 glass and ceramics Chemical compound 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 238000001771 vacuum deposition Methods 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 229920000620 organic polymer Polymers 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 238000000682 scanning probe acoustic microscopy Methods 0.000 description 2
- 238000007738 vacuum evaporation Methods 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- UBEWDCMIDFGDOO-UHFFFAOYSA-N cobalt(II,III) oxide Inorganic materials [O-2].[O-2].[O-2].[O-2].[Co+2].[Co+3].[Co+3] UBEWDCMIDFGDOO-UHFFFAOYSA-N 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 210000001061 forehead Anatomy 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000005546 reactive sputtering Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Landscapes
- Magnetic Record Carriers (AREA)
Abstract
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は薄膜型の垂直磁気記録媒体に関する。。[Detailed description of the invention] [Industrial application field] The present invention relates to a thin film type perpendicular magnetic recording medium. .
[従来の技術]
強磁性体およびその酸化物から主としてなる垂直磁化膜
を生産性よく得る方法としては、特開昭59−1987
07、特開昭61−80521号公報などの反応性真空
蒸着法が提案されている。これらは膜付着速度が速く、
したがって長尺の基体上に高速で垂直磁化膜を連続的に
形成できることから、工業的に極めて優れたものである
。[Prior Art] A method for obtaining a perpendicularly magnetized film mainly composed of a ferromagnetic material and its oxide with good productivity is disclosed in Japanese Patent Laid-Open No. 59-1987.
07, JP-A-61-80521, and other reactive vacuum deposition methods have been proposed. These have a fast film deposition rate;
Therefore, since a perpendicularly magnetized film can be continuously formed on a long substrate at high speed, it is extremely excellent industrially.
しかしながら、反応性真空蒸着法で走行中の基体上に形
成した垂直磁化膜を備えた垂直磁気記録媒体は、これを
フロッピーディスクとしたとき、媒体1周中の再生出力
(エンベロープ)に大きな不均一が生じることがわかっ
た。またテープとしたときは、テープの走行方向によっ
て再生出力に差が生じるという問題がある。すなわち、
垂直磁気記録媒体の特定の位置とその位置における磁気
ヘッドの走行方向との組み合せにより、再生出力が大き
く変動するという問題があった。However, a perpendicular magnetic recording medium with a perpendicular magnetization film formed on a moving substrate by reactive vacuum deposition has a large non-uniformity in the reproduction output (envelope) during one revolution of the medium when used as a floppy disk. It was found that this occurs. Further, when a tape is used, there is a problem in that the playback output varies depending on the running direction of the tape. That is,
There has been a problem in that the reproduction output varies greatly depending on the combination of a specific position on the perpendicular magnetic recording medium and the traveling direction of the magnetic head at that position.
、この原因は、垂直磁化膜の膜厚方向の磁気異方性や保
磁力、面内方向の保磁力、膜厚などの不均一に求めるこ
とはできず、垂直磁化膜の微細構造をコントロールする
必要があることが、本発明者らの検討により明らかにな
った。, the cause of this cannot be found in the magnetic anisotropy and coercive force in the thickness direction of the perpendicularly magnetized film, the coercive force in the in-plane direction, and the nonuniformity of the film thickness, but it is necessary to control the fine structure of the perpendicularly magnetized film. The present inventors' studies have revealed that this is necessary.
従来、垂直磁化膜の構造については、第6図に示すよう
に、基体2の上に、柱状構造の磁化膜3.4を互いに傾
斜上に、かつ逆方向に向くように多層に積層したものが
提案されている(特開昭57−3223、特開昭56−
94520.特開昭61−26926号公報など)。Conventionally, the structure of a perpendicularly magnetized film is as shown in FIG. 6, in which multilayered magnetized films 3 and 4 having a columnar structure are laminated on a base 2 so as to be inclined to each other and facing in opposite directions. has been proposed (JP-A-57-3223, JP-A-56-
94520. (Japanese Unexamined Patent Publication No. 61-26926, etc.).
しかしながら、これらの技術を反応性真空蒸着法に適用
した場合、再生出力が低下するという問題がおる。すな
わち、反応性真空蒸着法においては、膜付着初期および
後期、特に膜付着後期において酸化が進んだ層が形成さ
れ、この酸化が進んだ層は非磁性であって再生出力に寄
与しない。However, when these techniques are applied to reactive vacuum evaporation, there is a problem that the reproduction output decreases. That is, in the reactive vacuum deposition method, a highly oxidized layer is formed in the early and late stages of film deposition, particularly in the late stage of film deposition, and this highly oxidized layer is nonmagnetic and does not contribute to the reproduction output.
膜付着初期は、結晶の配向が生じにくい。垂直磁化膜は
膜厚方向の磁気異方性が大きいことが重要でおって、こ
の磁気異方性は、結晶配向による異方性発現に因るとこ
ろが大きい。したがって、結晶が配向しにくい膜付着初
期を複数回繰り返さなければならないことは、垂直磁化
膜の性能を落し、高密度記録をしにくくする問題もある
。At the initial stage of film deposition, crystal orientation is difficult to occur. It is important for a perpendicularly magnetized film to have large magnetic anisotropy in the film thickness direction, and this magnetic anisotropy is largely due to the expression of anisotropy due to crystal orientation. Therefore, having to repeat the initial stage of film deposition, in which the crystals are difficult to orient, several times degrades the performance of the perpendicularly magnetized film and makes it difficult to perform high-density recording.
ざらに垂直磁化膜の微細構造を基体に垂直に配向させる
目的で、真空蒸着法で垂直磁化膜を形成する強磁性体蒸
気流の基体への入射角を小さく設定する方法が特開昭5
8−14326号公報で提案されているが、本発明者ら
の検討では、膜付着速度をかなり犠牲にして入射角を小
さくしてもエンベロープが均一な垂直磁気記録媒体を反
応性蒸着で得ることはできなかった。In order to roughly orient the fine structure of a perpendicularly magnetized film perpendicularly to the substrate, a method was proposed in Japanese Patent Laid-Open No. 5 (1972) in which the incident angle of the ferromagnetic vapor flow to the substrate is set small to form the perpendicularly magnetized film by vacuum evaporation.
Although proposed in Japanese Patent No. 8-14326, the present inventors have found that it is possible to obtain a perpendicular magnetic recording medium with a uniform envelope by reactive vapor deposition even if the incident angle is made small at the expense of a considerable film deposition rate. I couldn't.
[発明が解決しようとする問題点コ
本発明は、かかる従来技術の諸欠点に鑑み創案されたも
ので、その目的は媒体上の位置や磁気ヘッドの走行方向
などに因らず、−様なエンベロープを発現できる部分酸
化物からなる垂直磁化膜を備えた垂直磁気記録媒体を提
供することにあり、また再生出力や垂直磁化膜の膜厚方
向の磁気異方性の低下を生ずることのない垂直磁化膜を
備えた垂直磁気記録媒体を提供することにある。[Problems to be Solved by the Invention] The present invention was devised in view of the various drawbacks of the prior art, and its purpose is to solve various problems regardless of the position on the medium or the running direction of the magnetic head. The object of the present invention is to provide a perpendicular magnetic recording medium equipped with a perpendicularly magnetized film made of a partial oxide that can express an envelope, and also to provide a perpendicular magnetic recording medium that does not cause a decrease in reproduction output or magnetic anisotropy in the thickness direction of the perpendicularly magnetized film. An object of the present invention is to provide a perpendicular magnetic recording medium equipped with a magnetized film.
[問題点を解決するための手段]
かかる本発明の目的は、基体上に強磁性体およびその酸
化物から主としてなる膜厚方向に磁気異方性を有する垂
直磁化膜を僅えた垂直磁気記録媒体において、該垂直磁
化膜は湾曲した柱状構造を有し、かつ該垂直磁化膜の膜
内部における膜厚方向の酸素濃度分布が膜内部における
酸素濃度の平均値を越すピークをもたず、かつ磁気ヘッ
ドと該垂直磁気記録媒体とが相対的に移動する方向と上
記基体面の法線方向とを含む平面内において、磁気ヘッ
ド走行方向と測定磁界のなす角度をθとしり達成される
。[Means for Solving the Problems] The object of the present invention is to provide a perpendicular magnetic recording medium in which a perpendicular magnetization film having magnetic anisotropy in the film thickness direction, which is mainly made of a ferromagnetic material and its oxide, is disposed on a substrate. The perpendicularly magnetized film has a curved columnar structure, and the oxygen concentration distribution in the film thickness direction inside the perpendicularly magnetized film does not have a peak exceeding the average value of the oxygen concentration inside the film, and the magnetic This is achieved by setting the angle between the traveling direction of the magnetic head and the measurement magnetic field to be θ in a plane that includes the direction in which the head and the perpendicular magnetic recording medium move relative to each other and the normal direction to the substrate surface.
本発明で用いることのできる基体としては、アルミニウ
ム、銅、鉄、ステンレスなどで代表される金属、ガラス
、セラミックなどの無機材料、プラスチックフィルムな
どの有機重合体材料などが挙げられる。特にテープ、フ
レキシブルディスクなど加工性、成形性、可撓性が重視
される場合には、有機重合体材料が適している。特に二
軸延伸されたフィルム、シート類は平面性、寸法安定性
に優れ最も適しており、中でもポリエステル、ポリフェ
ニレンスルフィド、芳香族ポリアミドなどが最も適して
いる。Examples of the substrate that can be used in the present invention include metals such as aluminum, copper, iron, and stainless steel, inorganic materials such as glass and ceramics, and organic polymer materials such as plastic films. In particular, organic polymer materials are suitable for tapes, flexible disks, and other applications where processability, moldability, and flexibility are important. In particular, biaxially stretched films and sheets are most suitable due to their excellent flatness and dimensional stability, and among them, polyester, polyphenylene sulfide, aromatic polyamide, etc. are most suitable.
基体の形状としては、ドラム状、ディスク状、シート状
、テープ状、カード状等いずれでも良いが、高密度記録
用途に適したディスク状、テープ状が特に適している。The shape of the substrate may be drum, disk, sheet, tape, card, etc., but disk and tape shapes are particularly suitable for high-density recording applications.
基体の厚みは特に限定されるものではないが、シート状
、テープ状、カード状等の場合、加工性、寸法安定性の
点で、厚みは2μm〜500μm、中でも4μm〜20
0μmの範囲が好ましい。The thickness of the substrate is not particularly limited, but in the case of sheets, tapes, cards, etc., the thickness is 2 μm to 500 μm, especially 4 μm to 20 μm, in terms of workability and dimensional stability.
A range of 0 μm is preferred.
本発明で用いられる基体は、磁化膜の形成に先立ち、易
接着化、平面性改良、着色、帯電防止、耐磨耗性付与等
の目的で各種の表面処理や前処理が施されても良い。ま
た基体と垂直磁化膜の間には垂直磁化膜の磁気特性向上
、耐食性向上、接着性向上などの目的で下地層を一層ま
たは複数層積層させてもよい。特に下地層として軟磁性
膜を設けることは、記録・再生感度を上げる点で大きな
効果があり、好ましい。Prior to the formation of the magnetized film, the substrate used in the present invention may be subjected to various surface treatments or pretreatments for the purpose of facilitating adhesion, improving flatness, coloring, preventing static electricity, imparting abrasion resistance, etc. . Furthermore, one or more underlayers may be laminated between the substrate and the perpendicularly magnetized film for the purpose of improving the magnetic properties, corrosion resistance, and adhesion of the perpendicularly magnetized film. In particular, it is preferable to provide a soft magnetic film as an underlayer because it has a great effect in increasing the recording/reproducing sensitivity.
本発明でいう膜厚方向に磁気異方性を有する垂直磁化膜
は次のように規定される。The perpendicularly magnetized film having magnetic anisotropy in the film thickness direction as used in the present invention is defined as follows.
JIS C−2561に示される方法により膜面方向
のヒステリシスループを測定する。The hysteresis loop in the film surface direction is measured by the method shown in JIS C-2561.
このヒステリシスループに原点から接線を引き、この接
線上の磁化の値が飽和磁化と同じになる点の外部印加磁
界の値を異方性磁界という。異方性磁界が大きい程、垂
直方向に磁化しやすいことを表わす。本発明では、異方
性磁界が2キロ工ルステツド以上のものを垂直磁化膜と
する。A tangent line is drawn from the origin to this hysteresis loop, and the value of the externally applied magnetic field at the point where the magnetization value on this tangent line is the same as the saturation magnetization is called an anisotropic magnetic field. The larger the anisotropic magnetic field, the easier it is to magnetize in the perpendicular direction. In the present invention, a perpendicularly magnetized film has an anisotropic magnetic field of 2 km/hr or more.
本発明の垂直磁化膜は、強磁性体およびその酸化物から
主としてなる。強磁性体は特に限定されるものではない
が、コバルト単独またはコバルトと鉄および/またはニ
ッケルであることが好ましい。これらの組成比は特に限
定されるものではないが、コバルトと鉄を使用する場合
、重量比で97〜85:3〜15の範囲となすのが、再
生出力の増大と磁気異方性の低下防止の点で好ましく、
95〜90:5〜10の範囲がざらに好ましい。The perpendicularly magnetized film of the present invention mainly consists of a ferromagnetic material and its oxide. The ferromagnetic material is not particularly limited, but it is preferably cobalt alone or cobalt and iron and/or nickel. These composition ratios are not particularly limited, but when cobalt and iron are used, a weight ratio of 97 to 85:3 to 15 increases reproduction output and reduces magnetic anisotropy. Preferable from the point of view of prevention;
The range of 95-90:5-10 is roughly preferred.
またコバルトとニッケルを使用する場合は、重量比で9
7〜60:3〜40範囲となすのが再生出力の増大と耐
食性の向上の点で好ましく、95〜70:5〜30の範
囲がさらに好ましい。Also, when using cobalt and nickel, the weight ratio is 9
A ratio of 7 to 60:3 to 40 is preferred from the viewpoint of increasing reproduction output and corrosion resistance, and a range of 95 to 70:5 to 30 is more preferred.
さらにコバルト、鉄およびニッケルを使用する場合には
、重量を百分率で各々P、QSRとした時、65≦P≦
98.1≦Q≦15.1≦R≦30、P+Q+R=10
0の範囲となすのが、再生出力とS/Nの増大および磁
気異方性の低下防止の点で好ましく、75≦P≦94.
1≦Q≦10.1≦R≦15の範囲がざらに好ましい。Furthermore, when using cobalt, iron and nickel, when the weight is expressed as P and QSR respectively as a percentage, 65≦P≦
98.1≦Q≦15.1≦R≦30, P+Q+R=10
It is preferable to set the value within the range of 0 from the viewpoint of increasing reproduction output and S/N and preventing a decrease in magnetic anisotropy, and 75≦P≦94.
The range of 1≦Q≦10.1≦R≦15 is generally preferred.
垂直磁化膜に含まれる酸化物としてはC00、CO2O
3、Co3O4やFe01Fe203、Fe5st、N
ioなどが主なものであるが、これらのほか、Coa
x、Fe0y、N ioz (x。Oxides contained in the perpendicular magnetization film include C00 and CO2O.
3. Co3O4, Fe01Fe203, Fe5st, N
io etc. are the main ones, but in addition to these, Coa
x, Fe0y, N ioz (x.
y、zはOから2の間の数)で表わされる非化学量論的
な亜酸化物、過酸化物も含まれていてもよい。Non-stoichiometric suboxides and peroxides represented by y and z are numbers between O and 2 may also be included.
窒化物、水酸化物が該垂直磁化膜の磁気特性を損わない
範囲で含まれていてもよい。Nitride and hydroxide may be contained within a range that does not impair the magnetic properties of the perpendicularly magnetized film.
また磁気記録層には上記コバルト、鉄、ニッケル以外の
元素や化合物、例えば銅、クロム、アルミニウム、炭素
、弗素、シリコン、バナジウム、チタン、亜鉛、マンガ
ンや、タンタルおよびこれらの酸化物、窒化物、水酸化
物などが磁気記録層の磁気特性を損わない範囲で含まれ
ていてもよい。The magnetic recording layer also contains elements and compounds other than the above-mentioned cobalt, iron, and nickel, such as copper, chromium, aluminum, carbon, fluorine, silicon, vanadium, titanium, zinc, manganese, tantalum, and oxides and nitrides thereof. A hydroxide or the like may be contained within a range that does not impair the magnetic properties of the magnetic recording layer.
磁気記録層中には、このほか、10〜50体積%の空隙
(ボイド)が含まれていることが、磁気特性の点から好
ましい。In addition, it is preferable from the viewpoint of magnetic properties that the magnetic recording layer contains 10 to 50% by volume of voids.
磁気記録層の膜厚は特に制限されないが、再生出力、平
坦性、可撓性な゛どの点から0.05μmから2μmの
範囲が良く、中でも0.1μmから0.5μmの範囲が
最も好ましい。The thickness of the magnetic recording layer is not particularly limited, but from the viewpoint of reproduction output, flatness, and flexibility, it is preferably in the range of 0.05 μm to 2 μm, and most preferably in the range of 0.1 μm to 0.5 μm.
磁気記録層は基体の片面に設けてもよいし、両面に設け
てもよい。The magnetic recording layer may be provided on one side or both sides of the substrate.
本発明において基体上に形成された垂直磁化膜は湾曲し
た柱状構造を有するものである。第1図はこれを例示す
るもので、1は垂直磁化膜を構成する柱状構造体で、こ
れは基体2の上に湾曲状に形成されている。5は基体法
線、6は該柱状構造体の断面中心をその長さ方向に結ん
だ線(中心線)である。In the present invention, the perpendicularly magnetized film formed on the substrate has a curved columnar structure. FIG. 1 illustrates this. Reference numeral 1 denotes a columnar structure constituting a perpendicularly magnetized film, which is formed in a curved shape on a base 2. In FIG. Reference numeral 5 indicates a normal line to the base, and reference numeral 6 indicates a line (center line) connecting the cross-sectional center of the columnar structure in its length direction.
この場合、柱状構造としては、図示のごとく膜厚方向で
基体法線5と交わる方向が1回変るように湾曲している
ことがエンベロープをより均一にする点で好ましい。す
なわち、垂直磁化膜の形成初期における中心線6−と基
体法線5とのなす角α1と垂直磁化膜の形成後期におけ
る中心線6′と基体法線5とのなす角α2が基体法線を
挟んで異なる側にあり、かつ中心線6と基体法線5とが
なす角が基体側から垂直磁化膜の表層側向って、α1か
らα2へ単調に変化している構造であるこのが好ましい
。In this case, it is preferable for the columnar structure to be curved so that the direction intersecting the substrate normal 5 changes once in the film thickness direction, as shown in the figure, in order to make the envelope more uniform. That is, the angle α1 between the center line 6- and the substrate normal 5 at the early stage of forming the perpendicularly magnetized film and the angle α2 between the center line 6' and the substrate normal 5 at the later stage of forming the perpendicularly magnetized film form the substrate normal. It is preferable to have a structure in which the angle between the center line 6 and the substrate normal 5 changes monotonically from α1 to α2 from the substrate side toward the surface layer side of the perpendicularly magnetized film.
α1およびα2の大きさは、これを決めるだけでは必ず
しもエンベロープの均一化に結びつかないため特に限定
されないが、エンベロープを均一にしやすくするために
は小ざい方が良く、一方垂直磁化膜の付着速度や蒸発材
料の使用効率を高めるためには大きい方が良い。またα
2を小さくすることは、垂直磁化膜表層にできる酸化が
特に進んに層を薄クシ、耐摩耗性や耐食性を低下させる
ので好ましくない。よって、α1およびα2は、それぞ
れ2度から12度の範囲が好ましく、3度から10度の
範囲がさらに好ましい。α1〉α2であることがエンベ
ロープをより均一にできるため好ましい。The sizes of α1 and α2 are not particularly limited, as simply determining them does not necessarily lead to uniformity of the envelope. However, in order to make the envelope uniform, it is better to make them small, and on the other hand, the deposition speed of the perpendicularly magnetized film In order to increase the efficiency of using evaporation material, the larger the number, the better. Also α
It is not preferable to reduce the value of 2 because the oxidation formed on the surface layer of the perpendicularly magnetized film particularly progresses, making the layer thinner and reducing its abrasion resistance and corrosion resistance. Therefore, α1 and α2 are each preferably in the range of 2 degrees to 12 degrees, and more preferably in the range of 3 degrees to 10 degrees. It is preferable that α1>α2 because the envelope can be made more uniform.
本発明の垂直磁化膜は膜内部、すなわち基体側表層(初
期層部分)および垂直磁化膜の表層(外層部分)を除い
た膜内部において膜厚方向の酸素濃度分布が膜内部の平
均酸素濃度を越えるピークを持たないものである。The perpendicular magnetization film of the present invention has an oxygen concentration distribution in the film thickness direction inside the film excluding the surface layer on the substrate side (initial layer portion) and the surface layer (outer layer portion) of the perpendicular magnetization film. It has no peak to exceed.
以下これを膜厚方向の酸素濃度分布を説明する第2図お
よび第7図を用いて説明する。This will be explained below with reference to FIGS. 2 and 7, which illustrate the oxygen concentration distribution in the film thickness direction.
強磁性体およびその酸化物から主としてなる垂直磁化膜
は、一般に基体側初期層および表層部分に酸化が進んだ
層が形成される。本発明では、これらの部分を除いた膜
内部の酸素濃度分布を特定の分布にすることを特徴とし
ている。In a perpendicularly magnetized film mainly made of a ferromagnetic material and its oxide, a highly oxidized layer is generally formed in the initial layer on the substrate side and in the surface layer. The present invention is characterized in that the oxygen concentration distribution inside the film excluding these portions is set to a specific distribution.
すなわち、垂直磁化膜の膜厚方向の酸素濃度分布をオー
ジェ電子分光分析とエツチングを組合わせるなどして所
定間隔毎に(または連続的に)測定する。次いで基体側
表面から400人の深さまでの部分と表層側表面から4
00人の深さまでの部分を除いた膜内部(点Aと点Bの
間)についてこれらのデータを膜厚方向に加算して酸素
濃度の平均をとると、上記膜厚方向の酸素濃度分布が第
2図に示したように膜内部で酸素濃度の平均値(平均酸
素m度)を越えるピークを有しないものである。つまり
、第7図に示すように、膜厚方向の酸素濃度分布が膜内
部で酸素濃度の平均値を越えるピークを有するものとは
明確に区別することができる。That is, the oxygen concentration distribution in the film thickness direction of the perpendicularly magnetized film is measured at predetermined intervals (or continuously) by a combination of Auger electron spectroscopy and etching. Next, a portion from the base side surface to a depth of 400 mm and a portion from the surface side surface to a depth of 400 mm.
If we add these data in the film thickness direction and take the average oxygen concentration for the inside of the film (between points A and B) excluding the part up to the depth of 0.00 mm, the oxygen concentration distribution in the film thickness direction is as follows. As shown in FIG. 2, there is no peak within the film that exceeds the average value of oxygen concentration (average oxygen m degrees). That is, as shown in FIG. 7, it can be clearly distinguished from the case where the oxygen concentration distribution in the film thickness direction has a peak that exceeds the average value of the oxygen concentration inside the film.
本発明における垂直磁化膜は次に述べるごとき保磁力を
有する必要がある。The perpendicularly magnetized film in the present invention must have a coercive force as described below.
すなわち、基体面の法線方向とヘッドの走行方向とを含
む面内において、ヘッド走行方向と測定磁界のなす角度
をθとして測定した保磁力をHC(θ)としたとき、
率が著しく小さくなるうえ、エンベロープ改善の効果も
小ざくなるため好ましくなく、一方1.2を上回る場合
には、エンベロープの不拘−奄が大きくなり、信号処理
回路の設計を著しく困難にす磁気ヘッドの走行方向のな
す角度が変化する場合、すなわち媒体がフロッピーディ
スクや、アジマス角の異なる磁気ヘッドが複数個採用さ
れている場合には、媒体上の媒体製造時の基体走行方向
と磁気ヘッドの走行方向のなす角度の変化にしだがって
行なう必要がある。つまり媒体がフロッピーディスクで
ある場合には、トラックと呼ばれる円周前述の範囲に入
っている必要がある。In other words, when HC(θ) is the coercive force measured in a plane including the normal direction of the substrate surface and the running direction of the head, where θ is the angle between the head running direction and the measuring magnetic field, the ratio becomes significantly smaller. Moreover, the effect of improving the envelope becomes smaller, which is undesirable.On the other hand, if the value exceeds 1.2, the envelope inconsistency becomes large, and the shape of the running direction of the magnetic head becomes extremely difficult to design the signal processing circuit. When the angle changes, that is, when the medium is a floppy disk or multiple magnetic heads with different azimuth angles are used, the angle between the running direction of the substrate and the running direction of the magnetic head at the time of manufacturing the medium on the medium should be changed. We need to follow the changes. In other words, if the medium is a floppy disk, the circumference called a track must fall within the aforementioned range.
磁気記録層の形成方法としては、反応性スパッタリング
法、反応性イオンブレーティング法、反応性蒸着法など
を用いることができるが、膜形成速度が速く、量産性の
良い反応性蒸着法が特に好ましい。As a method for forming the magnetic recording layer, a reactive sputtering method, a reactive ion blating method, a reactive vapor deposition method, etc. can be used, but the reactive vapor deposition method is particularly preferable because it has a fast film formation rate and good mass production. .
次に本発明の垂直磁化膜の製造方法の1例を添付図面を
参照して説明する。Next, an example of a method for manufacturing a perpendicularly magnetized film according to the present invention will be described with reference to the accompanying drawings.
第4図は本発明の垂直磁化膜の製造する際に使用される
装置の1例を示す概略断面図で、7は真空槽で、これは
長尺フィルム状基体8を支持移動できる基体巻き出し軸
9、基体支持ドラム10および基体巻き取り軸11など
の基体走行系を備えている。FIG. 4 is a schematic cross-sectional view showing an example of an apparatus used in manufacturing the perpendicularly magnetized film of the present invention, in which 7 is a vacuum chamber, which is a substrate unwinding device capable of supporting and moving a long film-like substrate 8. A substrate traveling system including a shaft 9, a substrate support drum 10, and a substrate winding shaft 11 is provided.
12はドラム4の軸心中央の鉛直方向下方に設けられた
蒸発源、13は該蒸発源の基体走行方向下流側近傍に設
けられた3個の酸素含有混合ガス供給用ノズルで、各ノ
ズル先端は図示のごとく、酸素を含むガス流体が蒸気流
におおむね平行に入射するように所定の角度に配設され
ている。12 is an evaporation source provided vertically below the center of the axis of the drum 4; 13 is three nozzles for supplying an oxygen-containing mixed gas provided near the downstream side of the evaporation source in the direction of substrate travel; are oriented at a predetermined angle as shown so that the oxygen-containing gaseous fluid is incident generally parallel to the vapor flow.
14は排気口、15はバリアプルリークバルブ、16.
16′は蒸発源から蒸発される強磁性体蒸気の基体への
入射角度を規制するための遮蔽板で、基体への入射開始
点と入射終了点における入射蒸気と基体の法線とがなす
角度が所定の角度以下、好ましくは45°以下となるよ
うに設置される。14 is an exhaust port, 15 is a barrier pull leak valve, 16.
Reference numeral 16' denotes a shielding plate for regulating the angle of incidence of ferromagnetic vapor evaporated from the evaporation source onto the substrate, and the angle between the incident vapor and the normal to the substrate at the start and end points of incidence on the substrate. is installed so that it is less than a predetermined angle, preferably less than 45°.
17.17′は遮蔽板16.16′の各上面の中間側所
定位置と基体支持ドラム10との間に設けられた隔壁で
、基体支持ドラム10、側隔壁17.17′、および遮
蔽板、16.16′によって囲まれるドラム軸方向に延
びる空間によって、蒸気流の基体入射位置を取囲み、膜
の酸化が効率よく進むようになされている。17.17' is a partition provided between a predetermined position on the intermediate side of each upper surface of the shielding plate 16.16' and the substrate support drum 10, and the substrate support drum 10, the side partition wall 17.17', and the shielding plate, The space extending in the axial direction of the drum surrounded by 16 and 16' surrounds the position where the vapor flow is incident on the substrate, so that the oxidation of the film can proceed efficiently.
このような装置で垂直磁化膜を形成するには、まず真空
槽7を排気口14より排気した後、バルブ15を操作し
て酸素を含むガスをノズル13から基体方向に噴出させ
る。To form a perpendicularly magnetized film using such an apparatus, first, the vacuum chamber 7 is evacuated through the exhaust port 14, and then the valve 15 is operated to blow out oxygen-containing gas from the nozzle 13 toward the substrate.
続いて、蒸発源12より強磁性体から主としてなる材料
を蒸発させ、所定温度に冷却されたドラムにそって移動
する基体に蒸気流を入射させ、強磁性体および該強磁性
体の酸化物から主としてなる垂直磁化膜を形成する。Next, the material mainly consisting of ferromagnetic material is evaporated from the evaporation source 12, and the vapor flow is incident on the substrate moving along the drum cooled to a predetermined temperature, thereby removing the ferromagnetic material and the oxide of the ferromagnetic material. A main perpendicular magnetization film is formed.
酸素を含む混合ガスはノズル13から真空槽内に方向性
を持たせて噴出されるが、この時、各ノズルの方向は、
おおむねドラムの軸心と蒸発源の中心を結ぶ線18が基
体と交わる点19に向けられる。The mixed gas containing oxygen is ejected from the nozzles 13 into the vacuum chamber with directionality, but at this time, the direction of each nozzle is
It is directed toward a point 19 where a line 18 connecting approximately the axis of the drum and the center of the evaporation source intersects the substrate.
本発明において、酸素を含むガス流体を蒸気流にほぼ平
行に入射させるためには、ドラム中心と蒸発源の中心を
結ぶ直線とノズルの向きのなす角度(β)が、ドラムの
中心と蒸発源の中心を結ぶ直線および基体走行方向を含
む面内において、絶対値で30度以下となすことが好ま
しい。In the present invention, in order to inject the oxygen-containing gas fluid almost parallel to the vapor flow, the angle (β) between the nozzle and the straight line connecting the center of the drum and the center of the evaporation source must be It is preferable that the absolute value is 30 degrees or less in a plane including a straight line connecting the centers of and the direction in which the substrate travels.
また本発明の垂直磁化膜は第5図に示す装置を用いるこ
とによっても得ることができる。The perpendicularly magnetized film of the present invention can also be obtained by using the apparatus shown in FIG.
すなわち、第5図の装置は、酸素含有混合ガス導入用ノ
ズル21を隔壁17を貫通して設け、基体走行方向上流
側から酸素含有混合ガスを供給するようにするとともに
、不活性ガス導入用ノズル22および23を隔壁17お
よび17′を貫通して対向するように設け、不活性ガス
を基体走行方向上流側および下流側からそれぞれ磁性層
形成ゾーンに供給するようにしたもので、各ノズルから
のガス噴出量を調整することにより本発明の目的とする
垂直磁化膜を容易に得ることができる。なお第5図中、
第4図と同一符号は同一部分を示す。That is, in the apparatus shown in FIG. 5, the oxygen-containing mixed gas introduction nozzle 21 is provided to penetrate the partition wall 17, and the oxygen-containing mixed gas is supplied from the upstream side in the substrate running direction. 22 and 23 are provided to face each other through partition walls 17 and 17', and inert gas is supplied to the magnetic layer forming zone from the upstream and downstream sides in the substrate running direction, respectively. By adjusting the amount of gas ejected, the perpendicularly magnetized film that is the object of the present invention can be easily obtained. In addition, in Figure 5,
The same reference numerals as in FIG. 4 indicate the same parts.
[発明の効果]
本発明は上述のごとく構成したので、エンベロープの均
一性に優れたフロッピーディスクが得られるものである
。またテープとしたときには、テープの走行方向によっ
て再生出力の大きざの差が小さいテープが得られるもの
である。この理由の詳細は明らかではないか、リング型
磁気ヘッドの発生する磁力線の方向および密度の空間分
布と垂直磁気記録媒体の磁化容易軸方向の膜厚方向の分
布とが関係しているものと推察される。[Effects of the Invention] Since the present invention is configured as described above, a floppy disk with excellent envelope uniformity can be obtained. Furthermore, when made into a tape, a tape with small differences in the magnitude of the reproduced output depending on the running direction of the tape can be obtained. The details of this reason are not clear, but it is speculated that there is a relationship between the direction of the magnetic lines of force generated by the ring-type magnetic head and the spatial distribution of density, and the distribution in the film thickness direction of the easy axis of magnetization of the perpendicular magnetic recording medium. be done.
また膜厚方向の濃度分布が膜内部において膜内部の平均
酸素11度を越えるピークを持つ垂直磁化膜を備えた媒
体に比べて本発明の媒体は大きな再生出力が得られ、ま
た生産性を著しく高めることができる。Furthermore, compared to a medium with a perpendicular magnetization film in which the concentration distribution in the film thickness direction has a peak exceeding 11 degrees of average oxygen inside the film, the medium of the present invention can obtain a larger reproduction output and significantly improve productivity. can be increased.
本発明の磁気記録媒体は、テープ、シート、カード、デ
ィスク、ドラムなどの形状にして、オーディオ、ビデオ
、デジタル信号などの磁気記録用途に広く用いることが
できる。The magnetic recording medium of the present invention can be formed into a tape, sheet, card, disk, drum, or the like, and can be widely used for magnetic recording purposes such as audio, video, and digital signals.
[特性の測定方法、評価基準] 本発明の特性値は次の測定法によるものである。[Method of measuring characteristics, evaluation criteria] The characteristic values of the present invention are based on the following measurement method.
■ 垂直磁化膜の磁気異方性の測定
JIS C−2561に示される方法により膜面方向
のヒステリシスループを測定する。ヒステリシスループ
の飽和点の磁化の値を飽和磁化という。このヒステリシ
スループに原点から接線を引き、この接線上の磁化の値
が飽和磁化と同じになる点の外部磁界の値を異方性磁界
(Hk)という。本発明ではHkが2キロ工ルステツド
以上のものを垂直磁化膜とする。測定には、試料振動式
磁力計(理研電子(株)製、BHV−30)を使用した
。(2) Measurement of magnetic anisotropy of perpendicularly magnetized film The hysteresis loop in the film surface direction is measured by the method shown in JIS C-2561. The value of magnetization at the saturation point of the hysteresis loop is called saturation magnetization. A tangent line is drawn from the origin to this hysteresis loop, and the value of the external magnetic field at the point on this tangent line where the value of magnetization becomes the same as the saturation magnetization is called an anisotropic magnetic field (Hk). In the present invention, a perpendicularly magnetized film having an Hk of 2 kilometrested or more is used. A sample vibrating magnetometer (manufactured by Riken Denshi Co., Ltd., BHV-30) was used for the measurement.
■ エンベロープの測定
試料に弗化炭素系の潤滑剤を約50人塗布した後、3.
5インチ径のマイクロフロッピーディスク形状に打ち扱
き、ジャケットに収め測定試料とする。■ After approximately 50 people applied fluorocarbon-based lubricant to the envelope measurement sample, 3.
It is shaped into a 5-inch diameter micro-floppy disk, placed in a jacket, and used as a measurement sample.
市販の片面ヘッド型のフロッピーディスクドライブ(ソ
ニー(株)’!jOA−D32V)に試料をかけ、60
0rpmで回転させツツ、500k)12の信号を記録
する。次いでヘッドからの再生出力を増幅してシンクロ
スコープでvA察する。フロッピーディスク−周分の再
生出力波形(エンベロープ)は、JIS C6291
のモジュレーションの定義にしたがって、以下の式で評
価する。A sample was placed on a commercially available single-sided head floppy disk drive (Sony Corporation'!jOA-D32V), and the
Rotate at 0 rpm and record 500k) 12 signals. Next, the playback output from the head is amplified and the vA is measured using a synchroscope. Floppy disk - playback output waveform (envelope) for each cycle is JIS C6291
According to the definition of modulation, evaluate using the following formula.
((A−B)/ (A+B))X100 (%)Aニー
周のうち、最大出力電圧を含む約2000w1束反転の
平均出力電圧
Bニー周のうち、最小出力電圧を含む約2000磁束反
転の平均出力電圧
モジュレーションの値が小さいほど、エンベロープが均
一であることを意味する。((A-B) / (A+B)) A smaller value of average output voltage modulation means a more uniform envelope.
■ 垂直磁化膜の断面微細構造の観察
試料の超薄切片を基体走行方向にそって切り出し、断面
微細構造を透過型電子顕微鏡(日立製作断裂H−600
)で観察する。■ Observation of the cross-sectional microstructure of a perpendicularly magnetized film An ultra-thin section of the sample was cut along the substrate running direction, and the cross-sectional microstructure was observed using a transmission electron microscope (Hitachi's Fracture H-600).
) to observe.
■ 保磁力の測定
前述の試料振動式磁力計を使用した。テープ状またはデ
ィスク状媒体から試料を切り出し、試料基体面の法線方
向とヘッドの走行方向つまりテープではテープ長手方向
をもってヘッドの走行方向とし、ディスクではトラック
接線方向、とを含む面内において、ヘッド走行方向と測
定磁界のなす、 角度がθとなるように試料をセット
する。JISC−2561に示される方法によりヒステ
リシスループを測定し、このヒステリシスループが外部
磁界軸と交わる点を角度θにおける保磁力HC(θ)と
し、θ=75°、80°、85°、900.95°、1
000.105°について順次測定を行なう。■ Measurement of coercive force The sample vibrating magnetometer described above was used. A sample is cut out from a tape- or disk-shaped medium, and the head is measured in a plane that includes the normal direction of the sample substrate surface and the running direction of the head. Set the sample so that the angle between the traveling direction and the measuring magnetic field is θ. The hysteresis loop is measured by the method shown in JISC-2561, and the point where this hysteresis loop intersects with the external magnetic field axis is defined as the coercive force HC(θ) at an angle θ, where θ=75°, 80°, 85°, 900.95 °, 1
Measurements are made sequentially for 000.105°.
測定結果にもとづいて第7図を作図し、θ=75°から
90’と90’から105°の部分の面ディスク状媒体
では円周状のトラック上の位置で上記の値は変化するが
、この時はトラック上を30’間隔で全周にわたって測
定し、最大値およの値とする。Figure 7 is drawn based on the measurement results, and it is found that for the planar disk-shaped media in the areas from θ=75° to 90' and from 90' to 105°, the above values change depending on the position on the circumferential track. At this time, measurements are taken over the entire circumference of the track at intervals of 30', and the values are determined as the maximum value.
■ 膜厚方向の酸素濃度分布の測定
オージェ電子分光分析とアルゴンイオンエツチングを組
み合せ、垂直磁化膜の膜厚方向の酸素濃度分布を測定し
た。測定には日本電子(株)製JAMP−103を用い
た。■ Measurement of oxygen concentration distribution in the film thickness direction The oxygen concentration distribution in the film thickness direction of the perpendicularly magnetized film was measured by combining Auger electron spectroscopy and argon ion etching. JAMP-103 manufactured by JEOL Ltd. was used for the measurement.
測定した酸素濃度分布のうち、特に酸化された基体表面
から400人までの深さの部分と、基体とは反対側の表
面から400人までの深さの部分とを除いた膜内部につ
いて、所定間隔ごとに測定し、これらのデータを膜厚方
向に加算した後、加算したデータ数で除して平均の濃度
を算出する。Of the measured oxygen concentration distribution, the inside of the membrane excluding the part at a depth of up to 400 mm from the oxidized surface of the substrate and the part at a depth of up to 400 mm from the surface on the opposite side of the substrate was After measuring at each interval and adding these data in the film thickness direction, the average concentration is calculated by dividing by the number of added data.
膜内部において膜厚方向の酸素濃度分布が膜内部での酸
素濃度の平均値を越えるピークを有しないことが重要で
ある。It is important that the oxygen concentration distribution in the film thickness direction inside the film does not have a peak that exceeds the average value of the oxygen concentration inside the film.
[実施例] 以下の実施例によって本発明をざらに詳細に説明する。[Example] The invention will be explained in greater detail by the following examples.
実施例1
第4図の装置を用い、蒸発[12にコバルト、ニッケル
、鉄が重量比で80:15:5のインゴットを充填した
。蒸発源には電子ビーム加熱器を使用し、基体は、二軸
延伸した厚さ50μmのポリエチレンテレフタレートフ
ィルムとした。Example 1 Using the apparatus shown in FIG. 4, an ingot containing cobalt, nickel, and iron in a weight ratio of 80:15:5 was filled into the evaporator [12]. An electron beam heater was used as the evaporation source, and the substrate was a biaxially stretched polyethylene terephthalate film with a thickness of 50 μm.
ドラムの直径は400mm、蒸発源の蒸発面は直径60
mmの円形であり、蒸発面と基体との距離は約300m
mL、た。またドラム軸方向の有効蒸発長さは200m
mとした。The diameter of the drum is 400 mm, and the evaporation surface of the evaporation source is 60 mm in diameter.
mm circle, and the distance between the evaporation surface and the substrate is approximately 300 m.
mL, ta. In addition, the effective evaporation length in the direction of the drum axis is 200m.
It was set as m.
ノズルはドラム軸方向に3本設置し、中央のノズルにつ
いては、ドラムの中心と蒸発源の中心を結ぶ方向に対し
て15度の角度を持つようにノズルを配置した。他の2
本のノズルは、中央のノズルから各々7Qmmづつ軸方
向に離して設置し、中央のノズルと平行方向を向くよう
にした。Three nozzles were installed in the direction of the drum axis, and the center nozzle was arranged at an angle of 15 degrees with respect to the direction connecting the center of the drum and the center of the evaporation source. the other 2
The book nozzles were each placed 7 Qmm apart from the center nozzle in the axial direction, and were oriented parallel to the center nozzle.
真空槽内を5X10−5トール以下に排気した後、バル
ブ15、ノズル13より酸素と窒素の混合ガス(体積比
が10 : 90)を、iff/分の速さで噴出させた
。次いで蒸発源12よりコバルト、ニッケル、鉄を蒸発
させ、ドラム10にそって移動する基体上にコバルト、
ニッケル、鉄およびこれらの酸化物から主として成る垂
直磁化膜を、約5μm/分の速さで3000人の厚さに
付着させた。After the inside of the vacuum chamber was evacuated to 5×10 −5 Torr or less, a mixed gas of oxygen and nitrogen (volume ratio: 10:90) was jetted out from the valve 15 and nozzle 13 at a rate of if/min. Next, cobalt, nickel, and iron are evaporated from the evaporation source 12, and the cobalt, nickel, and iron are deposited on the substrate moving along the drum 10.
Perpendicularly magnetized films consisting primarily of nickel, iron, and their oxides were deposited to a thickness of 3000 nm at a rate of approximately 5 μm/min.
同様にして基体のもう一方の面にも垂直磁化膜を付着さ
せた。Similarly, a perpendicular magnetization film was attached to the other surface of the substrate.
得られた垂直磁化膜の異方性磁界Hkは3キロエルステ
ツドであった。The anisotropic magnetic field Hk of the perpendicularly magnetized film obtained was 3 kOersted.
次に上記垂直磁化膜試料に潤滑剤を塗布し3゜5インチ
のフロッピーディスク形状に打扱き、エンベロープおよ
び再生出力を測定した。モジュレーションは5%と極め
て良好であった。また再生出力は0.5Vppであった
。Next, a lubricant was applied to the perpendicularly magnetized film sample, and the sample was shaped into a 3.degree. 5-inch floppy disk, and the envelope and reproduction output were measured. The modulation was extremely good at 5%. Further, the reproduction output was 0.5 Vpp.
ヘッド走行方向にそって測定した円周上の額部基体走行
方向にそって試料の超薄切片を切り出し、透過型電子顕
微鏡で垂直磁化膜の微細構造を観察したところ、第1図
に示したように、湾曲はあるものの膜厚方向全体として
は基体法線方向にかなり平行になった柱状構造が得られ
た。α1およびα2を測定したところ、それぞれ7度お
よび6度であった。An ultra-thin section of the sample was cut out along the direction of travel of the forehead base on the circumference measured along the direction of travel of the head, and the fine structure of the perpendicularly magnetized film was observed using a transmission electron microscope, as shown in Figure 1. Thus, although there was some curvature, a columnar structure was obtained in which the film thickness direction as a whole was quite parallel to the normal direction of the substrate. When α1 and α2 were measured, they were 7 degrees and 6 degrees, respectively.
膜厚方向の酸素濃度分布を測定したところ、第2図と同
様の分布を有するものであった。基体表面から400人
までの深さの部分と、基体とは反対側の表面から400
人までの深さの部分とを除いた膜内部(点AとBの間)
について、200人ごとに酸素濃度を測定し、これらの
データを積算してその平均値をを算出したところ、16
.7原子%であった。膜厚方向の酸素濃度分布は膜内部
において、膜内部での酸素濃度の平均値(16゜7原子
%)を越えるピークを持たなかった。なお基体と垂直磁
化膜の境界は、基体のポリエチレンフタレートフィルム
に含まれる炭素の濃度分布曲線と垂直磁化膜に含まれる
酸素の濃度分布曲線の交点(C)とした。When the oxygen concentration distribution in the film thickness direction was measured, it was found to have a distribution similar to that shown in FIG. 400mm deep from the surface of the base and 400mm deep from the surface opposite the base.
Inside the membrane (between points A and B) excluding the depth part up to the human body
When we measured the oxygen concentration of every 200 people, integrated these data, and calculated the average value, we found that 16
.. It was 7 at%. The oxygen concentration distribution in the film thickness direction had no peak within the film that exceeded the average value of oxygen concentration within the film (16°7 at.%). The boundary between the substrate and the perpendicularly magnetized film was set at the intersection (C) of the concentration distribution curve of carbon contained in the polyethylene phthalate film of the substrate and the concentration distribution curve of oxygen contained in the perpendicularly magnetized film.
実施例2
第5図の装置を用いて行なった。ノズル21からは酸素
と窒素が体積比で20:80の混合ガスを0.52/分
の速さで、ノズル22からは窒素ガスをO,iff/分
の速さで、さらにノズル23からは窒素ガスを0.IQ
、/分の速さでそれぞれ導入し、その他の条件は実施例
1と同様にして垂直磁化膜を形成した。。Example 2 This was carried out using the apparatus shown in FIG. A mixed gas of 20:80 by volume of oxygen and nitrogen is supplied from the nozzle 21 at a rate of 0.52/min, nitrogen gas is supplied from the nozzle 22 at a rate of O,iff/min, and further from the nozzle 23. Nitrogen gas 0. IQ
,/minute, and the other conditions were the same as in Example 1 to form a perpendicularly magnetized film. .
得られた垂直磁化膜のHkは3キロエルステツドであっ
た。The obtained perpendicularly magnetized film had a Hk of 3 kOersted.
またエンベロープを測定したところ、モジュレーション
は7%と非常に良好であった。ヘッドのさらに垂直磁化
膜の微細構造を観察したところ、実施例1と類似の湾曲
した柱状構造であり、α1は5度、α2は3度であった
。Also, when the envelope was measured, the modulation was 7%, which was very good. Further observation of the fine structure of the perpendicularly magnetized film of the head revealed that it had a curved columnar structure similar to that of Example 1, with α1 being 5 degrees and α2 being 3 degrees.
また膜内部の酸素mrxの平均値は22.3原子%であ
り、膜厚方向の酸素濃度分布を測定したとことろ、上記
平均値を越える酸素濃度のピークは存在しなかった。Further, the average value of oxygen mrx inside the film was 22.3 atomic %, and when the oxygen concentration distribution in the film thickness direction was measured, there was no peak of oxygen concentration exceeding the above average value.
比較例1
第4図の装置において、ノズル13を強磁性体蒸気流の
入射位置より基体の移動方向上流側に設置(隔壁17を
貫通してノズルを設けたもの)し、酸素と窒素の混合ガ
ス(体積比10:90)を上流側から供給した以外、実
施例1と同様にして垂直磁化膜を形成した。Comparative Example 1 In the apparatus shown in FIG. 4, the nozzle 13 was installed upstream in the direction of movement of the substrate from the incident position of the ferromagnetic vapor flow (the nozzle was provided through the partition wall 17), and oxygen and nitrogen were mixed. A perpendicularly magnetized film was formed in the same manner as in Example 1, except that gas (volume ratio 10:90) was supplied from the upstream side.
得られた垂直磁化膜のHkは3.2キロエルステツドで
あった。The Hk of the obtained perpendicularly magnetized film was 3.2 kOersted.
またエンベロープを測定したところ、モジュレーション
は21%と良くなかった。Also, when I measured the envelope, the modulation was 21%, which was not good.
膜内部の酸素濃度の平均値は23原子%で必り、膜厚方
向の酸素濃度分布を測定したとことろ、上記平均値を越
える酸素濃度のピークは存在しなかったが、ヘッドの走
行方向にそって測定した円周1.3であった。The average value of the oxygen concentration inside the film is 23 at.%, and when we measured the oxygen concentration distribution in the film thickness direction, there was no peak of oxygen concentration exceeding the above average value. The circumference measured along the line was 1.3.
さらに垂直磁化膜の微細構造を観察したところ、第8図
に示したように、基体27上に湾曲しかつ膜厚方向全体
としては基体法線方向から傾いた柱状構造の垂直磁化膜
28が認められ、α1は7度、α2は14度であった。Furthermore, when the fine structure of the perpendicularly magnetized film was observed, as shown in FIG. 8, a perpendicularly magnetized film 28 with a columnar structure that was curved on the substrate 27 and tilted from the normal direction of the substrate in the film thickness direction as a whole was observed. α1 was 7 degrees and α2 was 14 degrees.
比較例2
比較例1で用いた第4図の装置において、基体走行方向
を逆転(基体巻取り軸11と基体巻き出し軸13の位置
を交換)するように構成し、かつノズル13を強磁性体
蒸気流の入射位置より基体の移動方向上流側で、かつ蒸
気流が基体に入射する位置に向くように設置(隔壁17
′を貫通してノズルを設けたもの)した装置を用いた。Comparative Example 2 The apparatus shown in FIG. 4 used in Comparative Example 1 is configured so that the substrate running direction is reversed (the positions of the substrate winding shaft 11 and the substrate unwinding shaft 13 are exchanged), and the nozzle 13 is made of ferromagnetic material. The partition wall 17 is installed upstream in the direction of movement of the base body from the incident position of the body vapor flow and facing the position where the vapor flow enters the base body.
A device with a nozzle penetrating through it was used.
垂直磁化膜の膜厚が1500人になるように基体走行速
度を制御し、その伯の条件は比較例1と同様にして垂直
磁化膜を形成した。The substrate running speed was controlled so that the thickness of the perpendicularly magnetized film was 1,500 mm, and the conditions were the same as in Comparative Example 1 to form a perpendicularly magnetized film.
得られた垂直磁化膜のHkは2.4エルステツドであっ
た。エンベロープを測定したところ、モジュレーション
は、13%であったが、再生出力が実施例1の媒体の7
・0%の0.35VppLかなく、小さかった。The obtained perpendicularly magnetized film had a Hk of 2.4 oersteds. When the envelope was measured, the modulation was 13%, but the playback output was 7% for the medium of Example 1.
・0% of 0.35VppL was small.
膜厚方向の酸素濃度分布は第7図と同様の分布を示し、
膜内部での酸素濃度の平均値は25原子%であって、膜
厚方向の酸素濃度分布は、膜内部において、膜内部での
酸素濃度の平均値(25原子%)を越えるピークを有し
ていた。The oxygen concentration distribution in the film thickness direction shows the same distribution as in Figure 7,
The average value of the oxygen concentration inside the film is 25 at%, and the oxygen concentration distribution in the film thickness direction has a peak inside the film that exceeds the average value of the oxygen concentration inside the film (25 at%). was.
第1図は本発明の垂直磁気記録媒体の1例を示す概略断
面図、第2図は本発明の垂直磁化膜の膜厚方向の酸素濃
度分布を示す説明図、第3図は本ぞれ本発明の垂直磁化
膜を製造するための装置の1例を示iPR略断面図、第
6図は従来の垂直磁気記録媒体の1例を示す概略断面図
、第7図は第6図に示す垂直磁化膜の膜厚方向の酸素濃
度分布を示す説明図、第8図は従来の垂直磁気記録媒体
の他の例を示す概略断面図である。
1:垂直磁化膜の柱状構造体
2.8:基体
12:蒸発源
13.21〜23:ガス導入用ノズル
17.17”:遮蔽板
特許出願人 東 し 株 式 会 社第2[21
第5図
第6図
表面からの深さ (^)
第7図
75 80 8590 95 too 105θ(°
)
第3図
第8図
1、事件の表示
昭和62年特許願第308036号
住所 東京都中央区日本橋室町2丁目2番1号5、補正
により増加する発明の数 なし6、補正の対象
明細書の「発明の詳細な説明」の欄
7、補正の内容
(1)明細書第10頁13行の「6′」を「6′」と補
正する。
(2)明細書第28頁4〜13行の「比較例1で用いた
第4図・・・ ・・・ ・・・ ・・・して垂直磁化膜
を形成した。」を次のとおり補正する。
[膜厚が1500人になるように基体走行速度を制御し
たこと以外は、比較例1と同様にして垂直磁化膜を形成
した。次いで垂直磁化膜が形成された長尺基体は基体走
行系にそのまま取付けた状態で、該垂直磁化膜上にざら
に次の要領で垂直磁化膜を積層形成した。
すなわち、比較例1で用いた第4図において、基体走行
方向を逆転(基体巻取り軸11と基体巻取り軸9の位置
を交換)するように構成し、かつノズル13を強磁性体
蒸気流の入射位置より基体の移動方向上流側で、かつ蒸
気流が基体に入射する位置に向くように設置(隔壁17
′を貫通してノズルを設けたもの)した装置を用い、垂
直磁化膜の膜厚が1500人になるように基体走行方向
を制御し、その他の条件は比較例1と同様にして、上述
のごとく予め形成した垂直磁化膜上に、垂直磁化膜を形
成し、合わせて3000人の厚さの垂直磁化膜とした。
」FIG. 1 is a schematic cross-sectional view showing one example of the perpendicular magnetic recording medium of the present invention, FIG. 2 is an explanatory diagram showing the oxygen concentration distribution in the film thickness direction of the perpendicularly magnetized film of the present invention, and FIG. FIG. 6 is a schematic cross-sectional view of iPR showing an example of an apparatus for producing a perpendicularly magnetized film of the present invention, FIG. 6 is a schematic cross-sectional view showing an example of a conventional perpendicular magnetic recording medium, and FIG. 7 is shown in FIG. An explanatory diagram showing the oxygen concentration distribution in the film thickness direction of a perpendicularly magnetized film, and FIG. 8 is a schematic cross-sectional view showing another example of a conventional perpendicular magnetic recording medium. 1: Columnar structure of perpendicular magnetization film 2.8: Substrate 12: Evaporation source 13.21-23: Gas introduction nozzle 17.17": Shielding plate Patent applicant Azuma Shi Co., Ltd. No. 2 [21 No. 5 Figure 6 Depth from surface (^) Figure 7 75 80 8590 95 too 105θ (°
) Figure 3 Figure 8 Figure 1, Indication of the case Patent Application No. 308036, filed in 1988 Address: 2-2-1-5 Nihonbashi Muromachi, Chuo-ku, Tokyo Number of inventions increased by amendment None 6, Description subject to amendment Column 7 of "Detailed Description of the Invention", Contents of Amendment (1) "6'" on page 10, line 13 of the specification is amended to "6'". (2) On page 28 of the specification, lines 4 to 13, "A perpendicularly magnetized film was formed using the method shown in FIG. 4 used in Comparative Example 1." was corrected as follows. do. [A perpendicularly magnetized film was formed in the same manner as in Comparative Example 1, except that the substrate traveling speed was controlled so that the film thickness was 1500 mm. Next, with the elongated substrate on which the perpendicularly magnetized film was formed mounted as it was on the substrate traveling system, a perpendicularly magnetized film was laminated on the perpendicularly magnetized film in the following manner. That is, in FIG. 4 used in Comparative Example 1, the substrate traveling direction is configured to be reversed (the positions of the substrate winding shaft 11 and the substrate winding shaft 9 are exchanged), and the nozzle 13 is configured to rotate the ferromagnetic vapor flow. (the partition wall 17
The substrate running direction was controlled so that the thickness of the perpendicularly magnetized film was 1,500 mm using a device with a nozzle penetrating the A perpendicularly magnetized film was formed on the perpendicularly magnetized film that had been formed in advance to form a perpendicularly magnetized film with a total thickness of 3,000 people. ”
Claims (1)
なる膜厚方向に磁気異方性を有する垂直磁化膜を備えた
垂直磁気記録媒体において、該垂直磁化膜は湾曲した柱
状構造を有し、かつ該垂直磁化膜の膜内部における膜厚
方向の酸素濃度分布が膜内部における酸素濃度の平均値
を越えるピークをもたず、かつ磁気ヘッドと該垂直磁気
記録媒体とが相対的に移動する方向と上記基体面の法線
方向とを含む平面内において、磁気ヘッド走行方向と測
定磁界のなす角度をθとして測定した該垂直磁化膜の保
磁力Hc(θ)が、 0.83≦▲数式、化学式、表等があります▼≦1.2 を満たすことを特徴とする垂直磁気記録媒体。(1) In a perpendicular magnetic recording medium equipped with a perpendicularly magnetized film on a substrate that is mainly made of a ferromagnetic material and its oxide and has magnetic anisotropy in the film thickness direction, the perpendicularly magnetized film has a curved columnar structure. , and the oxygen concentration distribution in the film thickness direction inside the perpendicularly magnetized film does not have a peak exceeding the average value of the oxygen concentration inside the film, and the magnetic head and the perpendicular magnetic recording medium move relative to each other. The coercive force Hc(θ) of the perpendicularly magnetized film measured in a plane including the direction and the normal direction of the substrate surface, where θ is the angle between the magnetic head running direction and the measurement magnetic field, is expressed by the following formula: 0.83≦▲ , chemical formulas, tables, etc. A perpendicular magnetic recording medium characterized by satisfying ▼≦1.2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30803687A JPH01149218A (en) | 1987-12-04 | 1987-12-04 | Perpendicular magnetic recording medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30803687A JPH01149218A (en) | 1987-12-04 | 1987-12-04 | Perpendicular magnetic recording medium |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01149218A true JPH01149218A (en) | 1989-06-12 |
Family
ID=17976115
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30803687A Pending JPH01149218A (en) | 1987-12-04 | 1987-12-04 | Perpendicular magnetic recording medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01149218A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1727134A1 (en) * | 2005-05-24 | 2006-11-29 | Hitachi Global Storage Technologies Netherlands B.V. | Perpendicular magnetic recording disk with improved recording layer having high oxygen content |
-
1987
- 1987-12-04 JP JP30803687A patent/JPH01149218A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1727134A1 (en) * | 2005-05-24 | 2006-11-29 | Hitachi Global Storage Technologies Netherlands B.V. | Perpendicular magnetic recording disk with improved recording layer having high oxygen content |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5815343A (en) | Magnetic recording medium, process for producing the same and magnetic recording system | |
JP2002133647A (en) | Magnetic recording medium, its manufacturing method, magnetic recording and reproducing device, and substrate for the medium | |
JPH01149218A (en) | Perpendicular magnetic recording medium | |
JP3866102B2 (en) | Magnetic recording medium, manufacturing method thereof, manufacturing apparatus, and magnetic recording / reproducing apparatus | |
JP3732769B2 (en) | Magnetic recording medium, manufacturing method thereof, manufacturing apparatus, and magnetic recording / reproducing apparatus | |
JPH08129736A (en) | Magnetic recording medium | |
JP2002260208A (en) | Magnetic recording medium, its manufacturing method and device, and magnetic recording/reproducing apparatus | |
JP2002260207A (en) | Magnetic recording medium, its manufacturing method and device, and magnetic recording/reproducing apparatus | |
JPH0268716A (en) | Production of magnetic disk medium | |
JPS62279516A (en) | Vertical magnetic recording medium | |
JPH01303623A (en) | Magnetic recording medium | |
JP2002092862A (en) | Metal thin film type magnetic recording medium | |
JPS61208623A (en) | Production of vertical magnetic recording medium | |
JP2006286196A (en) | Magnetic recording medium, manufacturing process and apparatus thereof, and magnetic recording and reproducing apparatus | |
JPS63181115A (en) | Perpendicular magnetic recording medium | |
JP2006048840A (en) | Magnetic recording medium, its manufacturing method and recording and reproducing method of magnetic recording medium | |
JPS6350915A (en) | Perpendicular magnetic recording medium | |
JPS62162222A (en) | Vertical magnetic recording medium and its production | |
JPH04157619A (en) | Magnetic disk | |
JPH0268712A (en) | Thin film magnetic recording medium | |
JPS63102028A (en) | Production of magnetic recording medium | |
JPS63108534A (en) | Production of perpendicular magnetic recording medium | |
JPS63239614A (en) | Perpendicular magnetic recording medium | |
JPH03183014A (en) | Magnetic recording medium and production thereof | |
JPH01105313A (en) | Magnetic recording medium |