JPH02156205A - Double refractive diffraction grating type polarizer and production thereof - Google Patents

Double refractive diffraction grating type polarizer and production thereof

Info

Publication number
JPH02156205A
JPH02156205A JP31117088A JP31117088A JPH02156205A JP H02156205 A JPH02156205 A JP H02156205A JP 31117088 A JP31117088 A JP 31117088A JP 31117088 A JP31117088 A JP 31117088A JP H02156205 A JPH02156205 A JP H02156205A
Authority
JP
Japan
Prior art keywords
dielectric
extinction ratio
grooves
loss
crystal substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31117088A
Other languages
Japanese (ja)
Other versions
JP2718112B2 (en
Inventor
Yutaka Urino
豊 賣野
Yutaka Nishimoto
裕 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63311170A priority Critical patent/JP2718112B2/en
Publication of JPH02156205A publication Critical patent/JPH02156205A/en
Application granted granted Critical
Publication of JP2718112B2 publication Critical patent/JP2718112B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polarising Elements (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

PURPOSE:To provide a high extinction ratio and low loss and to improve productivity by providing dielectric layers on the bases of periodic grooves provided on the main plane of a crystal substrate having optical anisotropy. CONSTITUTION:The periodic grooves 2 are formed on the crystal substrate 1 and the grooves 2 are filled with the dielectric films 3, by which the diffraction grating is formed. The deterioration of the extinction ratio and the increase of the loss by the transverse diffusion of ions and the polarization of the transmitted light to elliptically polarized light by a change in the grating constant of the crystal are, therefore, prevented. Further, the mask at the time of forming the periodic grooves 2 can be used as it is at the time of filling the grooves with the dielectric films 3 and, therefore, just one time of patterning is necessitated and the deterioration in the extinction ratio and the increase of the loss by the mis-registration of ion exchange regions and the dielectric films 3 are prevented. The high extinction ratio, the low loss, the low cost and the high productivity are obtd. in this way.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体レーザを利用した各種光装置に使用す
る複屈折偏光板、特に偏光方向によって回折効率の異な
る格子型71光板およびその製造方法に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a birefringent polarizing plate used in various optical devices using semiconductor lasers, particularly a grating-type 71 light plate whose diffraction efficiency differs depending on the polarization direction, and a method for manufacturing the same. Regarding.

〔従来の技術〕[Conventional technology]

偏光素子特に偏光ビームスプリッタは、直交する偏光間
での光の伝搬方向を異ならしめることによって特定の偏
光を得る素子である。このような素子は、光フアイバ通
信用光源モジュールや光デイスク用光ヘッドなどに、光
アイソレータや光サーキユレータを構成する部品として
使われている。
A polarizing element, particularly a polarizing beam splitter, is an element that obtains a specific polarized light by changing the propagation direction of light between orthogonal polarized lights. Such elements are used as components of optical isolators and optical circulators in light source modules for optical fiber communications, optical heads for optical disks, and the like.

従来、偏光ビームスプリッタとしては、グラントムソン
プリズムやロッションプリズムなど、複屈折の大きな結
晶の光反射面における偏光による透過ないしは全反射の
違いを利用し光路を分離するもの、またはガラスなどの
等方性光学媒質でできた全反射プリズム反射面に誘電体
多層膜を設け、この誘電体多層膜の偏光による屈折率の
違いを利用して、光を全反射ないしは透過させるものが
多く使用されている。しかしながら、これらの素子は大
型であること、生産性が低いこと、値段が高いことなど
の欠点がある。
Conventionally, polarizing beam splitters are those that separate optical paths by utilizing the difference in transmission or total reflection due to polarization on the light reflecting surface of a crystal with large birefringence, such as a Glan-Thompson prism or Rochon prism, or isotropic beam splitters such as glass. A total reflection prism made of a reflective optical medium has a dielectric multilayer film on its reflective surface, and the difference in refractive index due to the polarization of this dielectric multilayer film is used to completely reflect or transmit light. . However, these devices have drawbacks such as large size, low productivity, and high cost.

一方、近年小型で生産性が高いことを特徴とする偏光素
子として、特願昭61−300783号、特願昭61−
300784号および特願昭62−007805号に記
載されている複屈折回折格子型偏光板が知られている。
On the other hand, in recent years, as a polarizing element characterized by its small size and high productivity, Japanese Patent Application No. 61-300783, Japanese Patent Application No. 61-
Birefringent diffraction grating type polarizing plates are known as described in Japanese Patent Application No. 300784 and Japanese Patent Application No. 62-007805.

第5図は前記記載の複屈折回折格子型偏光板の構成を示
す斜視図であり、第6図から第8図は断面図である。複
屈折回折格子型偏光板は、ニオブ酸リチウム基板1の主
面に周期的なイオン交換領域8の光学的回折格子を設け
、かつイオン交換を施した領域と施していない領域の間
で常光線が受ける位相変化を相殺する手段を設けたもの
であり、偏光による回折効率の違いを利用して光路を分
離するものである。前記の常光線が受ける位相変化を相
殺する手段としては、第6図の断面図に示すようにイオ
ン交換を施していない領域の表面を所望の深さだけ削っ
たもの、第7図の断面図に示すようにイオン交換を施し
た領域8上に誘電体膜9を形成したもの、または第8図
の断面図に示すようにイオン交換を施した領域8上では
厚くイオン交換を施していない領域上では薄く誘電体M
9を形成したちの等がある0例えば、ニオブ酸リチウム
の主面に周期的にプロトンイオン交換を施すと、プロト
ンイオン交換を施した領域では波長+jμmの異常光線
に対する屈折率が約0.1増加し、常光線に対する屈折
率が約0.04減少する。従って、プロトンイオン交換
を施した領域の誘電体膜厚を、プロトンイオン交換を施
していない領域の誘電体膜厚に比べて厚くし、プロトン
イオン交換を施した領域の常光線に対する屈折率の減少
を相殺することによって、常光線の1次以上の回折効率
及び異常光線の0次の回折効率を共に零にすることがで
き、(口光子になる。
FIG. 5 is a perspective view showing the structure of the birefringence grating type polarizing plate described above, and FIGS. 6 to 8 are cross-sectional views. A birefringent diffraction grating type polarizing plate has an optical diffraction grating of periodic ion exchange regions 8 provided on the main surface of a lithium niobate substrate 1, and an ordinary light ray between a region subjected to ion exchange and a region not subjected to ion exchange. It is equipped with a means for canceling out the phase change experienced by the polarized light, and separates the optical path by utilizing the difference in diffraction efficiency due to polarization. As means for canceling out the phase change experienced by the ordinary rays, as shown in the cross-sectional view of FIG. 6, the surface of the area where ion exchange has not been performed is shaved to a desired depth, or as shown in the cross-sectional view of FIG. As shown in FIG. 8, a dielectric film 9 is formed on the ion-exchanged region 8, or as shown in the cross-sectional view of FIG. Above is a thin dielectric M
For example, if proton ion exchange is performed periodically on the main surface of lithium niobate, the refractive index for extraordinary rays of wavelength + jμm will be approximately 0.1 in the proton ion exchanged region. The refractive index for ordinary rays decreases by about 0.04. Therefore, the dielectric film thickness in the region subjected to proton ion exchange is made thicker than the dielectric film thickness in the region not subjected to proton ion exchange, and the refractive index for ordinary rays in the region subjected to proton ion exchange is reduced. By canceling out, both the first-order or higher-order diffraction efficiency of the ordinary ray and the zero-order diffraction efficiency of the extraordinary ray can be made zero, which results in a mouth photon.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、以上述べた構造においては、光学的回折
格子の形成にイオン交換が用いられている。従って、イ
オンの横方向への拡散などの影響で、イオン交換された
領域8の幅とされていない領域の幅を正確に1対1にす
ることは困難であり、この幅が1対1からずれると偏光
子の消光比の劣化や損失の増加が生じる。また、イオン
交換領域8の上に誘電体膜9を形成する際、またはイオ
ン交換されていない領域を削る際に、イオン交換領域8
と誘電体膜9の間、またはイオン交換されていない領域
と削る領域の間の位置合わせを正確に行うことも困難で
あり、この位置合わせのずれも偏光子の消光比の劣化や
損失の増加の原因になる。さらに、イオン交換を行うと
結晶の格子定数に変化が生じ、基板表面が荒れて散乱損
失が増。
However, in the structures described above, ion exchange is used to form the optical grating. Therefore, due to the influence of ion diffusion in the lateral direction, it is difficult to make the width of the ion-exchanged region 8 and the width of the non-ion-exchanged region exactly 1:1; If it deviates, the extinction ratio of the polarizer will deteriorate and loss will increase. In addition, when forming the dielectric film 9 on the ion exchange region 8 or when removing a region that is not ion exchanged, the ion exchange region 8
It is also difficult to perform accurate alignment between the ion-exchanged region and the dielectric film 9, or between the non-ion-exchanged region and the shaved region, and misalignment can also cause deterioration of the polarizer's extinction ratio and increase loss. It causes Furthermore, ion exchange causes a change in the lattice constant of the crystal, which roughens the substrate surface and increases scattering loss.

加したり、結晶内を通過した直線偏光の光が楕円偏光化
するなどの問題点がある。
There are problems in that the linearly polarized light that passes through the crystal becomes elliptically polarized.

本発明の目的は、このような従来の問題点を除去し、高
消光比かつ低損失で生産性の高い複屈折回折格子型偏光
子およびその製造方法を提供することにある。
An object of the present invention is to eliminate such conventional problems and provide a birefringent grating type polarizer with a high extinction ratio, low loss, and high productivity, and a method for manufacturing the same.

〔課厘を解決するための手段〕[Means to solve division problems]

本発明は、光学的異方性を持つ結晶基板の主面に、周期
的な溝を有し、かつこの溝が誘電体で埋められているこ
とを特徴とした複屈折回折格子型偏光子である。この偏
光子は、基板に溝を形成した後、この溝内に誘電体を堆
積することで作製できる。
The present invention is a birefringent grating polarizer characterized by having periodic grooves on the main surface of a crystal substrate having optical anisotropy, and the grooves being filled with a dielectric material. be. This polarizer can be manufactured by forming a groove in a substrate and then depositing a dielectric material in the groove.

〔作用〕[Effect]

前記のように、従来の複屈折回折格子型偏光板における
問題点はイオン交換に起因するものである。そこで本発
明においては、結晶基板に周期的な溝を形成し、その溝
を誘電体膜で埋めることによって、回折格子を形成して
おり、従来の複屈折回折格子型偏光板のようにイオン交
換を用いていない、従って、前記のイオンの横拡散によ
る消光比の劣化や損失の増加および結晶の格子定数の変
化よる透過光の楕円偏光化を防止することができる。さ
らに、周期的な溝を形成する際のマスクをそのまま誘電
体膜で溝を埋める際のマスクとして使用することができ
るので、パターニングが1回ですみ、従来のように誘電
体膜をパターニングする際のマスクの位置合わせの必要
がない。従って、イオン交換領域と誘電体膜の位置ずれ
による消光比の劣化や損失の増加がなくなり、かつ高い
生産性が得られる。これらのことにより、従来と比べて
高消光比で低損失かつ低価格な複屈折回折格子型層光子
が得られる。
As mentioned above, the problems with conventional birefringent grating type polarizing plates are due to ion exchange. Therefore, in the present invention, a diffraction grating is formed by forming periodic grooves in a crystal substrate and filling the grooves with a dielectric film. Therefore, it is possible to prevent the deterioration of the extinction ratio and increase in loss due to the lateral diffusion of ions and the elliptical polarization of transmitted light due to changes in the lattice constant of the crystal. Furthermore, since the mask used to form periodic grooves can be used as is when filling the grooves with a dielectric film, patterning can be done only once, and when patterning a dielectric film as in the past, There is no need to align the mask. Therefore, there is no deterioration in extinction ratio or increase in loss due to misalignment between the ion exchange region and the dielectric film, and high productivity can be achieved. As a result, a birefringent diffraction grating layer photon with a high extinction ratio, low loss, and low cost can be obtained compared to the conventional method.

〔実施例〕〔Example〕

以下、本発明の実施例について図面を参照して説明する
。第1図から第3図は本発明の複屈折回折格子型偏光子
の実施例の斜視図である。1は光学的異方性を持つ結晶
基板であり、本実施例ではニオブ酸リチウムのY板を用
いている。この結晶基板1の表面には、周期的な満2が
形成されており、さらにこの満2は誘電体膜3で埋めら
れている。入射光4は結晶基板1に垂直な方向から入射
し、偏光方向によって直線光5または回折光6となって
出射される。
Embodiments of the present invention will be described below with reference to the drawings. 1 to 3 are perspective views of embodiments of the birefringent grating type polarizer of the present invention. 1 is a crystal substrate having optical anisotropy, and in this embodiment, a Y plate of lithium niobate is used. Periodic dots are formed on the surface of this crystal substrate 1, and these dots are further filled with a dielectric film 3. The incident light 4 enters the crystal substrate 1 from a direction perpendicular to the crystal substrate 1, and is emitted as a straight light 5 or a diffracted light 6 depending on the polarization direction.

第1図または第2図に示された回折格子の0次の回折光
効率(すなわち直進光強度)は、CO321yc [(
n−nd ) t+ <n−1) (d −t)]/λ
)で与えられる。但し、λは入射光4の波長、ndは溝
2を埋めている誘電体3の屈折率、tは溝2を埋めてい
る誘電体3の厚さ、dは溝2の深さである。また、nは
ニオブ酸リチウム基板1の屈折率で入射光4の偏光方向
によって、異常光線の屈折率n8または常光線の屈折率
n。
The zero-order diffraction light efficiency (i.e. straight light intensity) of the diffraction grating shown in FIG. 1 or FIG. 2 is CO321yc [(
n-nd) t+ <n-1) (d-t)]/λ
) is given by Here, λ is the wavelength of the incident light 4, nd is the refractive index of the dielectric 3 filling the groove 2, t is the thickness of the dielectric 3 filling the groove 2, and d is the depth of the groove 2. Further, n is the refractive index of the lithium niobate substrate 1, and depending on the polarization direction of the incident light 4, the refractive index n8 of the extraordinary ray or the refractive index n of the ordinary ray.

のどちらかをとる。この回折格子を偏光子として動作さ
せるためには、常光線または異常光線のどちらか一方の
0次の回折効率を0にし、かつ他方の0次の回折効率を
1にすればよい。このような回折状態は、溝2の深さを
d=λ/[21no=n、l]、誘電体3の厚さをt=
(n−1)/(nd  1)dとすることによって得ら
れる。但し、n”=noの場合は常光線のみを直進させ
る偏光子として働き、n=n、の場合は異常光線だけを
直進させる偏光子として働く、また誘電体3の屈折率n
(1が結晶基板1の屈折率nよりも大きい場合には第1
図に示すように溝2が誘電体3で途中まで埋められた構
成になり、誘電体3の屈折率ndが結晶基板1の屈折率
nと等しい場合には、第2図のように誘電体3が溝2を
完全に埋めた構成になり、逆に誘電体3の屈折率ndが
結晶基板1の屈折率nよりも小さい場合には第3図に示
すように溝2が誘電体3で完全に埋められさらに誘電体
3の表面が結晶基板1の表面よりも高くなった構成にな
る。
Take either. In order to operate this diffraction grating as a polarizer, the 0th-order diffraction efficiency of either the ordinary ray or the extraordinary ray may be set to 0, and the 0th-order diffraction efficiency of the other may be set to 1. Such a diffraction state is obtained by setting the depth of the groove 2 to d=λ/[21no=n, l] and the thickness of the dielectric 3 to t=
It is obtained by setting (n-1)/(nd 1)d. However, when n''=no, it acts as a polarizer that allows only ordinary rays to go straight, and when n=n, it acts as a polarizer that allows only extraordinary rays to go straight.
(If 1 is larger than the refractive index n of the crystal substrate 1, the first
As shown in the figure, when the groove 2 is partially filled with the dielectric 3 and the refractive index nd of the dielectric 3 is equal to the refractive index n of the crystal substrate 1, the dielectric 3 completely fills the groove 2, and conversely, if the refractive index nd of the dielectric 3 is smaller than the refractive index n of the crystal substrate 1, the groove 2 is filled with the dielectric 3 as shown in FIG. The structure is completely buried and the surface of the dielectric 3 is higher than the surface of the crystal substrate 1.

例えば光の波長をλ=1.3μmとすると、ニオブ酸リ
チウムの異常光線及び常光線に対する屈折率はそれぞれ
ne=2.15及びnQ =2.23である。従って、
溝2の深さdは約8.1μmとなる。
For example, when the wavelength of light is λ=1.3 μm, the refractive index of lithium niobate for extraordinary rays and ordinary rays is ne=2.15 and nQ=2.23, respectively. Therefore,
The depth d of the groove 2 is approximately 8.1 μm.

誘電体3として屈折率がnd=2jの酸化ニオブ(Nb
205)を用いるとすれば、偏光子の構成は第1図のよ
うになり、誘電体3の厚さtが約7.2μmのとき異常
光線だけを直進させる偏光子として鋤き、誘電体3の厚
さtが約7,7μmのとき常光線だけを直進させる偏光
子として働く、また、誘電体3として屈折率がnd=2
.0の酸化亜鉛(2nO)を用いるとすれば、偏光子の
構成は第3図のようになり、誘電体3の厚さtが約9,
3μmのとき異常光線だけを直進させる偏光子として働
き、誘電体3の厚さtが約10.0μmのとき常光線だ
けを直進させる偏光子として働く、また酸化ニオブ酸(
NbzOs)は反応性スパッタリング法によって堆積さ
せる場合、酸素の分圧等を調整することによって、屈折
率を2.1から2,3程度まで変化させられることが知
られている。そこで誘電体3として酸化ニオブを用い、
その屈折率を結晶基板1の常光線の屈折率(n o =
 2.23)または異常光線の屈折率(na−2,15
)に等しくなるようにし、第2図のような構成にするこ
とによっても、常光線または異常光線だけを直進させる
偏光子として働く。
Niobium oxide (Nb) with a refractive index nd=2j is used as the dielectric material 3.
205), the configuration of the polarizer will be as shown in Fig. 1, and when the thickness t of the dielectric 3 is about 7.2 μm, it will be used as a polarizer that allows only the extraordinary ray to travel straight. When the thickness t of the dielectric material 3 is approximately 7.7 μm, it acts as a polarizer that allows only ordinary rays to proceed straight, and the refractive index of the dielectric material 3 is nd=2.
.. If 0% zinc oxide (2nO) is used, the configuration of the polarizer will be as shown in Figure 3, and the thickness t of the dielectric 3 will be approximately 9%.
When the thickness t of the dielectric 3 is approximately 10.0 μm, it acts as a polarizer that allows only the extraordinary rays to proceed straight.
It is known that when NbzOs is deposited by reactive sputtering, the refractive index can be varied from 2.1 to about 2.3 by adjusting the partial pressure of oxygen, etc. Therefore, using niobium oxide as the dielectric material 3,
The refractive index is the refractive index of the ordinary ray of the crystal substrate 1 (n o =
2.23) or the refractive index of the extraordinary ray (na-2,15
), and by creating the configuration as shown in FIG. 2, it also works as a polarizer that allows only the ordinary or extraordinary rays to travel straight.

次に本偏光子の製造方法を説明する。第4図は本偏光子
の製造方法の実施例を示す工程図である。本偏光子は、
まず通常のりソグラフィ技術などによって結晶基板1上
にストライブ状のマスク7を形成しく第4図(a))、
次にプラズマイオンエツチング法や反応性イオエッチン
グ法などのドライエツチングプロセスを用いて満2を形
成しく第4図(b))、スパッタリングやCVD法を用
いて講2を誘電体3で埋め(第4図(C))、最後に溶
剤などでマスク7を溶解してマスク7およびその上の誘
電体膜を除去する(第4図(d))ことによって得られ
る。従って本漏光子の製造方法では、満2を形成する際
のマスク7をそのまま誘電体膜3で溝2を埋める際のマ
スクとして使用することができるので、バターニングが
1回ですみ、従来のように誘電体膜をパターニングする
際のマスクの位置合わせが必要ない、従って、イオン交
換領域と誘電体膜の位置ずれによる消光比の劣化や損失
の増加がなくなり、かつ高い生産性が得られる。
Next, a method for manufacturing the present polarizer will be explained. FIG. 4 is a process diagram showing an example of the method for manufacturing the present polarizer. This polarizer is
First, a stripe-shaped mask 7 is formed on the crystal substrate 1 using a normal lamination lithography technique (FIG. 4(a)).
Next, a dry etching process such as a plasma ion etching method or a reactive ion etching method is used to form a filler layer 2 (Fig. 4(b)), and a dielectric material 3 is filled in the hole 2 using a sputtering or CVD method (Fig. 4(b)). 4(C)), and finally by dissolving the mask 7 with a solvent or the like and removing the mask 7 and the dielectric film thereon (FIG. 4(d)). Therefore, in the present method for manufacturing a light transmitter, the mask 7 used when forming the full 2 can be used as it is as a mask when filling the groove 2 with the dielectric film 3, so buttering can be done only once, which is different from the conventional method. There is no need to align the mask when patterning the dielectric film, and therefore there is no deterioration in extinction ratio or increase in loss due to misalignment between the ion exchange region and the dielectric film, and high productivity can be achieved.

本偏光子は薄いニオブ酸リチウム結晶板にバッチプロセ
スによって大量に形成できるため、薄型で安価な偏光子
を得ることができる。
Since this polarizer can be formed in large quantities on thin lithium niobate crystal plates by a batch process, it is possible to obtain a thin and inexpensive polarizer.

〔発明の効果〕〔Effect of the invention〕

以上に述べたように、本発明によれば高消光比低挿入損
失の薄型偏光素子を得ることができ、さらにはバッチ処
理により大量安価は偏光素子とすることができる。
As described above, according to the present invention, it is possible to obtain a thin polarizing element with a high extinction ratio and low insertion loss, and furthermore, it is possible to produce a polarizing element in large quantities and at low cost through batch processing.

図は従来の複屈折回折格子型偏光子の斜視図であり、第
6図、第7図、第8図はその断面図である。
The figure is a perspective view of a conventional birefringence grating type polarizer, and FIGS. 6, 7, and 8 are cross-sectional views thereof.

1・・・ニオブ酸リチウム結晶基板、2・・・溝、3・
・・誘電体膜、4・・・入射光、5・・・直進光、6・
・・回折光、7・・・マスク、8・・・イオン交換領域
、9・・・誘電体膜。
1... Lithium niobate crystal substrate, 2... Groove, 3...
・・・Dielectric film, 4... Incident light, 5... Straight light, 6...
... Diffraction light, 7... Mask, 8... Ion exchange region, 9... Dielectric film.

代理人 弁理士  内 原  晋Agent Patent Attorney Susumu Uchihara

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図は本発明の複屈折回折格子型漏
光子の実施例の斜視図であり、第4図はその製造方法の
実施例を示す工程図である。第5「−2− ヌ f ゛S′:畏− 万 図 図 9ボi体勝 月 テ
1, 2, and 3 are perspective views of an embodiment of the birefringent diffraction grating type light leaker of the present invention, and FIG. 4 is a process diagram showing an embodiment of the manufacturing method thereof. 5th ``-2-nuf ゛S': Awe-Manzuzu 9 body Katsugetsute

Claims (2)

【特許請求の範囲】[Claims] (1)光学的異方性を持つ結晶基板の主面に設けた周期
的な溝の底面上に誘電体層を有することを特徴とした複
屈折回折格子型偏光子。
(1) A birefringent grating polarizer characterized by having a dielectric layer on the bottom surface of periodic grooves provided on the main surface of a crystal substrate having optical anisotropy.
(2)光学的異方性を持つ結晶基板の主面に、周期的な
溝を形成した後に、この溝の底面に誘電体を装荷するこ
とを特徴とした複屈折回折格子型偏光子の製造方法。
(2) Manufacture of a birefringent grating polarizer characterized by forming periodic grooves on the main surface of a crystal substrate with optical anisotropy and then loading a dielectric material on the bottom surface of the grooves. Method.
JP63311170A 1988-12-08 1988-12-08 Birefringent diffraction grating polarizer and method of manufacturing the same Expired - Fee Related JP2718112B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63311170A JP2718112B2 (en) 1988-12-08 1988-12-08 Birefringent diffraction grating polarizer and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63311170A JP2718112B2 (en) 1988-12-08 1988-12-08 Birefringent diffraction grating polarizer and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH02156205A true JPH02156205A (en) 1990-06-15
JP2718112B2 JP2718112B2 (en) 1998-02-25

Family

ID=18013934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63311170A Expired - Fee Related JP2718112B2 (en) 1988-12-08 1988-12-08 Birefringent diffraction grating polarizer and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2718112B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997031371A1 (en) * 1996-02-23 1997-08-28 Toyo Communication Equipment Co., Ltd. Optical pickup and optical element used therefor
WO1999018459A1 (en) * 1997-10-02 1999-04-15 Asahi Glass Company Ltd. Optical head device and a diffraction element suitable for the device, and a method of manufacturing the diffraction element and the optical head device
US6621630B2 (en) 2000-03-30 2003-09-16 Tdk Corporation Composite optical element, optical isolator, optical attenuator and processes for producing them

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61203402A (en) * 1985-03-05 1986-09-09 Canon Inc Functional optical element
JPS6326604A (en) * 1986-07-18 1988-02-04 Nec Corp Polarization beam splitter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61203402A (en) * 1985-03-05 1986-09-09 Canon Inc Functional optical element
JPS6326604A (en) * 1986-07-18 1988-02-04 Nec Corp Polarization beam splitter

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997031371A1 (en) * 1996-02-23 1997-08-28 Toyo Communication Equipment Co., Ltd. Optical pickup and optical element used therefor
US6052353A (en) * 1996-02-23 2000-04-18 Toyo Communication Equipment Co., Ltd. Double refraction plate with refractive grating pattern around a centerally disposed transparent region to allow the passage of either an ordinary ray or an extraordinary ray
WO1999018459A1 (en) * 1997-10-02 1999-04-15 Asahi Glass Company Ltd. Optical head device and a diffraction element suitable for the device, and a method of manufacturing the diffraction element and the optical head device
US6618116B1 (en) 1997-10-02 2003-09-09 Asahi Glass Company, Limited Optical head device and a diffraction element suitable for the device, and a method of manufacturing the diffraction element and the optical head device
US6621630B2 (en) 2000-03-30 2003-09-16 Tdk Corporation Composite optical element, optical isolator, optical attenuator and processes for producing them

Also Published As

Publication number Publication date
JP2718112B2 (en) 1998-02-25

Similar Documents

Publication Publication Date Title
US5029988A (en) Birefringence diffraction grating type polarizer
JP2703930B2 (en) Birefringent diffraction grating polarizer
US7079202B2 (en) Multi-layer diffraction type polarizer and liquid crystal element
US6487014B2 (en) High isolation optical switch, isolator or circulator having thin film polarizing beam-splitters
JPH05289027A (en) Polarizer, optical element with polarizer and its production
JP2803181B2 (en) Birefringent diffraction grating polarizer
JPH02156205A (en) Double refractive diffraction grating type polarizer and production thereof
JP3320507B2 (en) Diffraction grating polarizer and manufacturing method thereof
US20060013076A1 (en) Magnetooptic element and process for fabricating the same and optical isolator incorporating it
JPH06194523A (en) Hologram element and its production
JP4975162B2 (en) Self-cloning photonic crystal for ultraviolet light
JPH05181088A (en) Optical isolator
JP2503538B2 (en) Method for manufacturing diffraction grating type polarizing plate
JP2848137B2 (en) Birefringent diffraction grating polarizer
JP3486091B2 (en) Optical circulator
JP2000284225A (en) Optical isolator
JP2003315737A (en) Optical isolator
JPH05249308A (en) Double refractive diffraction grating type polarizer and its production
JPH0576001B2 (en)
JP2789941B2 (en) How to use birefringent diffraction grating polarizer
JP3023572B2 (en) Polarizing element
JPH04263205A (en) Double refractive diffraction grating type polarizer and optical isolator
JP2002122835A (en) Faraday rotator
JPH11352326A (en) Double refractive diffraction grating type polarizer and its production
JPH08211218A (en) Diffraction grating type polarizer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees