JPS61203402A - Functional optical element - Google Patents

Functional optical element

Info

Publication number
JPS61203402A
JPS61203402A JP4323885A JP4323885A JPS61203402A JP S61203402 A JPS61203402 A JP S61203402A JP 4323885 A JP4323885 A JP 4323885A JP 4323885 A JP4323885 A JP 4323885A JP S61203402 A JPS61203402 A JP S61203402A
Authority
JP
Japan
Prior art keywords
grating
incident light
light
optical element
functional optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4323885A
Other languages
Japanese (ja)
Inventor
Hajime Sakata
肇 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP4323885A priority Critical patent/JPS61203402A/en
Priority to DE19863605516 priority patent/DE3605516A1/en
Priority to FR8602406A priority patent/FR2577694B1/en
Priority to GB8604310A priority patent/GB2173605B/en
Publication of JPS61203402A publication Critical patent/JPS61203402A/en
Priority to US07/391,621 priority patent/US5013141A/en
Pending legal-status Critical Current

Links

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

PURPOSE:To function effectively the title element for light having optional polarization characteristics by forming a grating of the boundary face between an optically isotropic material and optically anisotropic material and exerting simultaneously a diffraction effect to the polarization components intersecting orthogonal with each other of incident light. CONSTITUTION:The functional optical element forms the triangular wave-like grating consisting of the optically anisotropic material 1 and the optically isotropic material 2. The element is so formed as to satisfy simultaneously equations I and II when the wavelength of the incident light is designated as lambda0, the individual refractive indices which the polariation components 4, 4' intersecting orthogonally with each other of the incident light sense with the material 1 are designated as n1, n2, the refractive index of the above-mentioned isotropic material is designated as ng and the thickness of the above-mentioned grating as T. More specifically, the polarization component 4 is parallel in the direction thereof with the axial direction of the material and senses the refractive index n1. The polarization component 4' has the direction intersecting orthogonally with the axial direction of the material 1 and senses the refractive index n2 and therefore the equations I, II are satisfied in the case when the incident light 3 is made to incident to this element, by which the emission of the zero order transmitted and diffracted light is obviated and the incident light 3 is fully made into the diffracted light 5, 5' of + or -1 order.

Description

【発明の詳細な説明】 (1)技術分野 本発明は、光記録用、光結合用、光通信用、光演算用等
の各種装置のデバイスとして好適な機能光学素子に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical Field The present invention relates to a functional optical element suitable as a device for various apparatuses such as optical recording, optical coupling, optical communication, and optical calculation.

用されており、例えば1分光器や分波・合波器又は反射
器として用いられている。最近は、半導体レーザー及び
光集積回路に於る応用も加相変化を与える手段として表
面に凹凸を形成し子に使用する媒質は1通常光学的に等
方性を有する物質により構成されており使用する光の偏
する結晶等の異方性物質で構成する機会が増えて、光源
にレーザー等を用い直線偏光した光を利用する場合を除
いては、偏光板等を介して所定の方向に直線偏光させる
必要があり、この段階で光利用効率が大きく減少してい
た。
For example, it is used as a single spectrometer, a demultiplexer/combiner, or a reflector. Recently, in applications in semiconductor lasers and optical integrated circuits, irregularities are formed on the surface as a means of imparting a phase change, and the medium used therefor is usually composed of an optically isotropic material. Increasingly, the use of anisotropic substances such as crystals that polarize the light is increasing, and unless a laser or other light source is used as a light source and linearly polarized light is used, the It was necessary to polarize the light, and the efficiency of light use was greatly reduced at this stage.

(3)発明の概要 本発明の目的、従来の欠点を除去し、光学的異方性物質
を用いるにも係わらず任意の偏光特性を有する光に対し
ても有効に機能する機能光学素子を提供する事にある。
(3) Summary of the invention The purpose of the present invention is to provide a functional optical element that eliminates the drawbacks of the conventional technology and functions effectively even for light having arbitrary polarization characteristics despite using an optically anisotropic material. It's about doing.

