JP2004037480A - Liquid crystal element and optical attenuator - Google Patents

Liquid crystal element and optical attenuator Download PDF

Info

Publication number
JP2004037480A
JP2004037480A JP2002190086A JP2002190086A JP2004037480A JP 2004037480 A JP2004037480 A JP 2004037480A JP 2002190086 A JP2002190086 A JP 2002190086A JP 2002190086 A JP2002190086 A JP 2002190086A JP 2004037480 A JP2004037480 A JP 2004037480A
Authority
JP
Japan
Prior art keywords
liquid crystal
light
crystal element
diffraction grating
linearly polarized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002190086A
Other languages
Japanese (ja)
Other versions
JP2004037480A5 (en
JP4106981B2 (en
Inventor
Michihisa Tomita
富田 倫央
Yoshiharu Oi
大井 好晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2002190086A priority Critical patent/JP4106981B2/en
Publication of JP2004037480A publication Critical patent/JP2004037480A/en
Publication of JP2004037480A5 publication Critical patent/JP2004037480A5/ja
Application granted granted Critical
Publication of JP4106981B2 publication Critical patent/JP4106981B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize a liquid crystal element and an optical attenuator with which a transmitted light quantity is adjusted corresponding to applied voltage irrespective of a polarization direction of incident light. <P>SOLUTION: The liquid crystal element is constructed in such a way that two linearly polarized light beams, with respective polarization directions mutually perpendicularly intersecting and made incident on the liquid crystal element comprising a liquid crystal layer sandwiched between substrates with electrodes attached thereto, are made to track mutually different pathways corresponding to polarization directions by a polarizing diffraction grating 120 which is a first polarization beam splitter and pass through a liquid crystal cell 110 and, when the liquid crystal cell 110 has a specified retardation value, two linearly polarized light beams, passing through a polarizing diffraction grating 130 which is a second polarization beam splitter, outgo paralleling each other in the same travelling direction as that of the light incident on the liquid crystal element. The optical attenuator is constructed by using the element. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、入射光の偏光方向に関わらず印加電圧の大きさに応じて直進透過光の効率が変化する液晶素子およびそれを用いた電圧可変の光減衰器に関する。
【0002】
【従来の技術】
液晶を用いた従来の光減衰器である液晶素子の一例を図8に示す。透明電極2、3が形成された透光性基板4と5との間に液晶分子の配向方向が透光性基板面に平行で、X軸方向と45°の角度をなす方向に揃ったネマティック液晶の液晶層1が透光性基板の周縁に設けられたシール材6の内部に狭持された液晶セル110と、その光出射面側にX軸方向に偏光方向を有する直線偏光のみを透過する偏光子10とを配置した構成となっている。
【0003】
ここで、透明電極2と3とに矩形波出力の交流電源7を接続し、この電源による電圧非印加時に、波長λでY軸方向に偏光方向を有する直線偏光に対する液晶セル110のリタデーション値がほぼλ/2となるよう液晶層1の厚さが設定されている。ここで、液晶層1のリタデーション値をほぼλ/2としているのは、電圧非印加時に光減衰器の挿入損失を最小とするため、およびλ/2板として機能させるためである。
【0004】
この光減衰器において、透明電極間への電圧非印加時に液晶層に入射したY軸方向に偏光した直線偏光は、X軸方向に偏光方向を有する直線偏光となって偏光子を透過する。電圧を印加するとき、印加電圧の増加に伴い液晶層の厚さ方向に、すなわち基板に垂直になるように液晶分子の配向方向が傾く。それに伴い液晶層のリタデーション値がゼロに近づき、液晶セル110の透過光はY軸方向の直線偏光成分が増大する。その結果、偏光子の透過光量が印加電圧の増加に伴い単調に減少し、電圧可変型の光減衰器となる。
【0005】
【発明が解決しようとする課題】
従来の、電圧印加量に応じた液晶層のリタデーション値の変化を利用した電圧可変型の光減衰器では、特定の直線偏光を入射光としている。したがって、入射光の偏光方向が任意の場合、偏光子を透過する偏光成分が常に存在するため消光比が劣化して光減衰器の機能が得られなかった。
【0006】
また、図8において液晶層1の光入射側にY軸方向に偏光方向を有する直線偏光のみを透過する偏光子を配置した場合、X軸方向に偏光方向を有する直線偏光成分は吸収されるため、光挿入損失が大きな光減衰器しか得られなかった。
【0007】
本発明は、上述の実情に鑑み、入射光の偏光方向に関わらず光挿入損失が低くかつ消光比の高い安定した光減衰器が実現できる液晶素子およびそれを用いた光減衰器を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明は、電極付き基板間に液晶層が狭持され、電極間に印加される電圧の大きさに応じて透過光のリタデーション値が変化する液晶セルと、液晶セルの光入射側に配置された第1の偏光性ビームスプリッタと液晶セルの光出射側に配置された第2の偏光性ビームスプリッタとを備える液晶素子であって、液晶素子へ入射する直交した偏光方向を有する2つの直線偏光は、第1の偏光性ビームスプリッタにより偏光方向に応じて進行経路が互いに異なって液晶セルを透過し、液晶セルが特定のリタデーション値を有するとき第2の偏光性ビームスプリッタを透過する前記2つの直線偏光は、液晶素子の入射光と同じ進行方向に互いに揃って液晶素子を出射することを特徴とする液晶素子を提供する。
【0009】
また、前記第1および第2の偏光性ビームスプリッタは、複屈折性材料層を備える偏光性回折格子からなる上記の液晶素子を提供する。
【0010】
また、前記偏光性回折格子は、断面形状が鋸歯状で平面形状が直線状の複屈折材料からなる回折格子であり、特定方向に偏光した直線偏光に対して1次回折光の回折効率が他の次数の回折光の回折効率に比べて高い回折格子であって、かつ第1の偏光性回折格子により回折された直線偏光が第2の偏光性回折格子により回折されて出射する進行方向が、第1の偏光性回折格子に直線偏光が入射する方向と一致する上記の液晶素子を提供する。
【0011】
さらに、上記の液晶素子に、前記進行方向が互いに揃って液晶素子を出射する2つの直線偏光を伝搬し、その進行方向と異なる方向へ液晶素子を出射する直線偏光を遮断する機構を付加し、前記電極間に印加される電圧の大きさに応じて伝搬する光量が変化することを特徴とする光減衰器を提供する。
【0012】
【発明の実施の形態】
本発明の液晶素子の構成要素である液晶セルは、電極付き透光性基板間に液晶層が狭持され、その液晶セルの電極間にVからV(V≠V)までの電圧が印加されたとき、液晶セルへ入射されて透過される波長λの直線偏光に対するリタデーション値が(m+1/2)×λからm×λ(mは整数)まで変化するものとする。
【0013】
また、本発明の液晶素子の構成要素である偏光性ビームスプリッタは、特定の直線偏光入射光とその偏光方向と直交する直線偏光入射光の進行方向を効率よく異ならせる機能を有するものである。
【0014】
図1は、本発明の液晶素子の第1の実施態様の構成例を示す側面図である。液晶素子100は、偏光性ビームスプリッタとして複屈折性材料を備える偏光性回折格子を用いる。透光性基板4と5の片面にそれぞれ透明電極2と3が形成され、さらにその上に同一方向に配向処理された配向膜(図示せず)が形成されて、シール材7を用いてセル化される。さらに、セル内に常光屈折率n(LC)および異常光屈折率n(LC)(n(LC)<n(LC))のネマティック液晶が注入されて液晶層1とされ、基板と平行に液晶分子の配向方向の揃った液晶セル110が得られる。
【0015】
液晶セル110の光入射側に第1の偏光性回折格子120が、光出射側に第2の偏光性回折格子130が配置されている。何れにも共通した構成について以下に説明する。ガラスなどの透光性基板11、12の片面に常光屈折率nおよび異常光屈折率nの複屈折材料である高分子液晶層13、14を形成する。ここで、液晶モノマーの溶液を透光性基板の配向処理の施された配向膜上に塗布し、液晶分子の配向ベクトル(分子配向軸)を基板と平行面内の特定方向に揃うように配向させた後、紫外線などの光を照射して重合硬化させ高分子液晶層とする。
【0016】
次に、高分子液晶層を断面形状が鋸歯状(いわゆるブレーズド回折格子型)であり、図1の紙面垂直方向(X軸)の平面形状が直線状の凹凸部を形成する。すなわち、格子ピッチが一定な直線状ブレーズド回折格子を加工する。
さらに、複屈折性材料層の凹凸部の少なくとも凹部に常光屈折率nとほぼ等しい屈折率nの均質屈折率透明材料15、16を充填する。
【0017】
ここで、鋸歯状の凹凸部の断面形状は、入射光の波長λの異常光偏光に対する1次回折効率が最大になるよう、凹凸部の位相差2π×(n−n)×d/λが2π、すなわち高分子液晶層13、14の膜厚dをλ/(ne−ns)としている。
【0018】
なお、鋸歯状の断面形状は階段形状で近似した疑似ブレーズ格子としてもよい。その場合、4段から16段程度の階段状鋸歯とすることが好ましい。また、ブレーズド回折格子に比べて回折効率が低下するが、凹凸部の断面形状が矩形回折格子としてもよい。いずれも、回折光が最大となる凹凸部の位相差条件とすることにより、回折されることなく直進透過する波長λの異常光偏光の0次光成分は1%以下となる。
【0019】
このようにして得られた偏光性回折格子120、130に、高分子液晶層に対する常光偏光である直線偏光が入射した場合、高分子液晶層13、14と均質屈折率透明材料15、16との屈折率に差がないようにするため、入射光は回折されることなく直進透過する。
【0020】
一方、高分子液晶層に対する異常光偏光である直線偏光が入射した場合、回折格子ピッチに応じて常光偏光とは異なる進行方向に回折光として分離される。この偏光性回折格子を、液晶セル110の光入射側に第1の偏光性回折格子120および光出射側に第2の偏光性回折格子130として液晶セル110に接着して一体化し、液晶素子100としている。
このとき、偏光性回折格子120と130への入射光は、直進透過する常光偏光成分と特定の方向に回折される異常光偏光成分とに進行経路が分離される。
【0021】
ここでは、第1の偏光性回折格子120を構成する高分子液晶層の配向方向をX軸方向とし、第2の偏光性回折格子130を構成する高分子液晶層の配向方向をY軸方向とし、各偏光性回折格子の配向方向が直交するように配向処理されている。また、液晶セル110のネマティック液晶分子の配向方向が第1および第2の偏光性回折格子における高分子液晶層の配向方向と45°の角度を成すように配置されている。
【0022】
液晶セル110の透過光のリタデーション値がm×λ(mは整数)のとき、第1の偏光性回折格子120を直進透過した偏光成分は第2の偏光性回折格子130で回折され、第1の偏光性回折格子120で回折された偏光成分はい第2の偏光性回折格子130を直進透過する。
【0023】
また、液晶セル110の透過光のリタデーション値が(m+1/2)×λ(mは整数)のとき、第1の偏光性回折格子120により最大回折された1次回折光が、第2の偏光性回折格子130により1次回折光として最大回折されて、非回折光と同じ進行方向となるように、第1の偏光性回折格子120と第2の偏光性回折格子130の格子形状(ピッチ、直線格子の方向、断面凹凸形状)が調整されている。
【0024】
図2および図3を用いて、不特定な偏光方向を有する入射光が液晶素子100に入射した場合の作用を説明する。波長λの入射光のうち、第1の偏光性回折格子120に対して常光偏光成分(Y軸)は偏光性回折格子120を直線透過し、異常光偏光成分(X軸)は偏光性回折格子120により回折され、液晶セル110に入射する。
【0025】
液晶セル110の電極間にVの電圧を印加した場合(図2)、常光偏光および異常光偏光の各成分に対していずれも(m+1/2)×λ(mは整数)のリタデーション値を有する位相板として機能する。
【0026】
その結果、第1の偏光性回折格子120を直線透過した光は偏光方向が90°回転して第2の偏光性回折格子130に対して常光偏光となって入射するため、第2の偏光性回折格子130により回折されることなく直進透過する。また、第1の偏光性回折格子120により回折された光は偏光方向が90°回転して第2の偏光性回折格子130に対して異常光偏光となって入射するため、第2の偏光性回折格子130により回折され、直進透過光と同じ進行方向となって出射する。したがって、液晶セル110の印加電圧がVのとき、入射光はその偏光方向に関わらず直進透過する。すなわち、液晶セルが特定のリタデーション値、ここでは(m+1/2)×λ(mは整数)、を有するとき第2の偏光性ビームスプリッタを透過する2つの直線偏光は進行方向が液晶素子の入射光と同じ進行方向に互いに揃って液晶素子を出射する。
【0027】
一方、液晶セル110の電極間にVの電圧を印加した場合(図3)、常光偏光および異常光偏光の各成分に対していずれもm×λ(mは整数)のリタデーション値を有する位相差板として機能する。
【0028】
その結果、第1の偏光性回折格子120を直線透過した光は偏光方向を保ったまま第2の偏光性回折格子130に対して異常光偏光となって入射するため、第2の偏光性回折格子130により回折され、液晶素子100の入射光と異なる進行方向に分離されて出射する。また、第1の偏光性回折格子120により回折された光は偏光方向を保ったまま第2の偏光性回折格子130に対して常光偏光となって入射するため、第2の偏光性回折格子130を直進透過し、液晶素子100の入射光と異なる進行方向に分離されて出射する。
【0029】
したがって、液晶セル110の印加電圧がVのとき、入射光はその偏光状態に関わらず回折され、入射光と異なる進行方向に分離されて出射する。
なお、液晶セル110の電極間にVとVの中間電圧を印加した場合、液晶素子100の透過光は、入射光と同じ進行方向の成分と入射光と異なる進行方向の成分が印加電圧に応じた比率で混在した出射光となる。
【0030】
図4と図5は本発明の液晶素子100を用いた電圧可変の光減衰器の光学系構成およびその作用の一例を示す側面図である。液晶素子100に不特定な偏光方向を有する平行光が入射し、出射側に集光レンズ8を配置した場合、液晶素子100を直進透過した光は集光レンズ8の光軸上の焦点面に集光される(図4)。一方、液晶素子100で回折された光は集光レンズ8の光軸外の焦点面に集光される(図5)。
【0031】
