JPH0729143A - Magnetic recording medium and its manufacture - Google Patents

Magnetic recording medium and its manufacture

Info

Publication number
JPH0729143A
JPH0729143A JP16890593A JP16890593A JPH0729143A JP H0729143 A JPH0729143 A JP H0729143A JP 16890593 A JP16890593 A JP 16890593A JP 16890593 A JP16890593 A JP 16890593A JP H0729143 A JPH0729143 A JP H0729143A
Authority
JP
Japan
Prior art keywords
magnetic layer
film
magnetic
recording medium
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16890593A
Other languages
Japanese (ja)
Inventor
Ryuji Sugita
龍二 杉田
Kiyokazu Toma
清和 東間
Tatsuro Ishida
達朗 石田
Kazuya Yoshimoto
和也 吉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP16890593A priority Critical patent/JPH0729143A/en
Publication of JPH0729143A publication Critical patent/JPH0729143A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To obtain a magnetic tape showing a high S/N. CONSTITUTION:A first magnetic layer 12 with a Co base is formed. The film is not larger than 0.1mum thick including 6-35atm.% oxygen. An axis of easy magnetization of the layer is inclined to a normal 16. A second magnetic layer 13 with a Co base is formed on the layer 12. An axis of easy magnetization of the layer 13 is inclined in the same direction as in the first magnetic layer 12 to the normal 16. The second layer 13 has not larger than 0.1mum thickness of film which includes 6-35atm.% oxygen. The coercive force Hc1 of the first magnetic layer 12 in the longitudinal direction and the coercive force Hc2 of the second magnetic layer 13 in the longitudinal direction hold a relationship 1<Hc1/Hc2<=1.5. Moreover, an angle alpha, defined by the axis of easy magnetization of the first magnetic layer and the normal is smaller than an angle alpha2 defined by the axis of easy magnetization of the second magnetic layer and the normal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高いS/Nの得られる磁
気記録媒体及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording medium having a high S / N and a method for manufacturing the same.

【0002】[0002]

【従来の技術】磁気記録再生装置は年々高密度化してお
り、短波長記録再生特性の優れた磁気記録媒体が要望さ
れている。現在では基板上に磁性粉を塗布した塗布型磁
気記録媒体が主に使用されており、上記要望を満足すべ
く特性改善がなされているが、ほぼ限界に近づいてい
る。
2. Description of the Related Art The density of magnetic recording / reproducing devices is increasing year by year, and a magnetic recording medium having excellent short wavelength recording / reproducing characteristics is desired. At present, a coated magnetic recording medium in which magnetic powder is coated on a substrate is mainly used, and the characteristics have been improved so as to satisfy the above-mentioned demand, but it is almost the limit.

【0003】この限界を越えるものとして薄膜型磁気記
録媒体が開発されている。薄膜型磁気記録媒体は真空蒸
着法、スパッタリング法、メッキ法等により作製され、
優れた短波長記録再生特性を有する。薄膜型磁気記録媒
体における磁性層としては、Co、Co−Ni、Co−
Ni−P、Co−O、Co−Ni−O、Co−Cr、C
o−Ni−Cr等が検討されている。磁気テープとして
実用化する際には、製造法として真空蒸着法が最も適し
ており、Co−Ni−Oを磁性層とした蒸着テープが既
にHi8方式VTR用テープとして実用化されている。
Thin film magnetic recording media have been developed to exceed this limit. The thin film magnetic recording medium is manufactured by a vacuum deposition method, a sputtering method, a plating method, etc.
It has excellent short wavelength recording / reproducing characteristics. As the magnetic layer in the thin film magnetic recording medium, Co, Co-Ni, Co-
Ni-P, Co-O, Co-Ni-O, Co-Cr, C
o-Ni-Cr and the like have been studied. When it is put into practical use as a magnetic tape, the vacuum vapor deposition method is most suitable as a manufacturing method, and a vapor deposition tape having Co—Ni—O as a magnetic layer has already been put into practical use as a tape for a Hi8 system VTR.

【0004】蒸着テープ製造方法の一例を、図2を用い
て以下に説明する。図2は蒸着テープを作製するための
真空蒸着装置内部の構成の一例である。基板としての高
分子フィルム1は円筒状キャン2に沿って矢印6の向き
に走行する。蒸発源8から蒸発した蒸発原子9が、高分
子フィルム1に付着することにより磁性層が形成され
る。その際、蒸発原子の基板への入射角は膜形成開始部
の入射角θiから膜形成終了部における蒸発原子の基板
への入射角θfまで連続的に変化する。ここで蒸発原子
の入射角とは、膜法線から測定した、蒸発原子の基板へ
の平均の入射方向である。蒸発源8としては電子ビーム
蒸発源が適しており、この中に蒸発物質7としてのCo
基の合金を充填する。なお、蒸発源として電子ビーム蒸
発源を用いるのは、Co等の高融点金属を高い蒸発速度
で蒸発させるためである。3A、3Bは不要な蒸発原子
が基板に付着するのを防ぐために設けてある遮蔽板であ
る。10は蒸着時に真空槽内に酸素を導入するための酸
素導入口である。現在市販されているHi8方式VTR
用蒸着テープは、以上の様な方法で製造されている。
4、5はそれぞれ高分子フィルム1の供給ロールと巻き
取りロールである。
An example of the vapor deposition tape manufacturing method will be described below with reference to FIG. FIG. 2 shows an example of the internal structure of a vacuum vapor deposition apparatus for producing a vapor deposition tape. A polymer film 1 as a substrate runs along a cylindrical can 2 in the direction of arrow 6. Evaporated atoms 9 evaporated from the evaporation source 8 adhere to the polymer film 1 to form a magnetic layer. At that time, the incident angle of the vaporized atoms to the substrate continuously changes from the incident angle θ i at the film formation start portion to the incident angle θ f of the vaporized atoms at the film formation end portion to the substrate. Here, the incident angle of vaporized atoms is the average incident direction of vaporized atoms to the substrate, measured from the film normal. An electron beam evaporation source is suitable as the evaporation source 8, in which Co as the evaporation substance 7 is contained.
Fill the base alloy. The electron beam evaporation source is used as the evaporation source in order to evaporate a refractory metal such as Co at a high evaporation rate. 3A and 3B are shielding plates provided to prevent unnecessary evaporated atoms from adhering to the substrate. Reference numeral 10 is an oxygen introduction port for introducing oxygen into the vacuum chamber during vapor deposition. Hi8 type VTR currently on the market
The vapor deposition tape for use is manufactured by the method described above.
Reference numerals 4 and 5 are a supply roll and a winding roll of the polymer film 1, respectively.

【0005】このようにして作製されたCo−Oあるい
はCo−Ni−O磁性層は、磁化容易軸が膜法線に対し
て傾斜している。すなわち、磁化容易軸が膜面内あるい
は膜法線方向にあるのではなく、蒸発原子の基板への入
射方向を含む法面内において、膜法線に対して斜めに傾
斜した方向にある。市販のHi8方式VTR用蒸着テー
プは、磁化容易軸がテープの長手方向を含む法面内にお
いて、膜法線から約70゜傾斜している。ここでテープの
長手方向とは、テープの長さ方向のことであり、図2の
ようにして製造する際には、高分子フィルムの走行方向
のことである。
In the Co—O or Co—Ni—O magnetic layer thus manufactured, the easy axis of magnetization is inclined with respect to the film normal. That is, the axis of easy magnetization is not in the film surface or in the film normal direction, but is in a direction oblique to the film normal in the normal surface including the incident direction of vaporized atoms to the substrate. In the commercially available vapor-deposited tape for Hi8 type VTR, the easy axis of magnetization is inclined by about 70 ° from the normal to the film in the normal plane including the longitudinal direction of the tape. Here, the lengthwise direction of the tape means the lengthwise direction of the tape, and in the production as shown in FIG. 2, it means the running direction of the polymer film.

【0006】[0006]

【発明が解決しようとする課題】今後、磁気記録再生装
置はますます小型大容量化の方向にある。これを実現す
るためには、線記録密度及びトラック密度の向上がなさ
れなければならない。従って、磁気テープにおいては高
S/N化、特に短波長領域における高S/N化を達成し
なければならない。
[Problems to be Solved by the Invention] In the future, the magnetic recording / reproducing apparatus will become smaller and larger in capacity. In order to realize this, the linear recording density and the track density must be improved. Therefore, in the magnetic tape, high S / N, especially high S / N in the short wavelength region must be achieved.

【0007】[0007]

【課題を解決するための手段】本発明は上記要望を実現
したものであって、基板上に磁化容易軸が膜法線に対し
て傾斜しており6〜35原子%の濃度の酸素を含む膜厚
0.1μm以下のCo基の第1の磁性層が形成され、そ
の上に磁化容易軸が膜法線に対して第1の磁性層と同方
向に傾斜しており6〜35原子%の濃度の酸素を含む膜
厚0.1μm以下のCo基の第2の磁性層が形成されて
おり、第1の磁性層の長手方向の保磁力Hc1と第2の磁
性層の長手方向の保磁力Hc2が1<Hc1/Hc2≦1.5
なる関係にあり、かつ第1の磁性層の磁化容易軸と膜法
線とのなす角が第2の磁性層の磁化容易軸と膜法線との
なす角よりも小なることを特徴とする。
Means for Solving the Problems The present invention has achieved the above-mentioned needs, and the easy axis of magnetization is tilted with respect to the film normal and contains oxygen in a concentration of 6 to 35 atom% on a substrate. A Co-based first magnetic layer having a film thickness of 0.1 μm or less is formed, and the easy axis of magnetization is tilted in the same direction as the first magnetic layer with respect to the film normal, and 6 to 35 atomic% A second Co-based magnetic layer having a film thickness of 0.1 μm or less containing oxygen at a concentration of 0.1 μm is formed, and the coercive force H c1 in the longitudinal direction of the first magnetic layer and the longitudinal direction of the second magnetic layer Coercive force H c2 is 1 <H c1 / H c2 ≦ 1.5
And the angle between the easy axis of magnetization of the first magnetic layer and the film normal is smaller than the angle between the easy axis of magnetization of the second magnetic layer and the film normal. .

【0008】[0008]

【作用】磁気記録媒体を本発明の構成にすることによ
り、再生出力の向上及びノイズの低減を達成でき、高い
S/Nが得られる。
With the magnetic recording medium having the structure of the present invention, the reproduction output can be improved and the noise can be reduced, and a high S / N can be obtained.

【0009】[0009]

【実施例】次に、本発明の磁気記録媒体について説明す
る。図1は本発明の磁気記録媒体の基本構成を示す。本
発明の磁気記録媒体は、基板11上に磁化容易軸が膜法
線16に対して傾斜しており、6〜35原子%の濃度の
酸素を含む膜厚0.1μm以下のCo基の第1の磁性層
12が形成され、その上に磁化容易軸が膜法線16に対
して第1の磁性層と同方向に傾斜しており6〜35原子
%の濃度の酸素を含む膜厚0.1μm以下のCo基の第
2の磁性層13が形成されており、第1の磁性層12の
長手方向の保磁力Hc1と第2の磁性層13の長手方向の
保磁力Hc2が1<Hc1/Hc2≦1.5なる関係にあり、
かつ第1の磁性層12の磁化容易軸方向14と膜法線1
6とのなす角α1が第2の磁性層13の磁化容易軸方向
15と膜法線16とのなす角α2よりも小なるように構
成されている。
EXAMPLES Next, the magnetic recording medium of the present invention will be explained. FIG. 1 shows the basic structure of the magnetic recording medium of the present invention. In the magnetic recording medium of the present invention, the easy axis of magnetization is tilted with respect to the film normal 16 on the substrate 11, and the first Co-based film having a film thickness of 0.1 μm or less containing oxygen at a concentration of 6 to 35 atomic%. No. 1 magnetic layer 12 is formed, the easy axis of magnetization is tilted in the same direction as the first magnetic layer with respect to the film normal 16 and the film thickness 0 containing oxygen at a concentration of 6 to 35 atomic% is 0. The second magnetic layer 13 having a Co base of 1 μm or less is formed, and the coercive force H c1 in the longitudinal direction of the first magnetic layer 12 and the coercive force H c2 in the longitudinal direction of the second magnetic layer 13 are 1 <H c1 / H c2 ≦ 1.5,
In addition, the easy magnetization axis direction 14 of the first magnetic layer 12 and the film normal 1
The angle α 1 formed by 6 is smaller than the angle α 2 formed by the easy axis direction 15 of the second magnetic layer 13 and the film normal 16.

【0010】このような構成にすることにより優れたS
/Nが得られることについては後で詳しく述べることに
し、ここでまず本発明の磁気記録媒体の製造方法の一例
を図2に基づいて説明する。
With such a structure, the excellent S
The fact that / N is obtained will be described in detail later, and an example of the method of manufacturing the magnetic recording medium of the present invention will be described first with reference to FIG.

【0011】第1の磁性層を成膜する際には、高分子フ
ィルム1を円筒状キャン2の表面に沿って矢印6の向き
に走行させる。蒸発源8と円筒状キャン2との間には遮
蔽板3A、3Bが配置されている。この遮蔽板の開口部
を通って蒸発原子9は高分子フィルム1に付着する。蒸
発物質7としてCo、Co−Ni等のCo合金を蒸発源
8に充填する。成膜中には酸素導入口10から真空槽内
に酸素を導入する。第1の磁性層形成時の膜形成開始部
及び膜形成終了部における蒸発原子の高分子フィルム1
への入射角を、それぞれθi1及びθf1とする。
When forming the first magnetic layer, the polymer film 1 is run in the direction of arrow 6 along the surface of the cylindrical can 2. Shielding plates 3A and 3B are arranged between the evaporation source 8 and the cylindrical can 2. The vaporized atoms 9 adhere to the polymer film 1 through the openings of the shield plate. The evaporation source 8 is filled with a Co alloy such as Co or Co—Ni as the evaporation material 7. During film formation, oxygen is introduced into the vacuum chamber through the oxygen inlet 10. Polymer film 1 of vaporized atoms at the film formation start portion and the film formation end portion during the formation of the first magnetic layer 1
The angles of incidence on are θ i1 and θ f1 , respectively.

【0012】次に、第2の磁性層の成膜方法を説明す
る。第1の磁性層が形成されて巻き取りロール5に巻き
取られた高分子フィルム1を円筒状キャン2の周面に沿
って矢印6の逆向きに走行させ、供給ロール4に巻き戻
す。この際に、蒸発源の電源は切っておき、蒸発を停止
させておく。あるいは、遮蔽板3A、3Bの間の開口部
をシャッター(図示されていない)により閉じて、蒸発
原子が高分子フィルムに付着するのを防止する。
Next, a method of forming the second magnetic layer will be described. The polymer film 1 on which the first magnetic layer is formed and wound on the winding roll 5 is run in the direction opposite to the arrow 6 along the circumferential surface of the cylindrical can 2 and is rewound on the supply roll 4. At this time, the evaporation source is turned off and evaporation is stopped. Alternatively, the opening between the shield plates 3A and 3B is closed by a shutter (not shown) to prevent vaporized atoms from adhering to the polymer film.

【0013】次に、この高分子フィルム1を矢印6の向
きに走行させて、第2の磁性層を形成する。この際の膜
形成開始部及び膜形成終了部における蒸発原子の入射角
を、それぞれθi2及びθf2とする。蒸発物質7としては
Co合金を蒸発源8に充填しておく。また、酸素導入口
10から真空槽内に酸素を導入する。
Next, the polymer film 1 is run in the direction of arrow 6 to form a second magnetic layer. The incident angles of the vaporized atoms at the film formation start portion and the film formation end portion at this time are respectively set to θ i2 and θ f2 . The evaporation source 8 is filled with a Co alloy as the evaporation material 7. Further, oxygen is introduced into the vacuum chamber from the oxygen inlet 10.

【0014】θi1、θf1、θi2、θf2の関係について
は、少なくともθi1<θi2なる条件を満たす必要があ
る。このようにしないと本発明の構成の媒体は得られな
い。さらに、θf1≦θf2、さらに好ましくはθf1<θf2
とすることにより、本発明の媒体が優れた特性を発揮す
る。θi1、θf1、θi2、θf2の具体的な値としては、6
0゜≦θi1≦85゜、51゜≦θf1≦70゜、θi2≧8
0゜、55゜≦θf2≦75゜が望ましい。
Regarding the relationship between θ i1 , θ f1 , θ i2 , and θ f2 , at least the condition of θ i1i2 must be satisfied. If this is not done, the medium having the constitution of the present invention cannot be obtained. Furthermore, θ f1 ≤ θ f2 , and more preferably θ f1f2
By setting the above, the medium of the present invention exhibits excellent characteristics. Specific values of θ i1 , θ f1 , θ i2 , and θ f2 are 6
0 ° ≤ θ i1 ≤ 85 °, 51 ° ≤ θ f1 ≤ 70 °, θ i2 ≥ 8
0 ° and 55 ° ≦ θ f2 ≦ 75 ° are desirable.

【0015】なお、第1、第2の磁性層とも膜中の平均
の酸素濃度は6〜35原子%の範囲内にする必要があ
る。6原子%未満の酸素濃度では、高保磁力が得られな
いためにS/Nが低く、さらに、耐食性や耐久性が悪
い。また35原子%を越えると、飽和磁化が低下しすぎ
るために高い再生出力が得られない。また、第1、第2
の磁性層ともに膜厚が0.1μmを越えるとノイズが高
くなってしまい、高S/Nが得られない。
The average oxygen concentration in the film of both the first and second magnetic layers must be within the range of 6 to 35 atomic%. When the oxygen concentration is less than 6 atomic%, a high coercive force cannot be obtained, so that the S / N is low, and further, the corrosion resistance and the durability are poor. On the other hand, if it exceeds 35 atomic%, a high reproduction output cannot be obtained because the saturation magnetization is excessively lowered. Also, the first and second
When the film thickness of both magnetic layers exceeds 0.1 μm, noise becomes high and high S / N cannot be obtained.

【0016】従来、2層構造の磁気記録媒体において高
いS/Nを得るための媒体設計指針は、基板側にある第
1の磁性層の長手方向の保磁力Hc1及び磁化容易軸方向
α1と、表面側にある第2の磁性層の長手方向の保磁力
c2及び磁化容易軸方向α2との関係を、Hc1<Hc2
びα1>α2とすることであると考えられていた。これに
対し本発明は、1<Hc1/Hc2≦1.5かつα1<α2
る関係を満足することを特徴としている。
Conventionally, a medium design guideline for obtaining a high S / N in a two-layer magnetic recording medium is that the coercive force H c1 in the longitudinal direction of the first magnetic layer on the substrate side and the easy axis direction α 1 of the magnetization. And the coercive force H c2 in the longitudinal direction of the second magnetic layer on the surface side and the easy axis direction α 2 of the second magnetic layer are considered to be H c1 <H c2 and α 1 > α 2. Was there. On the other hand, the present invention is characterized by satisfying the relations of 1 <H c1 / H c2 ≦ 1.5 and α 12 .

【0017】このように、本発明の磁気記録媒体が従来
の磁気記録媒体と全く逆の構成になっている理由は、本
発明の磁気記録媒体が膜法線に対し斜め方向が磁化容易
軸である強い磁気異方性を有するためだと考えられる。
すなわち、膜法線に対し斜め方向が磁化容易軸である強
い磁気異方性を有する磁気記録媒体の場合には、リング
形磁気ヘッドで信号を記録する際に、本発明の構成にす
ることにより媒体に強い磁化を残せるものと推定され
る。
As described above, the reason why the magnetic recording medium of the present invention has a structure completely opposite to that of the conventional magnetic recording medium is that the magnetic recording medium of the present invention has an easy axis of magnetization in a direction oblique to the film normal. It is considered that this is because it has a certain strong magnetic anisotropy.
That is, in the case of a magnetic recording medium having a strong magnetic anisotropy in which a direction easy to magnetize in an oblique direction with respect to the film normal, the configuration of the present invention is adopted when recording a signal with a ring-shaped magnetic head. It is presumed that strong magnetization can be left in the medium.

【0018】高いS/Nを得るためには、従来と全く逆
のHc1>Hc2かつα1<α2なる条件が必須であるが、さ
らにHc1≦1.5Hc2なる条件も満足する必要がある。
これは、Hc1>1.5Hc2になると、1層目と2層目の
磁性層特性の差が大きくなりすぎてしまうために、S/
Nが低下するからである。
In order to obtain a high S / N, the conditions of H c1 > H c2 and α 12 which are completely opposite to the conventional conditions are indispensable, but the condition of H c1 ≦ 1.5 H c2 is also satisfied. There is a need.
This is because when H c1 > 1.5H c2 , the difference between the magnetic layer characteristics of the first layer and the second layer becomes too large.
This is because N decreases.

【0019】保磁力は磁気異方性と密接な関係があるの
で、下地や柱状結晶粒の傾斜角により制御できる。第1
の磁性層における長手方向の保磁力を、第2の磁性層に
おける長手方向の保磁力よりも高くする手段としては、
第1の磁性層形成時の基板温度を第2の磁性層形成時の
基板温度よりも高くする、あるいは酸素導入量を調整す
ること等が考えられる。
Since the coercive force is closely related to the magnetic anisotropy, it can be controlled by the inclination angle of the underlayer or columnar crystal grains. First
The means for increasing the longitudinal coercive force of the magnetic layer above the second magnetic layer is as follows.
It is conceivable to make the substrate temperature at the time of forming the first magnetic layer higher than the substrate temperature at the time of forming the second magnetic layer, or to adjust the amount of oxygen introduced.

【0020】これら以外にも、第1の磁性層をイオン処
理あるいは/及び電子ビーム処理した基板上に形成し、
第2の磁性層をそれらの処理を施さない基板上に形成す
る方法もある。このようにして本発明の構成の磁気記録
媒体が得られる理由は、磁性層をイオン処理あるいは/
及び電子ビーム処理した基板上に形成することにより、
保磁力を高くすることが可能だからである。
In addition to these, the first magnetic layer is formed on a substrate which has been subjected to ion treatment and / or electron beam treatment,
There is also a method of forming the second magnetic layer on a substrate that has not been subjected to those treatments. The reason why the magnetic recording medium having the constitution of the present invention can be obtained in this manner is that the magnetic layer is subjected to ion treatment or /
And by forming it on the electron beam treated substrate,
This is because it is possible to increase the coercive force.

【0021】また、基板として高分子フィルム上にCo
基の酸化層が形成されたものを用いることが、第1の磁
性層の長手方向の保磁力を第2の磁性層の長手方向の保
磁力よりも高くする手段として有効である。Co基の酸
化層は第1及び第2の磁性層と同様に作製すればよい。
ただし、蒸着時に酸素導入口から導入する酸素量は、付
着した膜が酸化膜になるだけの量にする必要がある。
Further, Co is formed on the polymer film as a substrate.
Using a base oxide layer formed thereon is effective as a means for making the coercive force in the longitudinal direction of the first magnetic layer higher than the coercive force in the longitudinal direction of the second magnetic layer. The Co-based oxide layer may be formed similarly to the first and second magnetic layers.
However, the amount of oxygen introduced from the oxygen inlet at the time of vapor deposition must be such that the attached film becomes an oxide film.

【0022】本発明の磁性層の磁気異方性は、結晶磁気
異方性と形状磁気異方性に起因している。第1の磁性層
の下地としてのCo基の酸化層は、結晶磁気異方性に大
きな影響を及ぼし、この下地層の作製条件により、本発
明の構成になるように、すなわちα1<α2になるように
磁化容易軸方向を制御できる。
The magnetic anisotropy of the magnetic layer of the present invention is due to crystal magnetic anisotropy and shape magnetic anisotropy. The Co-based oxide layer as the underlayer of the first magnetic layer has a great influence on the crystal magnetic anisotropy, so that the constitution of the present invention is satisfied, that is, α 12 depending on the manufacturing conditions of this underlayer. The direction of the easy axis of magnetization can be controlled so that

【0023】また、磁化容易軸方向は第1及び第2の磁
性層を構成している柱状結晶粒の方向とも関係してい
る。蒸発原子の入射角を変えると柱状結晶粒の方向が変
化し、結晶磁気異方性及び形状磁気異方性の両者に影響
を及ぼす。第1の磁性層を構成する柱状結晶粒の膜法線
に対する傾斜角が、第2の磁性層を構成する柱状結晶粒
の膜法線に対する傾斜角よりも小なるようにすることに
より、第2の磁性層の磁化容易軸を第1の磁性層の磁化
容易軸よりも傾斜させることが可能である。
The easy axis of magnetization is also related to the directions of the columnar crystal grains forming the first and second magnetic layers. When the incident angle of vaporized atoms is changed, the direction of the columnar crystal grains is changed, which affects both the crystal magnetic anisotropy and the shape magnetic anisotropy. The tilt angle of the columnar crystal grains forming the first magnetic layer with respect to the film normal is set to be smaller than the tilt angle of the columnar crystal grains forming the second magnetic layer with respect to the film normal. It is possible to incline the easy axis of magnetization of the magnetic layer with respect to the easy axis of the first magnetic layer.

【0024】以上述べたように、α1<α2なる条件は下
地あるいは柱状結晶粒の傾斜角、あるいはこれら両者の
制御によっても実現できる。すなわち、Co基の酸化層
と柱状結晶粒の傾斜角を制御することにより、優れた特
性を有する磁気記録媒体が得られる。
As described above, the condition of α 12 can also be realized by controlling the inclination angle of the base or columnar crystal grains, or both of them. That is, a magnetic recording medium having excellent characteristics can be obtained by controlling the tilt angle between the Co-based oxide layer and the columnar crystal grains.

【0025】さらに、第1の磁性層よりも第2の磁性層
の充填率を小さくすることにより、さらなるノイズの低
下が期待できる。充填率をこのようにするためには、第
2の磁性層の平均の入射角を第1の磁性層の平均の入射
角よりも大きくする、あるいは第2の磁性層蒸着時に酸
素以外にアルゴンや窒素等のガスを導入することが考え
られる。
Furthermore, by making the filling rate of the second magnetic layer smaller than that of the first magnetic layer, further noise reduction can be expected. In order to achieve the filling factor as described above, the average incident angle of the second magnetic layer is made larger than the average incident angle of the first magnetic layer, or argon other than oxygen or oxygen during the vapor deposition of the second magnetic layer. It is possible to introduce a gas such as nitrogen.

【0026】以上のようにして、磁化容易軸が膜法線に
対して傾斜している酸素を含むCo基の第1の磁性層が
形成され、その上に磁化容易軸が膜法線に対して傾斜し
ている酸素を含むCo基の第2の磁性層が形成されてお
り、第1の磁性層の長手方向の保磁力Hc1と第2の磁性
層の長手方向の保磁力Hc2が1<Hc1/Hc2≦1.5な
る関係にあり、かつ第1の磁性層の磁化容易軸と膜法線
とのなす角が第2の磁性層の磁化容易軸と膜法線とのな
す角よりも小なる磁気記録媒体が得られる。
As described above, the Co-based first magnetic layer containing oxygen having the easy axis of magnetization inclined with respect to the film normal is formed, and the easy axis of magnetization with respect to the film normal is formed thereon. A second Co-based second magnetic layer containing oxygen is formed, and the longitudinal coercive force H c1 of the first magnetic layer and the longitudinal coercive force H c2 of the second magnetic layer are formed. 1 <H c1 / H c2 ≦ 1.5, and the angle formed between the easy axis of magnetization of the first magnetic layer and the film normal is between the easy axis of magnetization of the second magnetic layer and the film normal. A magnetic recording medium smaller than the angle formed can be obtained.

【0027】次に、第1の磁性層と第2の磁性層の長手
方向の保磁力及び磁化容易軸方向と、記録再生特性との
関連について説明する。第1の磁性層の長手方向の保磁
力H c1が130kA/m、第2の磁性層の長手方向の保
磁力Hc2が120kA/mであり、第1の磁性層の磁化
容易軸と膜法線とのなす角α1が70゜、第2の磁性層
の磁化容易軸と膜法線とのなす角α2が73゜の場合、
すなわち本発明の1例の場合を(1)、Hc1が120k
A/m、Hc2が130kA/mであり、α1が70゜、
α2が73゜の場合を(2)、Hc1が130kA/m、
c2が80kA/mであり、α1が70゜、α2が73゜
の場合を(3)、Hc1が130kA/m、Hc2が120
kA/mで、α1が73゜、α2が70゜の場合を
(4)、Hc1が120kA/m、Hc2が130kA/m
であり、α1が73゜、α2が70゜の場合を(5)、H
c1が130kA/m、Hc2が80kA/mでα1が73
゜、α2が70゜の場合を(6)として、それぞれの場
合の再生出力とノイズの1例を(表1)に示す。以上の
特性の磁気記録媒体は成膜時の入射角、導入酸素量等を
変えて作製した。なお記録再生特性測定の際には、媒体
表面に膜厚10nmのカーボン保護膜及び膜厚3nmの
潤滑剤を形成した。再生出力は波長0.5μmの信号を
記録再生した場合の値、ノイズは波長0.5μmの信号
を記録再生した際の波長0.6μmに相当する周波数で
の値である。また、(表1)中の値は(1)の値を0d
Bとして、これに対する相対値で示してある。
Next, the lengths of the first magnetic layer and the second magnetic layer
Direction of coercive force and easy axis of magnetization, and recording / reproducing characteristics
The relationship will be described. Coercivity in the longitudinal direction of the first magnetic layer
Power H c1Is 130 kA / m, and the second magnetic layer is kept in the longitudinal direction.
Magnetic force Hc2Is 120 kA / m and the magnetization of the first magnetic layer is
Angle α between easy axis and membrane normal170 °, second magnetic layer
Angle α between the easy axis of magnetization and the film normal2Is 73 °,
That is, in the case of one example of the present invention (1), Hc1Is 120k
A / m, Hc2Is 130 kA / m, and α1Is 70 °,
α2When the angle is 73 ° (2), Hc1Is 130 kA / m,
Hc2Is 80 kA / m, and α1Is 70 °, α2Is 73 °
In case of (3), Hc1Is 130 kA / m, Hc2Is 120
kA / m, α1Is 73 °, α2When is 70 °
(4), Hc1Is 120 kA / m, Hc2Is 130 kA / m
And α1Is 73 °, α2When the angle is 70 ° (5), H
c1Is 130 kA / m, Hc2Is 80 kA / m1Is 73
°, α2If the angle is 70 °, then (6)
An example of the reproduction output and noise in the case of the above is shown in (Table 1). More than
The characteristics of magnetic recording media include the incident angle during film formation and the amount of introduced oxygen.
It changed and it produced. When measuring the recording / reproducing characteristics,
A carbon protective film with a film thickness of 10 nm and a film thickness of 3 nm on the surface
A lubricant was formed. The reproduction output is a signal with a wavelength of 0.5 μm.
Values and noise when recording and reproducing are signals with a wavelength of 0.5 μm
At a frequency corresponding to a wavelength of 0.6 μm when recording and reproducing
Is the value of. In addition, the values in (Table 1) are the values of (1) 0d
B is shown as a relative value to this.

【0028】[0028]

【表1】 [Table 1]

【0029】(2)に対して(1)の再生出力が増加す
るのは、(1)の方が、ヘッド磁界の方向とその方向に
おける保磁力との関係が最適になっているためだと思わ
れる。その結果、ヘッド磁界を有効に生かした記録がで
き、また記録減磁を低下させることもできるものと思わ
れる。(1)と(2)のノイズは、磁性層全体の保磁力
がほぼ同じで磁化容易軸の傾斜角も同じであるためにほ
ぼ同じになっている。
The reproduction output of (1) increases with respect to (2) because (1) has the optimum relationship between the direction of the head magnetic field and the coercive force in that direction. Seem. As a result, it is considered that recording can be performed by effectively utilizing the head magnetic field and that recording demagnetization can be reduced. The noises of (1) and (2) are almost the same because the coercive force of the whole magnetic layer is almost the same and the inclination angle of the easy magnetization axis is also the same.

【0030】(3)の再生出力が(1)よりも2dB低
く、(3)のノイズが(1)よりも1dB高いのは、第
2の磁性層の保磁力が第1の磁性層に比べて低すぎるた
めだと思われる。このように、Hc1>1.5Hc2になっ
てしまうと、高いS/Nは得られない。
The reproduction output of (3) is 2 dB lower than that of (1) and the noise of (3) is 1 dB higher than that of (1) because the coercive force of the second magnetic layer is higher than that of the first magnetic layer. It seems that it is because it is too low. Thus, if H c1 > 1.5H c2 , a high S / N cannot be obtained.

【0031】(1)よりも(4)及び(5)の再生出力
が低いのは、(4)及び(5)の第2の磁性層の磁化容
易軸の傾斜角が小さいためにスペーシングロスが多くな
り、短波長での出力低下が大きいためだと考えられる。
The reproduction output of (4) and (5) is lower than that of (1) because the inclination angle of the easy axis of magnetization of the second magnetic layer of (4) and (5) is small, resulting in spacing loss. It is thought that this is because the output decreases significantly at short wavelengths.

【0032】(6)は第2の磁性層の磁化容易軸の傾斜
角が小さく、かつ保磁力が低すぎるために、再生出力は
大幅に低くノイズも高い。
In (6), since the inclination angle of the easy axis of the second magnetic layer is small and the coercive force is too low, the reproduction output is significantly low and the noise is high.

【0033】以上説明したように、2層構造の酸素を含
むCo基の斜め蒸着媒体において、本発明の構成が最も
高いS/Nが得られる。
As described above, in the Co-based oblique vapor deposition medium containing oxygen having a two-layer structure, the highest S / N can be obtained by the constitution of the present invention.

【0034】次に、具体的な実施例について述べる。ま
ず、図2に示す構成で高分子フィルム1上にCo基の酸
化層としてのCoO膜を形成した。蒸発源8に蒸発物質
7としてのCoを充填して、蒸着を行なった。円筒状キ
ャン2の直径は1mであり、その表面温度を室温とし
た。高分子フィルム1としては膜厚7μmのポリエチレ
ンテレフタレートフィルムを用いた。θiは35゜、θf
は20゜に設定した。また、酸素導入口10から3l/
minの量の酸素を真空槽内に導入した。この様にし
て、平均の膜堆積速度を0.5μm/sとして、膜厚
0.02μmの酸化層を形成した。
Next, specific examples will be described. First, a CoO film as a Co-based oxide layer was formed on the polymer film 1 with the structure shown in FIG. The evaporation source 8 was filled with Co as the evaporation substance 7, and vapor deposition was performed. The diameter of the cylindrical can 2 was 1 m, and its surface temperature was room temperature. As the polymer film 1, a polyethylene terephthalate film having a thickness of 7 μm was used. θ i is 35 °, θ f
Was set at 20 °. Also, from the oxygen inlet 10 l / l
A min amount of oxygen was introduced into the vacuum chamber. In this way, an oxide layer having a thickness of 0.02 μm was formed with an average film deposition rate of 0.5 μm / s.

【0035】次に、巻き取りロール5に巻き取られたC
oO膜の形成された高分子フィルムを、供給ロール4に
巻き戻した。この際に遮蔽板の開口部をシャッター(図
示されていない)により閉じておいた。
Next, the C wound on the winding roll 5
The polymer film on which the oO film was formed was rewound on the supply roll 4. At this time, the opening of the shielding plate was closed by a shutter (not shown).

【0036】次に、第1の磁性層を形成した。蒸発物質
7としてはCoO膜形成時に充填したCoをそのまま使
用した。円筒状キャンの表面温度は室温とした。θi1
75゜、θf1は55゜に設定した。酸素導入口10から
の酸素導入量は1.2l/minとした。この様にし
て、平均の膜堆積速度を0.3μm/sとして、膜厚
0.05μmの第1の磁性層を形成した。
Next, a first magnetic layer was formed. As the evaporation material 7, Co filled at the time of forming the CoO film was used as it was. The surface temperature of the cylindrical can was room temperature. θ i1 was set to 75 ° and θ f1 was set to 55 °. The amount of oxygen introduced from the oxygen inlet 10 was 1.2 l / min. Thus, the first magnetic layer having a film thickness of 0.05 μm was formed with an average film deposition rate of 0.3 μm / s.

【0037】次に、巻き取りロール5に巻き取られた、
CoO膜及び第1の磁性層の形成された高分子フィルム
を、供給ロール4に巻き戻した。この際に遮蔽板の開口
部をシャッター(図示されていない)により閉じておい
た。
Next, the film was taken up by the take-up roll 5,
The polymer film on which the CoO film and the first magnetic layer were formed was rewound on the supply roll 4. At this time, the opening of the shielding plate was closed by a shutter (not shown).

【0038】最後に、第2の磁性層を形成した。蒸発物
質7としては既に充填されているCoをそのまま使用し
た。円筒状キャンの表面温度は室温とした。θi2は85
゜、θf2は65゜に設定した。酸素導入口10からの酸
素導入量は0.8l/minとした。この様にして、平
均の膜堆積速度を0.2μm/sとして、膜厚0.05
μmの第2の磁性層を形成した。
Finally, the second magnetic layer was formed. As the evaporative substance 7, Co which was already filled was used as it was. The surface temperature of the cylindrical can was room temperature. θ i2 is 85
And θ f2 were set to 65 °. The amount of oxygen introduced from the oxygen inlet 10 was 0.8 l / min. In this way, the average film deposition rate is 0.2 μm / s, and the film thickness is 0.05
A second magnetic layer of μm was formed.

【0039】第1の磁性層の保磁力は140kA/m、
α1は70゜、第2の磁性層の保磁力は130kA/
m、α2は73゜であった。
The coercive force of the first magnetic layer is 140 kA / m,
α 1 is 70 °, and the coercive force of the second magnetic layer is 130 kA /
m and α 2 were 73 °.

【0040】このようにして作製した媒体をテープ状に
スリットし、センダストから成るギャップ長0.18μ
mのリング形磁気ヘッドを用いて記録再生特性の評価を
行なった。この際に、媒体表面に膜厚10nmのカーボ
ン保護膜及び膜厚3nmの潤滑剤を形成した。その結
果、市販のHi8方式VTR用蒸着テープに対して、記
録波長5μmで2dB、0.5μmで7dB、0.4μ
mで8dB高い再生出力が得られた。また、ノイズは全
帯域にわたって、約1dB低かった。このように本発明
の磁気テープは、従来の蒸着テープに比べて大幅に高い
S/Nを有している。
The medium thus produced was slit into a tape shape, and the gap length of sendust was 0.18 μm.
The recording and reproducing characteristics were evaluated using a ring-shaped magnetic head of m. At this time, a carbon protective film having a film thickness of 10 nm and a lubricant having a film thickness of 3 nm were formed on the surface of the medium. As a result, a commercially available Hi8 type VTR vapor deposition tape has a recording wavelength of 5 μm, 2 dB, and a recording wavelength of 0.5 μm, 7 dB, 0.4 μ.
A reproduction output of 8 dB higher at m was obtained. Also, the noise was about 1 dB lower over the entire band. As described above, the magnetic tape of the present invention has a significantly higher S / N than the conventional vapor deposition tape.

【0041】以上では、θi1を75゜、θf1を55゜、
θi2を85゜、θf2を65゜に設定してCo−Oから成
る第1及び第2の磁性層を形成すると、市販の蒸着テー
プを越える高いS/Nを有する媒体が得られることを説
明した。しかし、これ以外の製造条件、製造方法あるい
は組成であっても、第1の磁性層の長手方向の保磁力H
c1と第2の磁性層の長手方向の保磁力Hc2が1<Hc1
c2≦1.5なる関係にあり、かつ第1の磁性層の磁化
容易軸と膜法線とのなす角が第2の磁性層の磁化容易軸
と膜法線とのなす角よりも小なるようにすることによ
り、高いS/Nを達成できる。
In the above, θ i1 is 75 °, θ f1 is 55 °,
By forming the first and second magnetic layers of Co—O with θ i2 set to 85 ° and θ f2 set to 65 °, it is possible to obtain a medium having a high S / N ratio exceeding that of a commercially available vapor deposition tape. explained. However, the coercive force H in the longitudinal direction of the first magnetic layer is also obtained under other manufacturing conditions, manufacturing methods or compositions.
c1 and the coercive force H c2 in the longitudinal direction of the second magnetic layer are 1 <H c1 /
H c2 ≦ 1.5 and the angle between the easy axis of magnetization of the first magnetic layer and the film normal is smaller than the angle between the easy axis of magnetization of the second magnetic layer and the film normal. By doing so, a high S / N can be achieved.

【0042】以上では磁性層の組成として、Co−Oの
例について説明したが、これに限ったものではなく、C
o−Ni−O、Co−Fe−O、Co−Ni−Fe−O
等の組成でも、本発明の構成にすることにより、高いS
/Nが得られる。また、基板については、ポリエチレン
テレフタレートフィルムについて説明したが、ポリエチ
レンナフタレートフィルム、ポリイミドフィルム、ポリ
アミドフィルム、ポリエーテルイミドフィルム等の高分
子フィルムでも、全く同様であることは言うまでもな
い。
In the above, an example of Co--O was described as the composition of the magnetic layer, but the composition is not limited to this, and C
o-Ni-O, Co-Fe-O, Co-Ni-Fe-O
Even if the composition is such as the above, by using the constitution of the present invention, high S
/ N is obtained. Although the polyethylene terephthalate film has been described as the substrate, it goes without saying that the same applies to a polymer film such as a polyethylene naphthalate film, a polyimide film, a polyamide film, and a polyetherimide film.

【0043】また、以上では第1の磁性層の上に直接第
2の磁性層を形成する例についてのみ説明したが、両磁
性層の間に非磁性中間層を形成してもよい。なお、この
場合に非磁性中間層の膜厚を0.02μm以下にしない
と、再生出力が低下してしまう。
Although only the example in which the second magnetic layer is directly formed on the first magnetic layer has been described above, a non-magnetic intermediate layer may be formed between both magnetic layers. In this case, unless the thickness of the non-magnetic intermediate layer is 0.02 μm or less, the reproduction output will decrease.

【0044】[0044]

【発明の効果】本発明によれば、高いS/Nを有する磁
気記録媒体を提供できる。
According to the present invention, a magnetic recording medium having a high S / N can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の磁気記録媒体の基本構成を示す図FIG. 1 is a diagram showing a basic configuration of a magnetic recording medium of the present invention.

【図2】従来及び本発明の磁気記録媒体の製造方法を説
明するための真空蒸着装置内部の概略を示す図
FIG. 2 is a diagram showing an outline of the inside of a vacuum vapor deposition device for explaining a conventional and present invention magnetic recording medium manufacturing method.

【符号の説明】[Explanation of symbols]

1 高分子フィルム 2 円筒状キャン 3A、3B 遮蔽板 4 供給ロール 5 巻き取りロール 6 基板走行方向 7 蒸発物質 8 蒸発源 9 蒸発原子 10 酸素導入口 11 基板 12 第1の磁性層 13 第2の磁性層 14 第1の磁性層の磁化容易軸方向 15 第2の磁性層の磁化容易軸方向 16 膜法線 1 Polymer Film 2 Cylindrical Can 3A, 3B Shielding Plate 4 Supply Roll 5 Winding Roll 6 Substrate Traveling Direction 7 Evaporation Material 8 Evaporation Source 9 Evaporation Atoms 10 Oxygen Inlet 11 Substrate 12 First Magnetic Layer 13 Second Magnetic Layer 14 Magnetization easy axis direction of first magnetic layer 15 Magnetization easy axis direction of second magnetic layer 16 Film normal

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉本 和也 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazuya Yoshimoto 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】基板上に磁化容易軸が膜法線に対して傾斜
しており6〜35原子%の濃度の酸素を含む膜厚0.1
μm以下のCo基の第1の磁性層が形成され、その上に
磁化容易軸が膜法線に対して第1の磁性層と同方向に傾
斜しており6〜35原子%の濃度の酸素を含む膜厚0.
1μm以下のCo基の第2の磁性層が形成されており、
第1の磁性層の長手方向の保磁力Hc1と第2の磁性層の
長手方向の保磁力Hc2が1<Hc1/Hc2≦1.5なる関
係にあり、かつ第1の磁性層の磁化容易軸と膜法線との
なす角が第2の磁性層の磁化容易軸と膜法線とのなす角
よりも小なることを特徴とする磁気記録媒体。
1. A film thickness of 0.1, which has an axis of easy magnetization on the substrate and is inclined with respect to a film normal, and which contains oxygen at a concentration of 6 to 35 atomic%.
A Co-based first magnetic layer of μm or less is formed, on which the easy axis of magnetization is inclined in the same direction as the first magnetic layer with respect to the film normal, and oxygen having a concentration of 6 to 35 atomic% is formed. Including the film thickness of 0.
A Co-based second magnetic layer of 1 μm or less is formed,
The coercive force H c1 in the longitudinal direction of the first magnetic layer and the coercive force H c2 in the longitudinal direction of the second magnetic layer have a relationship of 1 <H c1 / H c2 ≦ 1.5, and the first magnetic layer The magnetic recording medium is characterized in that the angle formed by the easy axis of magnetization and the film normal is smaller than the angle formed by the easy magnetization axis of the second magnetic layer and the film normal.
【請求項2】前記第1の磁性層を構成する柱状結晶粒の
膜法線に対する傾斜角が、前記第2の磁性層を構成する
柱状結晶粒の膜法線に対する傾斜角よりも小なることを
特徴とする請求項1記載の磁気記録媒体。
2. The tilt angle of the columnar crystal grains forming the first magnetic layer with respect to the film normal line is smaller than the tilt angle of the columnar crystal grains forming the second magnetic layer with respect to the film normal line. The magnetic recording medium according to claim 1, wherein:
【請求項3】前記第1の磁性層の充填率が前記第2の磁
性層の充填率よりも大なることを特徴とする請求項2記
載の磁気記録媒体。
3. The magnetic recording medium according to claim 2, wherein the filling rate of the first magnetic layer is higher than the filling rate of the second magnetic layer.
【請求項4】前記基板が高分子フィルム上にCo基の酸
化層が形成されたものであることを特徴とする請求項1
あるいは2あるいは3いずれか記載の磁気記録媒体。
4. The substrate is a polymer film having a Co-based oxide layer formed on the polymer film.
Alternatively, the magnetic recording medium according to 2 or 3.
【請求項5】真空蒸着法により走行しつつある高分子フ
ィルム上にCo基の酸化層を形成し、その上に6〜35
原子%の濃度の酸素を含む膜厚0.1μm以下のCo基
の第1の磁性層を形成し、さらにその上に6〜35原子
%の濃度の酸素を含む膜厚0.1μm以下のCo基の第
2の磁性層を膜形成開始部における蒸発原子の基板への
入射角が第1の磁性層形成時の膜形成開始部における蒸
発原子の基板への入射角よりも大なるようにして形成す
ることを特徴とする磁気記録媒体の製造方法。
5. A Co-based oxide layer is formed on a running polymer film by a vacuum deposition method, and 6 to 35 is formed thereon.
A Co-based first magnetic layer having a film thickness of 0.1 μm or less containing an oxygen concentration of 0.1% is formed, and further, a Co film having a film thickness of 0.1 μm or less containing an oxygen concentration of 6 to 35 atom% is formed thereon. In the second magnetic layer, the angle of incidence of vaporized atoms on the substrate at the film formation start portion is larger than the angle of incidence of vaporized atoms on the substrate at the film formation start portion at the time of forming the first magnetic layer. A method of manufacturing a magnetic recording medium, which comprises forming the magnetic recording medium.
【請求項6】前記第1の磁性層形成時の膜形成終了部に
おける蒸発原子の基板への入射角が前記第2の磁性層形
成時の膜形成終了部における蒸発原子の基板への入射角
よりも小なることを特徴とする請求項5記載の磁気記録
媒体の製造方法。
6. The incident angle of the vaporized atoms on the substrate at the film formation end portion when the first magnetic layer is formed is the incident angle of the vaporized atom at the substrate at the film formation end portion when the second magnetic layer is formed. The magnetic recording medium manufacturing method according to claim 5, wherein the magnetic recording medium is smaller than the above.
【請求項7】前記第1の磁性層を膜形成開始部における
蒸発原子の基板への入射角θi1を60〜85゜、膜形成
終了部における蒸発原子の基板への入射角θf1を51〜70
゜とし、前記第2の磁性層を膜形成開始部における蒸発
原子の基板への入射角θi2を80゜以上、膜形成終了部
における蒸発原子の基板への入射角θf2を55〜75゜
とし、かつθi1<θi2及びθf1≦θf2として形成するこ
とを特徴とする請求項5記載の磁気記録媒体の製造方
法。
7. The incident angle θ i1 of vaporized atoms to the substrate at the film forming start portion of the first magnetic layer is 60 to 85 °, and the incident angle θ f1 of vaporized atoms to the substrate at the film forming end portion is 51. ~ 70
The incident angle θ i2 of vaporized atoms at the film formation start portion of the second magnetic layer is 80 ° or more, and the incident angle θ f2 of vaporized atoms at the film formation end portion of the substrate is 55 to 75 °. 6. The method of manufacturing a magnetic recording medium according to claim 5, wherein: θ i1i2 and θ f1 ≦ θ f2 .
【請求項8】前記第1の磁性層はイオン処理あるいは/
及び電子ビーム処理した基板上に形成し、前記第2の磁
性層は前記第1の磁性層上にイオン処理や電子ビーム処
理を施さずに形成することを特徴とする請求項5あるい
は6あるいは7いずれかに記載の磁気記録媒体の製造方
法。
8. The first magnetic layer is ion-treated or //
And a second magnetic layer formed on the substrate which has been subjected to an electron beam treatment without being subjected to an ion treatment or an electron beam treatment on the first magnetic layer. A method for manufacturing a magnetic recording medium according to any one of the above.
JP16890593A 1993-07-08 1993-07-08 Magnetic recording medium and its manufacture Pending JPH0729143A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16890593A JPH0729143A (en) 1993-07-08 1993-07-08 Magnetic recording medium and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16890593A JPH0729143A (en) 1993-07-08 1993-07-08 Magnetic recording medium and its manufacture

Publications (1)

Publication Number Publication Date
JPH0729143A true JPH0729143A (en) 1995-01-31

Family

ID=15876741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16890593A Pending JPH0729143A (en) 1993-07-08 1993-07-08 Magnetic recording medium and its manufacture

Country Status (1)

Country Link
JP (1) JPH0729143A (en)

Similar Documents

Publication Publication Date Title
EP0573026B1 (en) Magnetic recording medium and method for producing the same
JP2003059040A (en) Manufacturing method for magnetic recording medium
JPH06150289A (en) Magnetic recording medium and its manufacture
JPH0417110A (en) Magnetic recording medium
US5496620A (en) Magnetic recording medium
JP4042103B2 (en) Magnetic recording medium
JPH0546013B2 (en)
JPH0729143A (en) Magnetic recording medium and its manufacture
JPH08129736A (en) Magnetic recording medium
JP2988188B2 (en) Magnetic recording medium and method of manufacturing the same
JPH0475577B2 (en)
JP3139181B2 (en) Manufacturing method of magnetic recording medium
JPH07141640A (en) Magneitc recording medium and its production
JPH08273140A (en) Perpendicular magnetic recording medium and its production
JP2946748B2 (en) Manufacturing method of magnetic recording medium
JP2951892B2 (en) Magnetic recording media
JP2006048840A (en) Magnetic recording medium, its manufacturing method and recording and reproducing method of magnetic recording medium
JPH01303623A (en) Magnetic recording medium
JPH08315347A (en) Thin film perpendicular magnetic recording medium
JPS61284829A (en) Magnetic recording medium
JPH01319120A (en) Magnetic recording medium
JPH08315346A (en) Magnetic recording medium
JPH0652537A (en) Magnetic recording medium
JPS63197026A (en) Magnetic recording medium
JPH07182644A (en) Magnetic recording medium