上記目的を達成する為に、本発明に係る機能光学素子は
、光学的等方性物質と光学的異方性物質の界面でグレー
ティングを形成し、任意の偏光特性を有する入射光に於
る互いに直交する2つの偏光成分が前記光学的異方性物
質に対して感じる個々の屈折率n1、n2と前記光学的
等方性物質の屈折率ngとに所定の関係を与える事によ
り、前記任意の偏光特性を有する入射光を前記グレーテ
ィングで回折せしめる事を特徴としている。
In order to achieve the above object, the functional optical element according to the present invention forms a grating at the interface of an optically isotropic material and an optically anisotropic material, so that incident light having arbitrary polarization characteristics can be The above-mentioned arbitrary It is characterized in that the grating diffracts incident light having polarization characteristics.

前記屈折率n1、n2及びngの関係は、前記グレーテ
ィングの形状によって異なり、且つ本機能光学素子に与
えられる機能によっても異グレーティング厚をT、入射
光の波長を入0として、 lnz−ng|・・Tamt入0  (ml=1,2,
3.−−−−)ln2−ng|・*T=m2入o  (
m2=1.2,3.−−−−)上記第1の物質としては
、例えば、ガラス。
The relationship between the refractive indices n1, n2, and ng differs depending on the shape of the grating and also depends on the function given to the functional optical element.If the grating thickness is T and the wavelength of the incident light is 0, then lnz-ng|・・Tamt containing 0 (ml=1,2,
3. -----)ln2-ng|・*T=m2entero (
m2=1.2,3. -----) The first substance is, for example, glass.

SiO2,MgO,KCI、NaC1,KBr。SiO2, MgO, KCI, NaCl, KBr.

Srτi 03 、 PMMA (ポリメチルeメタク
リレート)、ポリスチレン、ポリ力−ノ<ネート、PV
K (ポリビニル◆カルバゾール)、エポキシ樹脂、フ
ォトレジスト等が好適である。
Srτi 03, PMMA (polymethyl e-methacrylate), polystyrene, polycarbonate, PV
K (polyvinyl◆carbazole), epoxy resin, photoresist, etc. are suitable.

又、上記第2の物質は、例えば、液晶、PLZT 、B
aTiO3、LiTaO2、Gd2 (M。
Further, the second substance is, for example, liquid crystal, PLZT, B
aTiO3, LiTaO2, Gd2 (M.

04) 3 、 B i 4T3012 、 B 11
2s t Ozo。
04) 3, B i 4T3012, B 11
2s t Ozo.

5bSI 、PbTiO3、NaNO2,Ba2N a
 N b s Ozs 、 Cu Cl 、 T i 
O2、M gF2等が挙げられる。
5bSI, PbTiO3, NaNO2, Ba2Na
N b s Ozs , Cu Cl , Ti
Examples include O2, MgF2, and the like.

上記グレーティングの形状は、矩形状、三角波状、正弦
波状等各種形状を使用する事が可能で、前述の様に本素
子に与える機能、作成上の容易性、仕様に係る条件等に
より決定される。
The shape of the grating can be rectangular, triangular, sinusoidal, etc., and as mentioned above, it is determined by the function provided to the device, ease of production, and conditions related to specifications. .

本機能光学素子は、任意の偏光特性を有する光、即ち通
常の光源より出射されるランダムな偏光成分を持つ光を
互いに直交する2つの偏光本素子を使用する場合、透過
型及び反射型として使用する事が可能で、透過型の場合
は構成部材を使用光に対して透明性とし1反射型の場合
は所定の部材に反射性のものを用いるか反射膜を設ける
必要が有る。
This functional optical element can be used as a transmissive type and a reflective type when using two polarization elements that are perpendicular to each other to polarize light with arbitrary polarization characteristics, that is, light with random polarization components emitted from a normal light source. In the case of a transmission type, it is necessary to make the constituent members transparent to the light used, and in the case of a one-reflection type, it is necessary to use a reflective material or provide a reflective film for a predetermined member.

以下、実施例で本発明を更に詳しく説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.

(4)実施例 第1図(A)〜(C)は本機能光学素子の基本構成の一
例で、lは光学的異方性物質、2は光学的等方性物質、
Tはグレーティング厚を示す。
(4) Example Figures 1 (A) to (C) are examples of the basic configuration of this functional optical element, where l is an optically anisotropic material, 2 is an optically isotropic material,
T indicates the grating thickness.

第1図(A)に係る素子は光学的異方性物質1と光学的
等方性物質2により矩形状グレーティングを形成してい
る。任意の偏光特性を有する入射光の波長を入0、該入
射光の互いに直交する2つの偏光成分が光学的異方性物
質1に対して感じる個々の屈折率をn1、n2、光学的
等方性物質2の屈折率をngとした時1本素子に於て。
In the element shown in FIG. 1A, an optically anisotropic material 1 and an optically isotropic material 2 form a rectangular grating. Input the wavelength of incident light having arbitrary polarization characteristics as 0, and let the individual refractive indexes felt by the two mutually orthogonal polarization components of the incident light with respect to the optically anisotropic material 1 be n1, n2, and optically isotropic. In one element, when the refractive index of the magnetic substance 2 is ng.

lrD−ng l *”r= (”+文1) 入Q (
Jlt=0.1.2.3−−−−)I n2−ngI 
・Ta (”+12) 入Q (fL2=o、1.2.
3−−−−)が満足されている。
lrD-ng l *”r= (”+sentence 1) Enter Q (
Jlt=0.1.2.3----)I n2-ngI
・Ta (”+12) Input Q (fL2=o, 1.2.
3----) are satisfied.

以下第1図(B)に係る素子は光学的異方性物質lと光
学的等方性物質2により三角波状グレーティングが形成
され。
In the element shown in FIG. 1(B), a triangular wave grating is formed by an optically anisotropic material 1 and an optically isotropic material 2.

|n1−ng|・・THml入1   (ml=1.2
.−−−−)In2−ng|・ ・T≧m2λ2   
(m2=1,2.−−−−)が満足されている。又、第
1図(C)に係る素子は光学的異方性物質1と光学的等
方性物質2により正弦波状グレーティングが形成されて
おり。
|n1-ng|...1 with THml (ml=1.2
.. -----)In2-ng|・・T≧m2λ2
(m2=1, 2.---) is satisfied. Further, in the element shown in FIG. 1(C), a sinusoidal grating is formed by an optically anisotropic material 1 and an optically isotropic material 2.

1 0.050661 1nl−n、gl*T=入o (kl−4+−41で1
−=ゴー(k1=1 、2 、3、−−−一) 1 0.050661 1 n2 1g l ” T=入0 (k2 4” −
41ζ1−=1−(k2= 1 、2 、3、−−−−
)が満足されている。
1 0.050661 1nl-n, gl*T=in o (1 at kl-4+-41
-=Go (k1=1, 2, 3, ---1) 1 0.050661 1 n2 1g l'' T=Enter 0 (k2 4'' -
41ζ1-=1-(k2= 1 , 2 , 3,----
) are satisfied.

以上第1図(A)〜(C)に示す素子に任意の偏光特性
を有する光を入射すると、上記の各条件式を満足してい
る限り、光学的異方性物質理説明図で、lは光学的異方
性物質、2は屈折率ngの光学的等方性物質、3は任意
の偏光特性を有する入射光、4.4′は入射光3の互い
に尚、■印は物質1及び2により形成されたグレーティ
ングの溝方向(紙面垂直方向)を。
When light with arbitrary polarization characteristics is incident on the elements shown in FIGS. 2 is an optically anisotropic material, 2 is an optically isotropic material with a refractive index of ng, 3 is an incident light having arbitrary polarization characteristics, 4.4' is an incident light 3 mutually, and ■ marks are materials 1 and 3. The groove direction of the grating formed by 2 (perpendicular to the paper surface).

←印は該グレーティングの配列方向(紙面左右方向)を
示している。
The ← mark indicates the direction in which the gratings are arranged (left and right direction in the paper).

本原理説明図で用いている機能光学素子は、第1図(A
)に示した矩形状グレーティングを有する素子である。
The functional optical elements used in this principle explanatory diagram are shown in Figure 1 (A
) is an element having a rectangular grating as shown in FIG.

但し、光学的異方性物質1の光学軸方向はグレーティン
グ溝方向に向けている。この光学軸方向は実際上入射光
の進行方向を向いていなければ任意の方向で構わない。
However, the optical axis direction of the optically anisotropic material 1 is directed toward the grating groove direction. The optical axis direction may be any direction as long as it does not actually face the traveling direction of the incident light.

入射光3が本素子に入射する場合、入射光3の互いの直
交する2つの偏光成分の内、偏光成分4はその方向が光
学的異方性物質1の光学軸方向と平行であり、従って光
学的異方性物質1の異常屈折率neを感じる。又、偏光
成分4′はその方向が光学的異方性物質lの光学軸方向
と直交し、光学的異方性物質1の常屈折率noを感じる
。従って、偏光成分4及び4′は各々屈折率neとng
 、noとngから成るグレーティングを感じる。
When the incident light 3 is incident on this element, the direction of the polarized light component 4 is parallel to the optical axis direction of the optically anisotropic material 1 among the two mutually orthogonal polarized components of the incident light 3, and therefore, Feel the extraordinary refractive index ne of the optically anisotropic material 1. Further, the polarized light component 4' has a direction perpendicular to the optical axis direction of the optically anisotropic material 1, and senses the ordinary refractive index no of the optically anisotropic material 1. Therefore, polarization components 4 and 4' have refractive indices ne and ng, respectively.
, no and ng.

(1)式で表わす事ができる。It can be expressed by equation (1).

ず、高次口マ光5.5′のみが出射する為の条件はΔn
T=(++Jl)λO(1=0.1,2,3.−−−−
)−一−−(2)と成る。従って、偏光成分4及び4′
に対して各々Ins−ng|・=(++ix)入o  
 (il=o、1、2.−−−−)lne−ng|・=
(4+L2)入o   (1t=0.1,2.−−−−
)が満足される事によりη0=Qとなり零次透過性 回折光は出射しない。
First, the condition for only the high-order beam 5.5' to be emitted is Δn.
T=(++Jl)λO(1=0.1,2,3.----
)-1--(2). Therefore, polarization components 4 and 4'
Ins−ng|・=(++ix) enter o
(il=o, 1, 2.----) lne-ng |・=
(4+L2) entering o (1t=0.1,2.----
) is satisfied, η0=Q, and no zero-order transmitted diffracted light is emitted.

以下、第2図に示した本機能光学素子の作成例と性能評
価の結果を記す。
An example of fabrication of the functional optical element shown in FIG. 2 and the results of performance evaluation will be described below.

CaCO3結晶を結晶軸に沿って50X50X1 mm
3の大きさにスライスし、両面研磨及び洗浄を施した透
明基板を用意したこの透明基板上にRD−200ON 
(日立製作所ネガ型レジスト)をスピナー塗布して所定
のブリベーク後、マスク露光、現像処理によってピッチ
1.6g、m、厚さ4000大にレジストから成るグレ
ーティングを形成した。但し、グレーティングの方向は
結晶軸方向となっている。続いて。
CaCO3 crystal along crystal axis 50X50X1 mm
Prepare a transparent substrate that has been sliced into 3 size pieces, polished and cleaned on both sides, and place the RD-200ON on this transparent substrate.
(Negative type resist manufactured by Hitachi, Ltd.) was coated with a spinner, and after pre-baking to a predetermined extent, a grating made of the resist was formed with a pitch of 1.6 g, m and a thickness of 4000 by mask exposure and development. However, the direction of the grating is the crystal axis direction. continue.

CF4−O2混合ガスを用いた反応性イオンエツチング
法により基板面を深さ5.197zmに食刻した。その
後レジストリムーバでレジストを除去し、矩形状グレー
ティングを有する透明基板を作製した。
The substrate surface was etched to a depth of 5.197 zm by reactive ion etching using a CF4-O2 mixed gas. Thereafter, the resist was removed using a resist remover to produce a transparent substrate having a rectangular grating.

次に、上記矩形状グレーテイング面上に、エポテツク3
01−2 (エポテク社製2液性エポキシ樹脂)をスピ
ン塗布し、80℃1.5時間の硬化処理後グレーティン
グ溝を埋める様に平面を形成した。尚、波長8300又
の光に対して、CaCO3の常屈折率noは1.64.
異常屈折率neは1、48であり、エポキシ樹脂の屈(
3)式で表わす事ができる。
Next, place EPOTECH 3 on the rectangular grating surface.
01-2 (a two-component epoxy resin manufactured by Epotec) was applied by spin coating, and after curing treatment at 80° C. for 1.5 hours, a flat surface was formed so as to fill the grating grooves. Incidentally, the ordinary refractive index no of CaCO3 for light with a wavelength of 8300 is 1.64.
The extraordinary refractive index ne is 1.48, which is the refractive index of epoxy resin (
3) It can be expressed by the formula.

す0本機能光学素子の性能評価に用いた光は波長入Q=
8300人のランダムな偏光方向を有となる。
The light used to evaluate the performance of the zero-function optical element has a wavelength input Q=
There are 8300 random polarization directions.

本機能光学素子にランダムな偏光方向を有する光3(入
Q=8300人)を垂直入射させた時、矩形状グレーテ
ィングの溝方向と偏光方向が等しい偏光成分4はCaC
O3の結晶のne(−1,64)とエポキシ樹脂17)
ng(=1.56)から成る矩形状グレーティングを感
じ、又。
When light 3 (input Q = 8300 people) having a random polarization direction is perpendicularly incident on this functional optical element, polarization component 4 whose polarization direction is equal to the groove direction of the rectangular grating is CaC.
O3 crystal ne(-1,64) and epoxy resin 17)
I felt a rectangular grating consisting of ng (=1.56).

矩形状グレーティングの配列方向と偏光方向が等しい偏
光成分4′はC&CO3結晶のno(=1.48)と!
ポキシ樹脂ノng (=1.56) カら成る矩形状グ
レーティングを感じる。この時、偏光成分4.4′は各
々前記(2)式を満足し、前記(1)式に於てη(14
0となる。
The polarization component 4' whose polarization direction is equal to the alignment direction of the rectangular grating is no (=1.48) of the C&CO3 crystal!
You can feel the rectangular grating made of poxy resin (=1.56). At this time, each of the polarization components 4.4' satisfies the above equation (2), and in the above equation (1), η(14
It becomes 0.

く、全体の光利用効率は80%以上、S/N比は100
:1以上であった。
The overall light utilization efficiency is over 80%, and the S/N ratio is 100.
: It was 1 or more.

第2図で示した本機能光学素子の機能は1本機能光学素
子が持つ機能の一例に過ぎず、グレーティング形状、光
学軸方向、各部材の屈折率等を変える事により様々な機
能を持たせる事が可能である。又、応用として、フレネ
ルレンズ、曲線状グレーティング、或はグレーティング
カップラ、DFBレーザ等に使用できることは言うまで
もない。
The functions of this functional optical element shown in Figure 2 are just examples of the functions that a single functional optical element has, and various functions can be provided by changing the grating shape, optical axis direction, refractive index of each member, etc. things are possible. It goes without saying that the present invention can also be used in Fresnel lenses, curved gratings, grating couplers, DFB lasers, etc.

(5)発明の詳細 な説明した様に、本発明に係る機能光学素子は、光学的
異方性物質により構成するにも係わらず、任意の偏光特
性を有する光に対し有効に機能し、且つ多機能を有する
光学素子である。
(5) As described in detail of the invention, the functional optical element according to the present invention functions effectively with respect to light having arbitrary polarization characteristics, even though it is made of an optically anisotropic material, and It is an optical element with multiple functions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る機能光学素子の構成例理説明図。 l  −一一一光学的異方性物質 2 −一一一光学的等方性物質 3 −一一一人射光 FIG. 1 is a diagram illustrating an example of the configuration of a functional optical element according to the present invention. l -111 optically anisotropic material 2-111 optically isotropic material 3 - 111 rays of light

Claims (4)

【特許請求の範囲】[Claims] (1)光学的等方性物質と光学的異方性物質の界面でグ
レーティングを形成し、任意の偏光特性を有する入射光
に於る互いに直交する2つの偏光成分が前記光学的異方
性物質に対して感じる個々の屈折率n_1、n_2と前
記光学的等方性物質の屈折率n_gとに所定の関係を与
える事により、前記任意の偏光特性を有する入射光を前
記グレーティングで回折せしめる事を特徴とする機能光
学素子。
(1) A grating is formed at the interface of an optically isotropic material and an optically anisotropic material, and two mutually orthogonal polarization components of incident light having arbitrary polarization characteristics are formed in the optically anisotropic material. By providing a predetermined relationship between the individual refractive indices n_1, n_2 felt for the object and the refractive index n_g of the optically isotropic material, it is possible to cause the incident light having the arbitrary polarization characteristics to be diffracted by the grating. Features functional optical elements.
(2)前記グレーティングが三角波状を成し、その厚み
をT、入射光の波長をλ_0とした時、|n_1−n_
g|・T≧m_1λ_0(m_1=1、2、3、−−−
−)|n_2−n_g|・T≧m_2λ_0(m_2=
1、2、3、−−−−)を同時に満足する事を特徴とす
る特許請求の範囲第(1)項記載の機能光学素子。
(2) When the grating has a triangular wave shape, its thickness is T, and the wavelength of the incident light is λ_0, |n_1-n_
g|・T≧m_1λ_0 (m_1=1, 2, 3, ---
−) |n_2−n_g|・T≧m_2λ_0(m_2=
1, 2, 3, -----) The functional optical element according to claim 1, wherein the functional optical element satisfies the following conditions simultaneously.
(3)前記グレーティングが矩形状を成し、その厚みを
T、入射光の波長をλ_0とした時、|n_1−n_g
|・T≧[(1/2)+l_1]λ_0(l_1=0、
1、2、3−−−−)|n_2−n_g|・T≧[(1
/2)+l_2]λ_0(l_2=0、1、2、3−−
−−)を同時に満足する事を特徴とする特許請求の範囲
第(1)項記載の機能光学素子。
(3) When the grating has a rectangular shape, its thickness is T, and the wavelength of the incident light is λ_0, |n_1−n_g
|・T≧[(1/2)+l_1]λ_0(l_1=0,
1, 2, 3----) | n_2-n_g |・T≧[(1
/2)+l_2]λ_0(l_2=0, 1, 2, 3--
--) The functional optical element according to claim 1, characterized in that it simultaneously satisfies the following.
(4)前記グレーティングが正弦波状を成し、その厚み
をT、入射光の波長をλ_0とした時、|n_1−n_
g|・T≧λ_0(k_1−(1/4)+[0.050
661/(4k_1−1)]−[0.053041/(
4k_1−1)^3]+[0.262051/(4k_
1−1)^5]−−−−−)(k_1=1、2、3、−
−−−) |n_2−n_g|・T≧λ_0(k_2−(1/4)
+[0.050661/(4k_2−1)]−0.05
3041/(4k_2−1)^3+(0.262051
/(4k_2−1)^5+−−−−−)(k_2=1、
2、3、−−−−) を同時に満足する事を特徴とする特許請求の範囲第(1
)項記載の機能光学素子。
(4) When the grating has a sinusoidal shape, its thickness is T, and the wavelength of the incident light is λ_0, |n_1-n_
g|・T≧λ_0(k_1−(1/4)+[0.050
661/(4k_1-1)]-[0.053041/(
4k_1-1)^3]+[0.262051/(4k_
1-1)^5]------) (k_1=1, 2, 3, -
---) |n_2-n_g|・T≧λ_0(k_2-(1/4)
+[0.050661/(4k_2-1)]-0.05
3041/(4k_2-1)^3+(0.262051
/(4k_2-1)^5+----)(k_2=1,
Claim No. 2, 3, -----) is characterized in that the following conditions are simultaneously satisfied:
) Functional optical element described in item 2.
JP4323885A 1985-02-21 1985-03-05 Functional optical element Pending JPS61203402A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP4323885A JPS61203402A (en) 1985-03-05 1985-03-05 Functional optical element
DE19863605516 DE3605516A1 (en) 1985-02-21 1986-02-20 OPTICAL FUNCTIONAL ELEMENT AND OPTICAL FUNCTIONAL DEVICE
FR8602406A FR2577694B1 (en) 1985-02-21 1986-02-21 FUNCTIONAL OPTICAL ELEMENTS AND DEVICES
GB8604310A GB2173605B (en) 1985-02-21 1986-02-21 Diffractive light modulating devices
US07/391,621 US5013141A (en) 1985-02-21 1989-08-01 Liquid crystal light modulation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4323885A JPS61203402A (en) 1985-03-05 1985-03-05 Functional optical element

Publications (1)

Publication Number Publication Date
JPS61203402A true JPS61203402A (en) 1986-09-09

Family

ID=12658319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4323885A Pending JPS61203402A (en) 1985-02-21 1985-03-05 Functional optical element

Country Status (1)

Country Link
JP (1) JPS61203402A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63262602A (en) * 1987-04-21 1988-10-28 Nec Corp Diffraction grating type optical polarizing plat
JPH02156205A (en) * 1988-12-08 1990-06-15 Nec Corp Double refractive diffraction grating type polarizer and production thereof
JPH04256904A (en) * 1991-02-08 1992-09-11 Shojiro Kawakami Polarizing element
US5350807A (en) * 1993-06-25 1994-09-27 Phillips Petroleum Company Ethylene polymers

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63262602A (en) * 1987-04-21 1988-10-28 Nec Corp Diffraction grating type optical polarizing plat
JPH02156205A (en) * 1988-12-08 1990-06-15 Nec Corp Double refractive diffraction grating type polarizer and production thereof
JPH04256904A (en) * 1991-02-08 1992-09-11 Shojiro Kawakami Polarizing element
US5350807A (en) * 1993-06-25 1994-09-27 Phillips Petroleum Company Ethylene polymers

Similar Documents

Publication Publication Date Title
US7079202B2 (en) Multi-layer diffraction type polarizer and liquid crystal element
US6947215B2 (en) Optical element, optical functional device, polarization conversion device, image display apparatus, and image display system
US7075722B2 (en) Diffractive optical element and optical system having the same
JP2703930B2 (en) Birefringent diffraction grating polarizer
US7050233B2 (en) Precision phase retardation devices and method of making same
CN109683334B (en) Transmission type optical beam splitter and manufacturing method thereof
JP2007122017A (en) Phase plate, optical element, and image projection apparatus
JP2010261999A (en) Optical element, polarizing filter, optical isolator, and optical device
US20040258355A1 (en) Micro-structure induced birefringent waveguiding devices and methods of making same
KR20130130039A (en) Grating-based polarizers and optical isolators
JP2537595B2 (en) Polarizer
US6384974B1 (en) Polarization beam splitter
JP2004139001A (en) Optical element, optical modulating element and image display apparatus
JP2003066232A (en) Multilayer diffraction polarizer and composite liquid crystal element
JPS61203402A (en) Functional optical element
JP2790669B2 (en) Polarizer
JP2687451B2 (en) Polarizing element
JP2004037480A (en) Liquid crystal element and optical attenuator
JP2803181B2 (en) Birefringent diffraction grating polarizer
JP2003279707A (en) Structure of antireflection film to one-dimensional photonic crystal and its forming method
JPH0296103A (en) Polarizing element and optical isolator
JPS61193106A (en) Functional optical element
JP2003227931A (en) Polarizer incorporating optical component, method of manufacturing the same and method of combining linearly polarized wave using the same
JPS61193105A (en) Functional optical element
JP2003066450A (en) Liquid crystal element and optical attenuator