したがって、集光レンズ8の光軸上の焦点面に開口部を有する開口絞り9を配置することにより、直進透過光のみを透過し進行方向が異なる回折光を遮断するアイソレータとなる。ここで、開口絞り9の代わりに開口部に相当する受光部を有する光検出器を配置することにより直進透過光のみを検出できる。また、光伝送用の光ファイバのコア部を開口部の代わりに配置すれば直進透過光のみを伝送できる。
【0032】
このようにして、不特定な偏光方向を有する入射光に対して、液晶セル110の電極間に印加する電圧を変えることにより、透過光量を調整できる光減衰器が実現する。
【0033】
本実施態様では、広い入射光波長帯域において消光比の高い光減衰器を得るためには、偏光性回折格子の例えば常光偏光に対する直進透過率が高く、例えば異常光偏光に対する直進透過率が低いことが好ましい。広い入射光波長帯域において異常光偏光に対する高い回折効率を維持して直進透過率を低く保つためには、偏光性回折格子を積層することが有効である。
【0034】
また、液晶素子100の印加電圧VおよびVを低電圧化し、波長依存性を低減するためには、液晶層を薄くすなわち液晶層のリタデーション値の電圧印可可変範囲を0〜1/2×λ(m=0に相当)とすることが好ましい。また、特定印加電圧でリタデーション値ゼロを実現するため、液晶セル110に液晶層のリタデーション値を相殺する位相板を積層することが有効である。
【0035】
また、上記の実施態様では、第1の偏光性回折格子120を構成する高分子液晶層の配向方向と第2の偏光性回折格子130を構成する高分子液晶層の配向方向が直交する場合について説明したが、両方の高分子液晶層の配向方向を平行としてもよい。その場合は、第1の偏光性回折格子120により進行経路が分離された2つの直線偏光は、液晶セルがリタデーション値m×λ(mは整数)、すなわち特定のリタデーション値、を有するとき、液晶素子の入射光と同じ進行方向に互いに揃って第2の偏光性ビームスプリッタおよび液晶素子を出射し、液晶セルがリタデーション値(m+1/2)×λ(mは整数)を有するとき、液晶素子の入射光と異なる進行方向に分離されて第2の偏光性ビームスプリッタおよび液晶素子を出射する。
【0036】
図6は本発明の液晶素子の第2の実施形態の構成例と作用例を示す側面図である。液晶素子200は偏光性ビームスプリッタとして、屈折率の相対的に低いSiOやMgFなどの透光性誘電体膜と、屈折率の相対的に高いTiOやTaなどの透光性誘電体膜とを、交互に光学的膜厚(屈折率×実際の膜厚)が波長オーダとなるように、透光性基板面に積層する。この透光性基板面は光入射面に対して45°傾いた基板面であり、透光性誘電体膜が形成されて構成された多層膜偏光性ビームスプリッタ220、230を液晶セル110の光入射側と光出射側にそれぞれ用いてある。
【0037】
図6において、紙面内の偏光成分Aは多層膜面17を透過して液晶セルに入射し、紙面に垂直な偏光成分Bは多層膜面17および全反射面19で反射されて液晶セル110に入射する。
【0038】
液晶セル110の電極間印加電圧がVすなわち液晶層のリタデーション値が(m+1/2)×λ(mは整数)となるとき、すなわち特定のリタデーション値のとき、図6に示すように、偏光成分Aは90°偏光方向が回転して液晶セル110を透過し、全反射面20および多層膜面18で反射され多層膜偏光性ビームスプリッタ230から出射する。また、偏光成分Bは90°偏光方向が回転して液晶セル110を透過し、多層膜面18を透過し、偏光成分Aと同じ光軸に合波されて多層膜偏光性ビームスプリッタ230から出射する。その結果、入射光の偏光方向に関わらず、液晶素子200の入射光の進行方向と同じ方向に直進透過する。
【0039】
一方、液晶セル110の電極間印加電圧がVすなわち液晶層のリタデーション値がm×λ(mは整数)となるとき、図7に示すように、偏光成分Aは偏光状態を保ったまま液晶セル110を透過し、全反射面20で反射され多層膜面18を透過し、多層膜偏光性ビームスプリッタ230から出射する。また、偏光成分Bは偏光状態を保ったまま液晶セル110を透過し、多層膜面18で反射され、偏光成分Aと同じ光軸に合波されて多層膜偏光性ビームスプリッタ230を出射する。その結果、入射偏光方向に関わらず、液晶素子200の入射光と直交する方向に進行方向が分離されて液晶素子200から出射する。
【0040】
なお、液晶セル110の電極間にVとVの中間電圧を印加した場合、液晶素子200の直進透過光には、入射光と同じ進行方向の成分と入射光と直交する進行方向の成分が印加電圧に応じた比率で混在した出射光となり、一方の進行方向のみ取り出すことにより、印加電圧に応じて出射光量が可変となる光減衰器が実現する。
【0041】
本発明の液晶素子および光減衰器は上記実施態様で説明した構成以外の液晶セルおよび偏光性ビームスプリッタの組み合わせにより種々の形態を実現できる。
【0042】
【実施例】
本例の液晶素子100について、図1を用いて説明する。常光屈折率no(LC)=1.50および異常光屈折率ne(LC)=1.66のネマティック液晶を、透明電極2、3が片面に形成された透光性基板4、5に挟持し、液晶層1の厚さd(LC)を5.6μmとした液晶単体セルを作製した。液晶層1の遅相軸方向は、図1に示すX軸方向に対して45°方向で基板に対して平行とした。
【0043】
透明電極2、3に電圧を印加しない状態では、波長1.55μmの光に対する液晶単体セルのリタデーション値は約0.9μmであり、Y軸方向に偏光方向を有する直線偏光が、液晶単体セルに入射し出射したとき直線偏光の偏光方向はほぼX軸方向となった。また、電圧振幅5Vの矩形波の交流電圧を印加した状態では、液晶単体セルのリタデーション値は0.12μmであった。
【0044】
さらに、ガラスの透光性基板の片面に、常光屈折率n=1.55および異常光屈折率n=1.59で厚さd=3.0μmの高分子液晶層からなる位相板(図示せず)を液晶単体セルに接着一体化して液晶セル110を作製した。高分子液晶層からなる位相板のリタデーション値は−0.12μmであり、この位相板の進相軸方向を液晶層1の遅相軸方向と一致させることにより、印加電圧5Vでの液晶層1に残留するリタデーション値0.12μmを相殺し、液晶セル110のリタデーション値はゼロとなる。
【0045】
さらに、図1において、ガラスの透光性基板11、12の片面に常光屈折率n(PLC)=1.55および異常光屈折率n(PLC)=1.70で厚さ9.1μmの高分子液晶層13、14を形成し、フォトリソグラフィとエッチングの技術により格子ピッチ30μmで鋸歯状の断面形状を7段で8レベルの階段により近似した階段状の疑似ブレーズ回折格子に加工した。
【0046】
次に、屈折率1.55の均質屈折率透明材料15、16を用いて、階段状の疑似ブレーズ回折格子の凹部を埋めるとともに、液晶セル110の光入射側と光出射側に2種の偏光性回折格子120と130として接着固定し、液晶素子100とした。
【0047】
ここで、液晶セル110の光入射側に配置する偏光性回折格子120の高分子液晶の配向方向はX軸方向とし、液晶セル110の光出射側に配置する偏光性回折格子130の高分子液晶の配向方向はY軸方向としている。
このようにして作製した液晶素子100に、偏光方向がランダムな波長1.55μmの平行光を入射し、その出射光を集光レンズで光ファイバに集光した。
【0048】
液晶素子100の液晶層1への矩形交流印加電圧の振幅Vを0から5vまで変化させたとき、光ファイバ伝送後の光強度I(V)において光強度比I(5v)/I(0)で規定される消光比は−22dBと高い値が得られた。また、液晶素子100の使用に伴う光挿入損失は−0.5dBと低い値であった。
【0049】
比較例として、液晶セル110の光入射面側にY軸方向に偏光方向を有する直線偏光のみを透過する偏光子が、液晶セル110の光出射面側にX軸方向に偏光方向を有する直線偏光のみを透過する偏光子が配置された従来構成の液晶素子の場合、光挿入損失が−3.2dBと大きな値であった。
【0050】
また、液晶セル110の光入射面側には偏光子を配置せず、液晶セル110の光出射面側のみにX軸方向に偏光方向を有する直線偏光のみを透過する偏光子が配置された従来構成の液晶素子の場合、消光比は−3dBで光減衰器としては不十分であった。
【0051】
【発明の効果】
以上説明したように、本発明の液晶素子を用いることにより入射光の偏光方向に関わらず光挿入損失が低くかつ消光比の高い安定した液晶素子を用いた光減衰器が実現できる。また、本発明の液晶素子の構成要素である偏光性ビームスプリッタとして多層膜偏光性ビームスプリッタの代わりに複屈折性材料を使用した偏光性回折格子を用いることにより、薄型で小型軽量な液晶素子および光減衰器が実現できる。
【0052】
また、複屈折性材料を使用した偏光性回折格子として、複屈折材料層の断面形状が鋸歯状の直線格子であり、特定方向の直線偏光に対して1次の回折効率が高い偏光性ブレーズ回折格子とすることにより、光挿入損失が低い光減衰器を実現できる。さらに、光吸収のほとんどない偏光性ビームスプリッタを液晶素子と一体化した本発明の光減衰器では高強度の光が入射しても液晶層の温度上昇が少ないため、安定した消光比が得られる。
【図面の簡単な説明】
【図1】本発明の液晶素子の第1の実施態様の構成例を示す側面図。
【図2】図1の液晶素子の印加電圧がV時の作用例を示す側面図。
【図3】図1の液晶素子の印加電圧がV時の作用例を示す側面図。
【図4】図1の液晶素子を光減衰器として用い、印加電圧がV時の作用例を示す側面図。
【図5】図1の液晶素子を光減衰器として用い、印加電圧がV時の作用例を示す側面図。
【図6】本発明の液晶素子の第2の実施形態の構成例と印加電圧がV時の作用例を示す側面図。
【図7】本発明の液晶素子の第2の実施形態の構成例と印加電圧がV時の作用例を示す側面図。
【図8】従来の液晶素子の光減衰器の構成例を示す側面図。
【符号の説明】
1:液晶層
2、3:透明電極
4、5、11、12:透光性基板
6:シール材
7:矩形波交流電源
8:集光レンズ
9:開口絞り
10:偏光子
13、14:高分子液晶層
15、16:均質屈折率透明材料
17、18:多層膜面
19、20:全反射面
100、200:液晶素子
110:液晶セル
120、130:偏光性回折格子
220、230:多層膜偏光性ビームスプリッタ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a liquid crystal element in which the efficiency of linearly transmitted light changes depending on the magnitude of an applied voltage regardless of the polarization direction of incident light, and a voltage variable optical attenuator using the liquid crystal element.
[0002]
[Prior art]
An example of a liquid crystal element which is a conventional optical attenuator using liquid crystal is shown in FIG. A nematic in which the alignment direction of liquid crystal molecules is parallel to the surface of the translucent substrate between the translucent substrates 4 and 5 on which the transparent electrodes 2 and 3 are formed, and is aligned at a 45 ° angle with the X-axis direction. A liquid crystal cell 110 in which a liquid crystal layer 1 of liquid crystal is sandwiched inside a sealing material 6 provided at the periphery of a translucent substrate, and only linearly polarized light having a polarization direction in the X-axis direction on the light exit surface side is transmitted. The polarizer 10 is arranged.
[0003]
Here, a rectangular wave AC power supply 7 is connected to the transparent electrodes 2 and 3, and when no voltage is applied by this power supply, the retardation value of the liquid crystal cell 110 for linearly polarized light having a polarization direction in the Y-axis direction at a wavelength λ is The thickness of the liquid crystal layer 1 is set so as to be approximately λ / 2. Here, the reason why the retardation value of the liquid crystal layer 1 is approximately λ / 2 is to minimize the insertion loss of the optical attenuator when no voltage is applied and to function as a λ / 2 plate.
[0004]
In this optical attenuator, linearly polarized light that is polarized in the Y-axis direction and is incident on the liquid crystal layer when no voltage is applied between the transparent electrodes becomes linearly polarized light having a polarization direction in the X-axis direction, and passes through the polarizer. When a voltage is applied, as the applied voltage increases, the alignment direction of the liquid crystal molecules tilts in the thickness direction of the liquid crystal layer, that is, perpendicular to the substrate. As a result, the retardation value of the liquid crystal layer approaches zero, and the linearly polarized light component in the Y-axis direction increases in the light transmitted through the liquid crystal cell 110. As a result, the amount of light transmitted through the polarizer monotonously decreases as the applied voltage increases, and a voltage variable optical attenuator is obtained.
[0005]
[Problems to be solved by the invention]
In the conventional voltage variable type optical attenuator using the change in the retardation value of the liquid crystal layer according to the voltage application amount, specific linearly polarized light is used as incident light. Therefore, when the polarization direction of incident light is arbitrary, there is always a polarization component that passes through the polarizer, so the extinction ratio is deteriorated and the function of the optical attenuator cannot be obtained.
[0006]
In FIG. 8, when a polarizer that transmits only linearly polarized light having a polarization direction in the Y-axis direction is disposed on the light incident side of the liquid crystal layer 1, linearly polarized light components having a polarization direction in the X-axis direction are absorbed. Only an optical attenuator with a large optical insertion loss was obtained.
[0007]
In view of the above circumstances, the present invention provides a liquid crystal element capable of realizing a stable optical attenuator with low optical insertion loss and high extinction ratio regardless of the polarization direction of incident light, and an optical attenuator using the liquid crystal element. With the goal.
[0008]
[Means for Solving the Problems]
The present invention is a liquid crystal cell in which a liquid crystal layer is sandwiched between substrates with electrodes and the retardation value of transmitted light changes according to the magnitude of the voltage applied between the electrodes, and is disposed on the light incident side of the liquid crystal cell. A liquid crystal device comprising a first polarizing beam splitter and a second polarizing beam splitter disposed on the light exit side of the liquid crystal cell, wherein two linearly polarized light beams having orthogonal polarization directions incident on the liquid crystal device Are transmitted through the liquid crystal cell with different traveling paths according to the polarization direction by the first polarizing beam splitter, and transmitted through the second polarizing beam splitter when the liquid crystal cell has a specific retardation value. The linearly polarized light provides a liquid crystal element that emits the liquid crystal element aligned in the same traveling direction as the incident light of the liquid crystal element.
[0009]
In addition, the first and second polarizing beam splitters provide the above liquid crystal element comprising a polarizing diffraction grating provided with a birefringent material layer.
[0010]
The polarizing diffraction grating is a diffraction grating made of a birefringent material having a sawtooth cross-sectional shape and a linear planar shape, and the diffraction efficiency of the first-order diffracted light with respect to linearly polarized light polarized in a specific direction is different from that of the other. The traveling direction in which the linearly polarized light diffracted by the first polarizing diffraction grating is higher than the diffraction efficiency of the diffracted light of the order and is diffracted by the second polarizing diffraction grating is emitted. There is provided the above liquid crystal element that coincides with a direction in which linearly polarized light is incident on one polarizing diffraction grating.
[0011]
Furthermore, a mechanism for propagating two linearly polarized light beams that exit the liquid crystal element with the traveling directions aligned with each other to the liquid crystal element described above, and that blocks the linearly polarized light that exits the liquid crystal element in a direction different from the traveling direction, The optical attenuator is characterized in that the amount of propagating light changes according to the magnitude of the voltage applied between the electrodes.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
In the liquid crystal cell which is a constituent element of the liquid crystal element of the present invention, a liquid crystal layer is sandwiched between translucent substrates with electrodes, and V 1 to V 2 (V 1 ≠ V 2 ) between the electrodes of the liquid crystal cell. It is assumed that when a voltage is applied, the retardation value for linearly polarized light having a wavelength λ that is transmitted through the liquid crystal cell changes from (m + 1/2) × λ to m × λ (m is an integer).
[0013]
The polarizing beam splitter, which is a constituent element of the liquid crystal element of the present invention, has a function of efficiently changing the traveling direction of specific linearly polarized incident light and linearly polarized incident light orthogonal to the polarization direction.
[0014]
FIG. 1 is a side view showing a configuration example of the first embodiment of the liquid crystal element of the present invention. The liquid crystal element 100 uses a polarizing diffraction grating including a birefringent material as a polarizing beam splitter. Transparent electrodes 2 and 3 are formed on one side of translucent substrates 4 and 5, respectively, and an alignment film (not shown) that is aligned in the same direction is formed on the transparent electrodes 2 and 3, and a cell using sealing material 7 is formed. It becomes. Moreover, nematic liquid crystal in the cell ordinary refractive index n o (LC) and extraordinary refractive index n e (LC) (n o (LC) <n e (LC)) is injected in the liquid crystal layer 1, the substrate As a result, a liquid crystal cell 110 in which the alignment directions of the liquid crystal molecules are aligned is obtained.
[0015]
The first polarizing diffraction grating 120 is disposed on the light incident side of the liquid crystal cell 110, and the second polarizing diffraction grating 130 is disposed on the light emitting side. A configuration common to both will be described below. Forming a polymer liquid crystal layer 13, 14 is a birefringent material of the ordinary refractive index n o and extraordinary index n e on one side of the transparent substrate 11 such as glass. Here, the liquid crystal monomer solution is applied on the alignment film of the translucent substrate, and the alignment vector (molecular alignment axis) of the liquid crystal molecules is aligned in a specific direction in a plane parallel to the substrate. Then, the polymer liquid crystal layer is formed by polymerizing and curing by irradiating light such as ultraviolet rays.
[0016]
Next, the polymer liquid crystal layer has a sawtooth shape (so-called blazed diffraction grating type) in cross-sectional shape, and a concavo-convex portion in which the planar shape in the vertical direction (X axis) in FIG. 1 is linear. That is, a linear blazed diffraction grating having a constant grating pitch is processed.
Moreover, filling the homogeneous refractive index transparent material 15 and 16 of substantially equal refractive index n s and at least concave portions of the concavo-convex portion of the birefringent material layer ordinary refractive index n o.
[0017]
Here, the cross-sectional shape of the serrated concavo-convex portion, so that the first-order diffraction efficiency for extraordinarily polarized light of the wavelength of the incident light λ becomes maximum, the phase difference 2 [pi × uneven portion (n e -n s) × d / λ is 2π, that is, the film thickness d of the polymer liquid crystal layers 13 and 14 is λ / (ne-ns).
[0018]
The sawtooth cross-sectional shape may be a pseudo blazed grating approximated by a staircase shape. In that case, it is preferable to use a stepped sawtooth of about 4 to 16 steps. Moreover, although diffraction efficiency falls compared with a blazed diffraction grating, the cross-sectional shape of an uneven | corrugated | grooved part is good also as a rectangular diffraction grating. In any case, by setting the phase difference condition of the concavo-convex portion where the diffracted light is maximum, the 0th-order light component of the extraordinary light polarized light having the wavelength λ that is transmitted straight without being diffracted is 1% or less.
[0019]
When linearly polarized light, which is ordinary polarized light with respect to the polymer liquid crystal layer, is incident on the polarizing diffraction gratings 120 and 130 thus obtained, the polymer liquid crystal layers 13 and 14 and the homogeneous refractive index transparent materials 15 and 16 In order to prevent a difference in refractive index, incident light is transmitted straight without being diffracted.
[0020]
On the other hand, when linearly polarized light, which is extraordinary light polarization, enters the polymer liquid crystal layer, it is separated as diffracted light in a traveling direction different from that of ordinary light polarization according to the diffraction grating pitch. The polarizing diffraction grating is bonded to and integrated with the liquid crystal cell 110 as the first polarizing diffraction grating 120 on the light incident side of the liquid crystal cell 110 and the second polarizing diffraction grating 130 on the light emitting side. It is said.
At this time, the traveling path of the incident light to the polarizing diffraction gratings 120 and 130 is separated into an ordinary light polarization component that travels straight and an extraordinary light polarization component that is diffracted in a specific direction.
[0021]
Here, the alignment direction of the polymer liquid crystal layer constituting the first polarizing diffraction grating 120 is defined as the X-axis direction, and the alignment direction of the polymer liquid crystal layer constituting the second polarizing diffraction grating 130 is defined as the Y-axis direction. The orientation treatment is performed so that the orientation directions of the polarizing diffraction gratings are orthogonal to each other. Further, the alignment direction of the nematic liquid crystal molecules of the liquid crystal cell 110 is arranged to form an angle of 45 ° with the alignment direction of the polymer liquid crystal layer in the first and second polarizing diffraction gratings.
[0022]
When the retardation value of the transmitted light of the liquid crystal cell 110 is m × λ (m is an integer), the polarization component that has been transmitted straight through the first polarizing diffraction grating 120 is diffracted by the second polarizing diffraction grating 130, and The polarization component diffracted by the polarizing diffraction grating 120 passes straight through the second polarizing diffraction grating 130.
[0023]
Further, when the retardation value of the transmitted light of the liquid crystal cell 110 is (m + 1/2) × λ (m is an integer), the first-order diffracted light diffracted by the first polarizing diffraction grating 120 is the second polarizing property. The grating shapes (pitch, linear grating) of the first polarizing diffraction grating 120 and the second polarizing diffraction grating 130 are diffracted as the first-order diffracted light by the diffraction grating 130 and have the same traveling direction as the non-diffracted light. , The cross-sectional uneven shape) is adjusted.
[0024]
The operation when incident light having an unspecified polarization direction enters the liquid crystal element 100 will be described with reference to FIGS. Of the incident light having the wavelength λ, the ordinary light polarization component (Y axis) is linearly transmitted through the polarization diffraction grating 120 with respect to the first polarization diffraction grating 120, and the extraordinary light polarization component (X axis) is the polarization diffraction grating. The light is diffracted by 120 and enters the liquid crystal cell 110.
[0025]
When a voltage is applied to the V 1 between the electrodes of the liquid crystal cell 110 retardation value (FIG. 2), both with respect to each component of the ordinarily polarized light and extraordinarily polarized light (m + 1/2) × λ (m is an integer) It functions as a phase plate.
[0026]
As a result, the light that has been linearly transmitted through the first polarizing diffraction grating 120 is rotated by 90 ° and enters the second polarizing diffraction grating 130 as ordinary light polarized light. The light passes straight without being diffracted by the diffraction grating 130. In addition, since the light diffracted by the first polarizing diffraction grating 120 is rotated by 90 ° and enters the second polarizing diffraction grating 130 as an extraordinary light polarization, the second polarizing property The light is diffracted by the diffraction grating 130 and is emitted in the same traveling direction as the linearly transmitted light. Therefore, the voltage applied to the liquid crystal cells 110 when the V 1, the incident light is straightly transmitted regardless of the polarization direction. That is, when the liquid crystal cell has a specific retardation value, here (m + 1/2) × λ (m is an integer), the two linearly polarized light beams transmitted through the second polarizing beam splitter are traveling in the direction of incidence of the liquid crystal element. The liquid crystal elements are emitted in alignment with each other in the same traveling direction as the light.
[0027]
On the other hand, when applying a voltage of V 2 between the electrodes of the liquid crystal cell 110 (FIG. 3), ordinary position having retardation values of both for each component of the polarized light and the abnormal light polarization m × lambda (m is an integer) Functions as a phase difference plate.
[0028]
As a result, the light linearly transmitted through the first polarizing diffraction grating 120 enters the second polarizing diffraction grating 130 as extraordinary light polarization while maintaining the polarization direction, so that the second polarizing diffraction The light is diffracted by the grating 130 and separated and emitted in a traveling direction different from the incident light of the liquid crystal element 100. Further, since the light diffracted by the first polarizing diffraction grating 120 enters the second polarizing diffraction grating 130 as ordinary light polarization while maintaining the polarization direction, the second polarizing diffraction grating 130 is incident. Are transmitted in a straight line, separated in a traveling direction different from the incident light of the liquid crystal element 100, and emitted.
[0029]
Therefore, when the voltage applied to the liquid crystal cell 110 is V 2 , the incident light is diffracted regardless of its polarization state, separated and emitted in a traveling direction different from the incident light.
When an intermediate voltage of V 1 and V 2 is applied between the electrodes of the liquid crystal cell 110, the transmitted light of the liquid crystal element 100 has a component in the same traveling direction as the incident light and a component in the traveling direction different from the incident light. It becomes the emitted light mixed in the ratio according to.
[0030]
4 and 5 are side views showing an example of an optical system configuration and an operation of a voltage variable optical attenuator using the liquid crystal element 100 of the present invention. When parallel light having an unspecified polarization direction is incident on the liquid crystal element 100 and the condenser lens 8 is arranged on the exit side, the light transmitted through the liquid crystal element 100 in a straight line passes through the focal plane on the optical axis of the condenser lens 8. It is condensed (FIG. 4). On the other hand, the light diffracted by the liquid crystal element 100 is condensed on the focal plane outside the optical axis of the condenser lens 8 (FIG. 5).
[0031]
Therefore, by arranging the aperture stop 9 having an opening on the focal plane on the optical axis of the condenser lens 8, an isolator that transmits only the straight transmitted light and blocks the diffracted light having different traveling directions is obtained. Here, instead of the aperture stop 9, only a straight-forward transmitted light can be detected by arranging a photodetector having a light receiving portion corresponding to the opening. Further, if the core part of the optical fiber for optical transmission is arranged instead of the opening part, only the straight transmitted light can be transmitted.
[0032]
In this way, an optical attenuator that can adjust the amount of transmitted light is realized by changing the voltage applied between the electrodes of the liquid crystal cell 110 with respect to incident light having an unspecified polarization direction.
[0033]
In this embodiment, in order to obtain an optical attenuator having a high extinction ratio in a wide incident light wavelength band, the linear diffraction transmittance of the polarizing diffraction grating, for example, for ordinary light polarization is high, for example, the straight transmittance for abnormal light polarization is low. Is preferred. In order to maintain high diffraction efficiency for extraordinary light polarization in a wide incident light wavelength band and keep the straight transmittance low, it is effective to stack a polarizing diffraction grating.
[0034]
Further, in order to lower the applied voltages V 1 and V 2 of the liquid crystal element 100 and reduce the wavelength dependency, the liquid crystal layer is thinned, that is, the voltage application variable range of the retardation value of the liquid crystal layer is set to 0 to 1/2 ×. λ (corresponding to m = 0) is preferable. In order to achieve a retardation value of zero at a specific applied voltage, it is effective to stack a phase plate on the liquid crystal cell 110 that cancels the retardation value of the liquid crystal layer.
[0035]
In the above embodiment, the orientation direction of the polymer liquid crystal layer constituting the first polarizing diffraction grating 120 and the orientation direction of the polymer liquid crystal layer constituting the second polarizing diffraction grating 130 are orthogonal to each other. As described above, the alignment directions of both polymer liquid crystal layers may be parallel. In that case, when the liquid crystal cell has a retardation value m × λ (m is an integer), that is, a specific retardation value, the two linearly polarized light whose traveling paths are separated by the first polarizing diffraction grating 120 is a liquid crystal. When the second polarizing beam splitter and the liquid crystal element are emitted in alignment with each other in the same traveling direction as the incident light of the element, and the liquid crystal cell has a retardation value (m + 1/2) × λ (m is an integer), The light is separated in the traveling direction different from that of the incident light, and is emitted from the second polarizing beam splitter and the liquid crystal element.
[0036]
FIG. 6 is a side view showing a configuration example and an operation example of the second embodiment of the liquid crystal element of the present invention. The liquid crystal element 200 is a polarizing beam splitter, such as a light-transmitting dielectric film such as SiO 2 or MgF 2 having a relatively low refractive index, and a light transmitting material such as TiO 2 or Ta 2 O 5 having a relatively high refractive index. The conductive dielectric film is laminated on the surface of the translucent substrate so that the optical film thickness (refractive index × actual film thickness) is in the wavelength order alternately. The translucent substrate surface is a substrate surface inclined by 45 ° with respect to the light incident surface, and the multilayer polarizing beam splitters 220 and 230 formed by forming the translucent dielectric film are used as the light of the liquid crystal cell 110. They are used on the incident side and the light exit side, respectively.
[0037]
In FIG. 6, the polarization component A in the paper surface is transmitted through the multilayer film surface 17 and enters the liquid crystal cell, and the polarization component B perpendicular to the paper surface is reflected by the multilayer film surface 17 and the total reflection surface 19 to be reflected on the liquid crystal cell 110. Incident.
[0038]
When the inter-electrode voltage applied to the liquid crystal cell 110 is a retardation value of V 1 i.e. the liquid crystal layer becomes (m + 1/2) × λ (m is an integer), that is, when a particular retardation value, as shown in FIG. 6, the polarization The component A rotates 90 ° polarization direction and transmits through the liquid crystal cell 110, is reflected by the total reflection surface 20 and the multilayer film surface 18, and is emitted from the multilayer film polarizing beam splitter 230. Further, the polarization component B rotates through the 90 ° polarization direction and passes through the liquid crystal cell 110, passes through the multilayer film surface 18, is combined with the same optical axis as the polarization component A, and is emitted from the multilayer film polarizing beam splitter 230. To do. As a result, regardless of the polarization direction of the incident light, the liquid crystal element 200 transmits straight in the same direction as the traveling direction of the incident light.
[0039]
On the other hand, when the inter-electrode voltage applied to the liquid crystal cell 110 is a retardation value of V 2 i.e. the liquid crystal layer is made of a m × λ (m is an integer), as shown in FIG. 7, while the polarization component A keeping the polarization state liquid The light passes through the cell 110, is reflected by the total reflection surface 20, passes through the multilayer film surface 18, and exits from the multilayer film polarizing beam splitter 230. Further, the polarization component B passes through the liquid crystal cell 110 while maintaining the polarization state, is reflected by the multilayer film surface 18, is combined with the same optical axis as the polarization component A, and exits from the multilayer polarization beam splitter 230. As a result, regardless of the incident polarization direction, the traveling direction is separated in the direction orthogonal to the incident light of the liquid crystal element 200 and is emitted from the liquid crystal element 200.
[0040]
When an intermediate voltage of V 1 and V 2 is applied between the electrodes of the liquid crystal cell 110, the component of the traveling direction that is the same as the incident light and the component of the traveling direction that is orthogonal to the incident light are included in the linearly transmitted light of the liquid crystal element 200. Becomes a mixed emission light at a ratio corresponding to the applied voltage, and an optical attenuator in which the amount of emitted light is variable according to the applied voltage is realized by taking out only one traveling direction.
[0041]
The liquid crystal element and the optical attenuator of the present invention can be realized in various forms by a combination of a liquid crystal cell and a polarizing beam splitter other than those described in the above embodiments.
[0042]
【Example】
A liquid crystal element 100 of this example will be described with reference to FIG. A nematic liquid crystal having ordinary refractive index no (LC) = 1.50 and extraordinary refractive index ne (LC) = 1.66 is sandwiched between translucent substrates 4 and 5 having transparent electrodes 2 and 3 formed on one side. A liquid crystal unit cell in which the thickness d (LC) of the liquid crystal layer 1 was 5.6 μm was produced. The slow axis direction of the liquid crystal layer 1 was 45 ° with respect to the X axis direction shown in FIG.
[0043]
When no voltage is applied to the transparent electrodes 2 and 3, the retardation value of the liquid crystal single cell with respect to light having a wavelength of 1.55 μm is about 0.9 μm, and linearly polarized light having a polarization direction in the Y-axis direction is applied to the liquid crystal single cell. When entering and exiting, the polarization direction of the linearly polarized light was substantially the X-axis direction. In addition, in a state where a rectangular wave AC voltage having a voltage amplitude of 5 V was applied, the retardation value of the single liquid crystal cell was 0.12 μm.
[0044]
Further, on one side of a glass translucent substrate, a phase plate made of a polymer liquid crystal layer having an ordinary light refractive index n o = 1.55 and an extraordinary light refractive index n e = 1.59 and a thickness d = 3.0 μm ( A liquid crystal cell 110 was manufactured by bonding and integrating a liquid crystal cell (not shown) to a single liquid crystal cell. The retardation value of the phase plate made of the polymer liquid crystal layer is −0.12 μm. By making the fast axis direction of the phase plate coincide with the slow axis direction of the liquid crystal layer 1, the liquid crystal layer 1 at an applied voltage of 5V is used. The retardation value 0.12 μm remaining in the liquid crystal is canceled out, and the retardation value of the liquid crystal cell 110 becomes zero.
[0045]
Further, in FIG. 1, the thickness in the ordinary refractive index n o (PLC) = 1.55 and an extraordinary refractive index n e (PLC) = 1.70 on one surface of the glass of the transparent substrate 11, 12 9.1 microns The polymer liquid crystal layers 13 and 14 were formed, and processed into a quasi-blazed diffraction grating having a staircase shape having a sawtooth-like cross-sectional shape approximated by seven steps and eight steps with a grating pitch of 30 μm by photolithography and etching techniques.
[0046]
Next, the homogeneous refractive index transparent materials 15 and 16 having a refractive index of 1.55 are used to fill the concave portion of the stepped pseudo-blazed diffraction grating, and two types of polarized light are provided on the light incident side and the light output side of the liquid crystal cell 110. The liquid crystal element 100 was obtained by bonding and fixing as the diffractive diffraction gratings 120 and 130.
[0047]
Here, the alignment direction of the polymer liquid crystal of the polarizing diffraction grating 120 disposed on the light incident side of the liquid crystal cell 110 is the X-axis direction, and the polymer liquid crystal of the polarizing diffraction grating 130 disposed on the light emitting side of the liquid crystal cell 110. The orientation direction is the Y-axis direction.
Parallel light with a wavelength of 1.55 μm having a random polarization direction was incident on the liquid crystal element 100 thus manufactured, and the emitted light was condensed on an optical fiber by a condenser lens.
[0048]
When the amplitude V of the rectangular alternating voltage applied to the liquid crystal layer 1 of the liquid crystal element 100 is changed from 0 to 5 v, the light intensity ratio I (5 v) / I (0) in the light intensity I (V) after the optical fiber transmission. The extinction ratio specified by is as high as -22 dB. Further, the optical insertion loss due to the use of the liquid crystal element 100 was a low value of -0.5 dB.
[0049]
As a comparative example, a polarizer that transmits only linearly polarized light having a polarization direction in the Y-axis direction on the light incident surface side of the liquid crystal cell 110 is linearly polarized light having a polarization direction in the X-axis direction on the light exit surface side of the liquid crystal cell 110. In the case of a liquid crystal element having a conventional configuration in which a polarizer that only transmits light is disposed, the optical insertion loss is a large value of -3.2 dB.
[0050]
In addition, a polarizer that does not arrange a polarizer on the light incident surface side of the liquid crystal cell 110 and a polarizer that transmits only linearly polarized light having a polarization direction in the X-axis direction is disposed only on the light emitting surface side of the liquid crystal cell 110. In the case of the liquid crystal element having the configuration, the extinction ratio was −3 dB, which was insufficient as an optical attenuator.
[0051]
【The invention's effect】
As described above, by using the liquid crystal element of the present invention, an optical attenuator using a stable liquid crystal element having a low optical insertion loss and a high extinction ratio can be realized regardless of the polarization direction of incident light. Further, by using a polarizing diffraction grating using a birefringent material instead of a multilayer polarizing beam splitter as a polarizing beam splitter which is a constituent element of the liquid crystal element of the present invention, a thin, small and light liquid crystal element and An optical attenuator can be realized.
[0052]
In addition, as a polarizing diffraction grating using a birefringent material, a cross-sectional shape of the birefringent material layer is a sawtooth-shaped linear grating, and a polarization blazed diffraction having high first-order diffraction efficiency for linearly polarized light in a specific direction. By using a grating, an optical attenuator with low optical insertion loss can be realized. Furthermore, in the optical attenuator of the present invention in which a polarizing beam splitter having almost no light absorption is integrated with the liquid crystal element, a stable extinction ratio can be obtained because the temperature rise of the liquid crystal layer is small even when high intensity light is incident. .
[Brief description of the drawings]
FIG. 1 is a side view showing a configuration example of a first embodiment of a liquid crystal element of the present invention.
FIG. 2 is a side view showing an example of operation when the applied voltage of the liquid crystal element of FIG. 1 is V 1 ;
FIG. 3 is a side view showing an example of operation when the applied voltage of the liquid crystal element of FIG. 1 is V 2 ;
4 is a side view showing an example of operation when the liquid crystal element of FIG. 1 is used as an optical attenuator and the applied voltage is V 1. FIG.
[5] using a liquid crystal element in FIG. 1 as an optical attenuator, a side view of the applied voltage indicates the action example o'clock V 2.
FIG. 6 is a side view showing a configuration example of a liquid crystal element according to a second embodiment of the present invention and an operation example when an applied voltage is V 1 .
FIG. 7 is a side view showing a configuration example of a liquid crystal element according to a second embodiment of the present invention and an operation example when the applied voltage is V 2 .
FIG. 8 is a side view showing a configuration example of a conventional optical attenuator of a liquid crystal element.
[Explanation of symbols]
1: Liquid crystal layer 2, 3: Transparent electrodes 4, 5, 11, 12: Translucent substrate 6: Sealing material 7: Rectangular wave AC power supply 8: Condensing lens 9: Aperture stop 10: Polarizers 13, 14: High Molecular liquid crystal layers 15, 16: Homogeneous refractive index transparent material 17, 18: Multilayer film surface 19, 20: Total reflection surface 100, 200: Liquid crystal element 110: Liquid crystal cell 120, 130: Polarizing diffraction grating 220, 230: Multilayer film Polarizing beam splitter

Claims (4)

電極付き基板間に液晶層が狭持され、電極間に印加される電圧の大きさに応じて透過光のリタデーション値が変化する液晶セルと、液晶セルの光入射側に配置された第1の偏光性ビームスプリッタと液晶セルの光出射側に配置された第2の偏光性ビームスプリッタとを備える液晶素子であって、
液晶素子へ入射する直交した偏光方向を有する2つの直線偏光は、第1の偏光性ビームスプリッタにより偏光方向に応じて進行経路が互いに異なって液晶セルを透過し、液晶セルが特定のリタデーション値を有するとき第2の偏光性ビームスプリッタを透過する前記2つの直線偏光は、液晶素子の入射光と同じ進行方向に互いに揃って液晶素子を出射することを特徴とする液晶素子。
A liquid crystal layer in which a liquid crystal layer is sandwiched between substrates with electrodes and a retardation value of transmitted light changes according to the magnitude of a voltage applied between the electrodes, and a first liquid crystal cell disposed on the light incident side of the liquid crystal cell A liquid crystal element comprising a polarizing beam splitter and a second polarizing beam splitter disposed on the light exit side of the liquid crystal cell,
Two linearly polarized lights having orthogonal polarization directions incident on the liquid crystal element are transmitted through the liquid crystal cell with different traveling paths according to the polarization direction by the first polarizing beam splitter, and the liquid crystal cell has a specific retardation value. The liquid crystal element, wherein the two linearly polarized lights that pass through the second polarizing beam splitter are aligned with each other in the same traveling direction as the incident light of the liquid crystal element and are emitted from the liquid crystal element.
前記第1および第2の偏光性ビームスプリッタは、複屈折性材料層を備える偏光性回折格子からなる請求項1記載の液晶素子。2. The liquid crystal device according to claim 1, wherein each of the first and second polarizing beam splitters comprises a polarizing diffraction grating including a birefringent material layer. 前記偏光性回折格子は、断面形状が鋸歯状で平面形状が直線状の複屈折材料からなる回折格子であり、特定方向に偏光した直線偏光に対して1次回折光の回折効率が他の次数の回折光の回折効率に比べて高い回折格子であって、かつ第1の偏光性回折格子により回折された直線偏光が第2の偏光性回折格子により回折されて出射する進行方向が、第1の偏光性回折格子に直線偏光が入射する方向と一致する請求項2記載の液晶素子。The polarizing diffraction grating is a diffraction grating made of a birefringent material having a sawtooth cross-sectional shape and a linear planar shape, and the diffraction efficiency of the first-order diffracted light with other orders with respect to linearly polarized light polarized in a specific direction. The traveling direction in which the linearly polarized light diffracted by the first polarizing diffraction grating is higher than the diffraction efficiency of the diffracted light and is diffracted by the second polarizing diffraction grating is emitted. The liquid crystal element according to claim 2, wherein the liquid crystal element coincides with a direction in which linearly polarized light enters the polarizing diffraction grating. 請求項1から3に記載の液晶素子に、前記進行方向が互いに揃って液晶素子を出射する2つの直線偏光を伝搬し、その進行方向と異なる方向へ液晶素子を出射する直線偏光を遮断する機構を付加し、前記電極間に印加される電圧の大きさに応じて伝搬する光量が変化することを特徴とする光減衰器。A mechanism for propagating two linearly polarized light beams that are emitted from the liquid crystal element with the traveling directions being aligned with each other and blocking the linearly polarized light beams emitted from the liquid crystal element in a direction different from the traveling direction. And the amount of propagating light changes according to the magnitude of the voltage applied between the electrodes.
JP2002190086A 2002-06-28 2002-06-28 Optical attenuator Expired - Fee Related JP4106981B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002190086A JP4106981B2 (en) 2002-06-28 2002-06-28 Optical attenuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002190086A JP4106981B2 (en) 2002-06-28 2002-06-28 Optical attenuator

Publications (3)

Publication Number Publication Date
JP2004037480A true JP2004037480A (en) 2004-02-05
JP2004037480A5 JP2004037480A5 (en) 2005-10-20
JP4106981B2 JP4106981B2 (en) 2008-06-25

Family

ID=31700101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002190086A Expired - Fee Related JP4106981B2 (en) 2002-06-28 2002-06-28 Optical attenuator

Country Status (1)

Country Link
JP (1) JP4106981B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005249894A (en) * 2004-03-01 2005-09-15 Abel Systems Inc Liquid crystal display
CN100449373C (en) * 2005-10-04 2009-01-07 乐金显示有限公司 Liquid crystal display panel and method for fabricating the same
JP2010039105A (en) * 2008-08-04 2010-02-18 Sony Corp Optical film, its manufacturing method, and display device
WO2010042089A1 (en) 2008-10-09 2010-04-15 North Carolina State University Polarization-independent liquid crystal display devices including multiple polarization grating arrangements and related devices
JP2010164752A (en) * 2009-01-15 2010-07-29 Ricoh Co Ltd Optical element, optical pickup, optical information processing device, optical attenuator, polarization conversion element, projector optical system, and optical equipment
US8320226B2 (en) 2009-01-15 2012-11-27 Ricoh Company, Ltd. Optical element having three or more sub-wavelength convexo-concave structures
US8537310B2 (en) 2005-03-01 2013-09-17 North Carolina State University Polarization-independent liquid crystal display devices including multiple polarization grating arrangements and related devices
KR101498055B1 (en) * 2008-11-18 2015-03-03 엘지전자 주식회사 LCD projector
CN108983429A (en) * 2018-06-22 2018-12-11 张家港康得新光电材料有限公司 Realize the structure and method of naked eye 3D
EP4104005A4 (en) * 2020-02-11 2024-03-20 Valve Corp Polarization-based multiplexing of diffractive elements for illumination optics

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61151612A (en) * 1984-12-26 1986-07-10 Mitsubishi Electric Corp Single pole double throw optical switch
JPS63503102A (en) * 1986-04-11 1988-11-10 トムソン・エス・アー Optical reader for recording media
JPH024212A (en) * 1988-06-23 1990-01-09 Stanley Electric Co Ltd Liquid crystal shutter element
JPH04230733A (en) * 1990-04-03 1992-08-19 Thomson Csf Apparatus for projecting image
JPH10197827A (en) * 1997-01-10 1998-07-31 Matsushita Electric Ind Co Ltd Polarized light separating element and projection type display device using the same
JP2000171754A (en) * 1998-12-01 2000-06-23 Asahi Glass Co Ltd Polarizing conversion element and display device using it
JP2001013477A (en) * 1999-06-28 2001-01-19 Yazaki Corp Liquid crystal optical attenuator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61151612A (en) * 1984-12-26 1986-07-10 Mitsubishi Electric Corp Single pole double throw optical switch
JPS63503102A (en) * 1986-04-11 1988-11-10 トムソン・エス・アー Optical reader for recording media
JPH024212A (en) * 1988-06-23 1990-01-09 Stanley Electric Co Ltd Liquid crystal shutter element
JPH04230733A (en) * 1990-04-03 1992-08-19 Thomson Csf Apparatus for projecting image
JPH10197827A (en) * 1997-01-10 1998-07-31 Matsushita Electric Ind Co Ltd Polarized light separating element and projection type display device using the same
JP2000171754A (en) * 1998-12-01 2000-06-23 Asahi Glass Co Ltd Polarizing conversion element and display device using it
JP2001013477A (en) * 1999-06-28 2001-01-19 Yazaki Corp Liquid crystal optical attenuator

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005249894A (en) * 2004-03-01 2005-09-15 Abel Systems Inc Liquid crystal display
JP4707085B2 (en) * 2004-03-01 2011-06-22 アーベル・システムズ株式会社 LCD display
US8537310B2 (en) 2005-03-01 2013-09-17 North Carolina State University Polarization-independent liquid crystal display devices including multiple polarization grating arrangements and related devices
CN100449373C (en) * 2005-10-04 2009-01-07 乐金显示有限公司 Liquid crystal display panel and method for fabricating the same
US8467016B2 (en) 2005-10-04 2013-06-18 Lg Display Co., Ltd. Liquid crystal display panel with polarization wire grid and method for fabricating the same
US8400578B2 (en) 2008-08-04 2013-03-19 Sony Corporation Optical film, method of manufacturing the same, and display unit
JP2010039105A (en) * 2008-08-04 2010-02-18 Sony Corp Optical film, its manufacturing method, and display device
KR101542251B1 (en) 2008-10-09 2015-08-05 노쓰 캐롤라이나 스테이트 유니버시티 Polarization-independent liquid crystal display devices including multiple polarization grating arrangements and related devices
JP2012505430A (en) * 2008-10-09 2012-03-01 ノース・キャロライナ・ステイト・ユニヴァーシティ Polarization-independent liquid crystal display device having a plurality of polarization grating arrangements and related devices
WO2010042089A1 (en) 2008-10-09 2010-04-15 North Carolina State University Polarization-independent liquid crystal display devices including multiple polarization grating arrangements and related devices
US9195092B2 (en) 2008-10-09 2015-11-24 North Carolina State University Polarization-independent liquid crystal display devices including multiple polarizing grating arrangements and related devices
KR101498055B1 (en) * 2008-11-18 2015-03-03 엘지전자 주식회사 LCD projector
US8320226B2 (en) 2009-01-15 2012-11-27 Ricoh Company, Ltd. Optical element having three or more sub-wavelength convexo-concave structures
JP2010164752A (en) * 2009-01-15 2010-07-29 Ricoh Co Ltd Optical element, optical pickup, optical information processing device, optical attenuator, polarization conversion element, projector optical system, and optical equipment
CN108983429A (en) * 2018-06-22 2018-12-11 张家港康得新光电材料有限公司 Realize the structure and method of naked eye 3D
EP4104005A4 (en) * 2020-02-11 2024-03-20 Valve Corp Polarization-based multiplexing of diffractive elements for illumination optics

Also Published As

Publication number Publication date
JP4106981B2 (en) 2008-06-25

Similar Documents

Publication Publication Date Title
US7079202B2 (en) Multi-layer diffraction type polarizer and liquid crystal element
US10509296B2 (en) Compact liquid crystal beam steering devices including multiple polarization gratings
KR101098202B1 (en) Polarized diffractive filter and layered polarized diffractive filter
JP4106981B2 (en) Optical attenuator
JP4792679B2 (en) Isolator and variable voltage attenuator
JP2009294604A (en) Optical modulation liquid crystal element and variable optical attenuator
JP4923615B2 (en) Optical isolator and bidirectional optical transceiver
JP6719763B2 (en) High speed optical switching engine
JP4269788B2 (en) Reflective light modulator and variable optical attenuator
JP2005157164A (en) Diffraction element and optical attenuator
KR20220145347A (en) Achromatic optical device based on birefringent materials with positive and negative birefringent dispersions
JP5195024B2 (en) Diffraction element, optical attenuator, optical head device, and projection display device
JP5066841B2 (en) Light source device and optical head device
JP5152366B2 (en) Isolator and variable voltage attenuator
JP5150992B2 (en) Liquid crystal device and optical attenuator
JPWO2019107249A1 (en) Optical element and light guide element
JP2004325790A (en) Optical modulation element and optical attenuator
JPH04140714A (en) Variable wavelength filter module
WO2023063414A1 (en) Optical coupling system and optical communication device
JP2010032807A (en) Polarized beam splitter, optical isolator, and optical device using the same
JP4168767B2 (en) Liquid crystal device and optical attenuator
JP4786841B2 (en) Liquid crystal optical switch and driving method thereof
JP3108344B2 (en) Optical filter module
JP2006154492A (en) Liquid crystal element and optical attenuator
JPH0949924A (en) Polarizing optical element

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050614

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080324

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees