JP2006154492A - Liquid crystal element and optical attenuator - Google Patents

Liquid crystal element and optical attenuator Download PDF

Info

Publication number
JP2006154492A
JP2006154492A JP2004346961A JP2004346961A JP2006154492A JP 2006154492 A JP2006154492 A JP 2006154492A JP 2004346961 A JP2004346961 A JP 2004346961A JP 2004346961 A JP2004346961 A JP 2004346961A JP 2006154492 A JP2006154492 A JP 2006154492A
Authority
JP
Japan
Prior art keywords
liquid crystal
light
polarization
voltage
crystal element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004346961A
Other languages
Japanese (ja)
Inventor
Yoshiharu Oi
好晴 大井
Yutaka Kumai
裕 熊井
Ryuichiro Shimizu
龍一郎 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2004346961A priority Critical patent/JP2006154492A/en
Publication of JP2006154492A publication Critical patent/JP2006154492A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid crystal element having stabilized zero retardation when no voltage is applied and giving approximately λ/2 retardation at a wavelength λ of incident light in the liquid crystal layer at a low voltage. <P>SOLUTION: The liquid crystal element 10 comprises a pair of transparent substrates 11, 12 having transparent electrodes formed thereon and a liquid crystal layer 18, and varies retardation value to linearly polarized light depending on a voltage applied between the transparent electrodes 13, 14. The liquid crystal of the liquid crystal layer 18 is a nematic liquid crystal having negative dielectric anisotropy; in which, when no voltage is applied on the liquid crystal, the alignment direction of the liquid crystal molecules is almost perpendicular to the surfaces of the transparent electrodes 13, 14 and the retardation value is nearly zero; and when voltage 3 to 10 V is applied on the liquid crystal layer 18, the retardation value is 0.78 μm. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、液晶素子および光減衰器に係り、特に光通信に用いる低電圧駆動で高消光比を有する液晶シャッタおよび光減衰器に関する。   The present invention relates to a liquid crystal element and an optical attenuator, and more particularly, to a liquid crystal shutter and an optical attenuator having a high extinction ratio with low voltage driving used for optical communication.

近年、通信需要の飛躍的な増大に伴い、波長が異なる複数の信号光を多重化して1本の光ファイバで大容量伝送を可能にする波長分割多重通信システム(WDM:Wavelength Division Multiplexing 通信システム)の開発が行われている。このような波長分割多重通信システムにあっては、波長が1490nmから1620nmの範囲の多数のWDM波長チャネルに対して、電圧印加時に高い透過率を維持するとともに電圧非印加時には高い消光比で光を遮断する光シャッタや、印加電圧に応じて光量調整ができる光減衰器が用いられる。   2. Description of the Related Art With a dramatic increase in communication demand in recent years, a wavelength division multiplexing communication system (WDM: Wavelength Division Multiplexing communication system) that enables multiplexing of a plurality of signal lights having different wavelengths to enable large-capacity transmission using a single optical fiber. Development is underway. In such a wavelength division multiplex communication system, a large number of WDM wavelength channels having wavelengths in the range of 1490 nm to 1620 nm maintain high transmittance when a voltage is applied and emit light with a high extinction ratio when no voltage is applied. An optical shutter that cuts off or an optical attenuator that can adjust the amount of light according to the applied voltage is used.

近時、従来の機械式光シャッタや磁気光学効果を利用した光減衰器に替わって液晶の電気光学効果を利用した素子の開発が検討されている。このような素子は、従来の機械式光シャッタや磁気光学効果を利用した光減衰器に比較すると、可動部がなく、低消費電力であって小型化に有利である。そこで、以下のような液晶素子を用いた光減衰器が、本発明に係る発明者らにより提案されている(例えば特許文献1参照)。
この液晶素子を用いた光減衰器では、液晶分子長軸方向の比誘電率ε//と液晶分子短軸方向の比誘電率εとの差である誘電異方性△ε(=ε//−ε)が正の液晶を用い、電圧非印加時の液晶層の液晶分子配向を基板面に対して平行で一方向に揃ったホモジニアス配向としている。また、10V以下の印加電圧で液晶層のリタデーション値がゼロとなるように、液晶層の残留リタデーションを相殺する位相板が一体化されている。また、電圧非印加時の液晶層と位相差板の合成リタデーション値が入射光の波長λに対して約λ/2となるように液晶層の層厚を調整している。
Recently, development of an element using the electro-optic effect of a liquid crystal instead of the conventional mechanical optical shutter and the optical attenuator using the magneto-optic effect has been studied. Such an element has no moving parts, has low power consumption, and is advantageous for miniaturization, as compared with a conventional mechanical optical shutter and an optical attenuator using the magneto-optical effect. Thus, the following optical attenuators using liquid crystal elements have been proposed by the inventors of the present invention (see, for example, Patent Document 1).
In the optical attenuator using a liquid crystal element, the dielectric anisotropy is the difference between the relative dielectric constant of the liquid crystal molecular long axis direction epsilon // and the dielectric constant of the liquid crystal molecules minor axis ε △ ε (= ε / /-epsilon ⊥) is using positive liquid crystal, and a homogeneous orientation aligned in one direction parallel to the liquid crystal molecular alignment of the liquid crystal layer when no voltage is applied to the substrate surface. In addition, a phase plate that cancels out the residual retardation of the liquid crystal layer is integrated so that the retardation value of the liquid crystal layer becomes zero at an applied voltage of 10 V or less. Further, the layer thickness of the liquid crystal layer is adjusted so that the combined retardation value of the liquid crystal layer and the retardation plate when no voltage is applied is about λ / 2 with respect to the wavelength λ of the incident light.

このような液晶素子において、液晶層の基板面における液晶分子の配向方向に対して45°の角度をなす偏光方向の直線偏光を入射すると、光出射側でその入射直線偏光を遮断するとともにそれと直交する偏光方向を有する直線偏光を透過する偏光子を光出射側に配置することにより、電圧非印加時には透過率最大で、印加電圧の増加とともに透過率が減少する光減衰器となる。   In such a liquid crystal element, when linearly polarized light with a polarization direction that forms an angle of 45 ° with respect to the alignment direction of the liquid crystal molecules on the substrate surface of the liquid crystal layer is incident, the incident linearly polarized light is blocked and orthogonal to the light exit side. By disposing a polarizer that transmits linearly polarized light having a polarization direction to the light exit side, the transmittance is maximum when no voltage is applied, and an optical attenuator whose transmittance decreases as the applied voltage increases.

また、特定の直線偏光を効率よく透過するとともにそれと直交する偏光方向を有する直線偏光を回折する回折型偏光子が、例えば本発明に係る発明者らにより提案されている(特許文献2参照)。
特開2003−66450号公報 特開2003−66232号公報
A diffractive polarizer that efficiently transmits specific linearly polarized light and diffracts linearly polarized light having a polarization direction orthogonal to the specific linearly polarized light has been proposed, for example, by the inventors of the present invention (see Patent Document 2).
JP 2003-66450 A JP 2003-66232 A

しかしながら、特許文献1に記載の液晶素子の場合、液晶層のリタデーション値がゼロとなる印加電圧域が狭い。その結果、印加電圧変化に対する最小透過率Iminと最大透過率Imaxの比で消光比を定義すると、低電圧で40dB以上の高い消光比を安定して得ることが難しかった。
また、特許文献2に記載の回折型偏光子では、入射直線偏光を透過するとともにそれと直交する偏光方向を有する直線偏光を遮断する偏光子を液晶素子の光出射側に配置することにより、電圧非印加時に光を遮断する動作が得られるが、電圧非印加時の液晶層のリタデーション値が約λ/2であるため、位相差の波長依存性が生じ、広い波長帯域で高い消光比を得ることが難しい。なお、一体化されている位相板により、電圧非印加時の液晶層のリタデーションを相殺すれば、電圧非印加時の合成リタデーション値がゼロとなり、原理的に広い波長帯域で高い消光比となりうる。しかしながら、液晶層と位相板の合成リタデーション値を安定してゼロにすることは難しい。
However, in the case of the liquid crystal element described in Patent Document 1, the applied voltage range in which the retardation value of the liquid crystal layer is zero is narrow. As a result, when the extinction ratio is defined by the ratio of the minimum transmittance Imin and the maximum transmittance Imax with respect to the applied voltage change, it is difficult to stably obtain a high extinction ratio of 40 dB or more at a low voltage.
Further, in the diffractive polarizer described in Patent Document 2, a voltage non-voltage is obtained by arranging a polarizer that transmits incident linearly polarized light and blocks linearly polarized light having a polarization direction orthogonal to the incident linearly polarized light on the light output side of the liquid crystal element. Operation to block light when applied can be obtained, but the retardation value of the liquid crystal layer when no voltage is applied is about λ / 2, so the wavelength dependence of the phase difference occurs, and a high extinction ratio is obtained in a wide wavelength band Is difficult. If the retardation of the liquid crystal layer when no voltage is applied is canceled by the integrated phase plate, the combined retardation value when no voltage is applied becomes zero, and in principle, a high extinction ratio can be obtained in a wide wavelength band. However, it is difficult to make the combined retardation value of the liquid crystal layer and the phase plate stably zero.

本発明は、上記事情に鑑みてなされたもので、電圧非印加時の液晶層のリタデーション値を安定化してゼロにし、かつ、低電圧で液晶層のリタデーション値を入射光の波長λに対して略λ/2とする液晶素子を提供するともに、回折型偏光子と一体化して低電圧駆動で高い消光比が実現する光減衰器を提供することを目的とする   The present invention has been made in view of the above circumstances, and stabilizes the retardation value of the liquid crystal layer when no voltage is applied to zero, and sets the retardation value of the liquid crystal layer to a wavelength λ of incident light at a low voltage. An object of the present invention is to provide an optical attenuator capable of realizing a high extinction ratio by being driven at a low voltage by being integrated with a diffractive polarizer while providing a liquid crystal element having approximately λ / 2.

本発明は、対向する平面に透明電極が形成された一対の透明基板と、この透明基板間に液晶が挟持された液晶層とを備え、前記透明電極間に印加する電圧に応じて前記液晶層を透過する直線偏光の光に対するリタデーション値を変化させる液晶素子において、前記液晶は、誘電異方性が負のネマティック液晶からなり、前記液晶への電圧非印加時の液晶分子の配向方向は前記透明電極の表面に対して略垂直で、前記液晶層に3V以上10V以下の範囲にある何れかの電圧に対して前記液晶層のリタデーション値が0.78μmとなることを特徴とする液晶素子を提供する。
このように構成することにより、電圧非印加時(V=0;以下「オフ状態」という)の液晶層のリタデーション値がゼロとなり、入射光の波長および入射角度の依存性がほとんどない。その結果、入射直線偏光と直交する偏光方向を有する直線偏光を透過する偏光子を光出射側に配置(以下「直交ニコル」という)することにより、高い光遮断性能が得られる。また、3V以上10V以下の範囲にある何れかの電圧(V=Vp;以下「オン状態」という)に対して液晶層のリタデーション値が0.78μmとなるため、WDM波長チャネルに対して略1/2波長のリタデーション値に相当し、直交ニコル配置で高い透過率が得られる。従って、オン状態とオフ状態を印加電圧により切り替えることにより、高い消光比の光シャッタとなる。また、オン状態とオフ状態の中間の印加電圧変化に対して、透過率可変の光減衰器となる。
低電圧でオン状態を実現するためには、液晶層の層厚を厚くすればよいが、オン状態とオフ状態の電圧切り替えに対する液晶層のリタデーション値の変化の応答速度が遅くなるため、問題である。一方、10V以下の電圧を発生させるためには、回路部品が高価であり、問題である。このため、3V以上10V以下、より好ましくは3V以上5V以下の電圧範囲にある何れかの電圧でオン状態、すなわち液晶層のリタデーション値が0.78μmとなることが好ましい。
The present invention includes a pair of transparent substrates having transparent electrodes formed on opposing planes, and a liquid crystal layer in which liquid crystal is sandwiched between the transparent substrates, and the liquid crystal layer according to a voltage applied between the transparent electrodes. In the liquid crystal element that changes the retardation value of the linearly polarized light that passes through the liquid crystal, the liquid crystal is a nematic liquid crystal having a negative dielectric anisotropy, and the orientation direction of the liquid crystal molecules when no voltage is applied to the liquid crystal is transparent. Provided is a liquid crystal element characterized in that the liquid crystal layer has a retardation value of 0.78 μm with respect to any voltage in a range of 3 V to 10 V in the liquid crystal layer substantially perpendicular to the surface of the electrode. To do.
With this configuration, the retardation value of the liquid crystal layer when no voltage is applied (V = 0; hereinafter referred to as “off state”) becomes zero, and there is almost no dependency on the wavelength and incident angle of incident light. As a result, a high light blocking performance can be obtained by arranging a polarizer that transmits linearly polarized light having a polarization direction orthogonal to the incident linearly polarized light on the light exit side (hereinafter referred to as “orthogonal Nicol”). Further, since the retardation value of the liquid crystal layer is 0.78 μm for any voltage in the range of 3 V or more and 10 V or less (V = Vp; hereinafter referred to as “on state”), it is approximately 1 for the WDM wavelength channel. This corresponds to a retardation value of / 2 wavelength, and a high transmittance can be obtained with an orthogonal Nicol arrangement. Therefore, an optical shutter having a high extinction ratio can be obtained by switching the on state and the off state by the applied voltage. In addition, an optical attenuator with variable transmittance can be obtained with respect to a change in applied voltage between the on state and the off state.
In order to realize the ON state at a low voltage, the liquid crystal layer may be thickened. However, the response speed of the change in the retardation value of the liquid crystal layer with respect to the voltage switching between the ON state and the OFF state becomes slow. is there. On the other hand, in order to generate a voltage of 10 V or less, circuit components are expensive and problematic. For this reason, it is preferable that the on-state, that is, the retardation value of the liquid crystal layer becomes 0.78 μm at any voltage in the voltage range of 3 V to 10 V, more preferably 3 V to 5 V.

また、前記液晶層と前記透明電極との界面に、電圧非印加時の液晶分子の配向方向が前記透明電極の表面に対して略垂直となる垂直配向膜が形成されている上記の液晶素子を提供する。このように構成することにより、電圧非印加時の液晶層の液晶分子の配向が安定して透明電極の表面に対して略垂直となるため液晶層のリタデーション値が安定してゼロとなる。   In addition, the liquid crystal element in which a vertical alignment film in which an alignment direction of liquid crystal molecules when no voltage is applied is substantially perpendicular to a surface of the transparent electrode is formed at an interface between the liquid crystal layer and the transparent electrode. provide. With this configuration, the alignment of the liquid crystal molecules in the liquid crystal layer when no voltage is applied is stable and substantially perpendicular to the surface of the transparent electrode, so that the retardation value of the liquid crystal layer is stably zero.

また、前記垂直配向膜をラビング処理することにより、液晶分子が基板法線に対し、0.5°以上3°以下度傾斜している上記の液晶素子を提供する。このように構成することにより、電圧印加時の液晶層の液晶分子が安定してラビング方向に傾斜配向し、低電圧で所望のリタデーション値を得ることができる。 In addition, the liquid crystal element is provided in which the vertical alignment film is subjected to a rubbing treatment so that liquid crystal molecules are inclined by 0.5 ° or more and 3 ° or less with respect to the substrate normal. By comprising in this way, the liquid crystal molecule of the liquid crystal layer at the time of voltage application can be stably tilted in the rubbing direction, and a desired retardation value can be obtained at a low voltage.

また、上記の液晶素子と、この液晶素子の光入射側または光出射側の少なくとも一方の側に配置された偏光子とを備える光減衰器であって、前記偏光子は、第1の直線偏光を直進透過するとともに前記第1の直線偏光の偏光方向と直交する偏光方向を有する第2の直線偏光を回折する、複屈折性を有する偏光回折型偏光子であることを特徴とする光減衰器を提供する。このように構成することにより、偏光子の光吸収に伴う発熱が無いため、印加電圧に応じた安定した消光比が得られる光減衰器となる。   An optical attenuator comprising the above liquid crystal element and a polarizer disposed on at least one of the light incident side and the light exit side of the liquid crystal element, wherein the polarizer is a first linearly polarized light. And a birefringent polarization diffractive polarizer that diffracts the second linearly polarized light having a polarization direction orthogonal to the polarization direction of the first linearly polarized light I will provide a. With this configuration, since there is no heat generation due to light absorption of the polarizer, an optical attenuator can be obtained that can obtain a stable extinction ratio according to the applied voltage.

また、前記偏光回折型偏光子は、複屈折性を有する偏光性回折格子を少なくとも2つ積層した複層回折型偏光子からなり、前記偏光性回折格子は、透明基板上に形成された常光屈折率nおよび異常光屈折率n(n≠n)の複屈折性材料層が周期的な凹凸断面形状に加工され、少なくともその凹部に屈折率がnまたはnに等しい等方性透明材料が充填されている上記の光減衰器を提供する。このように構成することにより、偏光子の消光比が向上するため、ダイナミックレンジの広い光減衰器となる。 The polarization diffraction polarizer is a multilayer diffraction polarizer in which at least two polarization diffraction gratings having birefringence are stacked, and the polarization diffraction grating is an ordinary light refraction formed on a transparent substrate. birefringent material layer rate n o and an extraordinary refractive index n e (n o ≠ n e) is processed in the periodic roughness sectional shape, at least equal isotropic refractive index in the n o or n e in the recess An optical attenuator is provided that is filled with a transparent material. With this configuration, the extinction ratio of the polarizer is improved, so that an optical attenuator with a wide dynamic range is obtained.

本発明によれば、一対の透明基板とこの透明基板間に液晶が挟持された液晶層とを備え、透明電極間に印加する電圧に応じて直線偏光の光に対するリタデーション値を変化させる液晶素子において、液晶は、誘電異方性が負のネマティック液晶からなり、液晶への電圧非印加時の液晶分子の配向方向は透明電極の表面に対して略垂直で、かつ、液晶層のリタデーション値は略ゼロであり、液晶層に3V以上10V以下の範囲にある何れかの電圧に対して前記液晶層のリタデーション値は0.78μmであるので、波長分割多重通信システムで用いられる波長帯域(例えば、λ=1.490μm〜1.620μm)において、電圧非印加時の液晶層のリタデーション値を安定してゼロとし、かつ、低電圧で液晶層のリタデーション値を入射光の波長λに対して略λ/2とする液晶素子を提供できる。   According to the present invention, in a liquid crystal element that includes a pair of transparent substrates and a liquid crystal layer in which liquid crystal is sandwiched between the transparent substrates, and changes a retardation value for linearly polarized light according to a voltage applied between the transparent electrodes. The liquid crystal is composed of nematic liquid crystal having negative dielectric anisotropy, the alignment direction of the liquid crystal molecules when no voltage is applied to the liquid crystal is substantially perpendicular to the surface of the transparent electrode, and the retardation value of the liquid crystal layer is approximately Since the retardation value of the liquid crystal layer is 0.78 μm with respect to any voltage in the range of 3V to 10V in the liquid crystal layer, the wavelength band used in the wavelength division multiplexing communication system (for example, λ = 1.490 μm to 1.620 μm), the retardation value of the liquid crystal layer when no voltage is applied is stably zero, and the retardation value of the liquid crystal layer is reduced to a wave of incident light at a low voltage. Possible to provide a liquid crystal element to substantially lambda / 2 with respect to lambda.

以下、本発明の実施形態について、添付図面を参照しながら詳細に説明する。
[第1の実施形態]
図1及び図2は、本発明の第1の実施形態に係る液晶素子10のを示すものであり、この液晶素子10は、透明基板11、12と、透明電極13、14と、配向膜15、16と、シール17と、液晶層18とを備えている。
このうち、配向膜15、16には、液晶分子の配向方向がその表面に略垂直となる垂直配向膜を用いる。この垂直配向膜には、例えばポリイミドやシラン化合物に(一部もしくは全てがフッ素化されていて良い)長鎖アルキル基を導入することにより、使用する液晶を略垂直とする有機材料が安定した垂直配向性を保持できる。すなわち、レシチンのように両親媒性であってC14〜C22の長鎖アルキル基、オクタデシルクロロシランのようにC18の長鎖アルキル基などの有機材料が、基板面に垂直に配向することにより、液晶分子の分子長軸がこの長鎖アルキル基と平行に並ぶ性質を利用して、安定した垂直配向を保持できる。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
[First Embodiment]
1 and 2 show a liquid crystal element 10 according to a first embodiment of the present invention. The liquid crystal element 10 includes transparent substrates 11 and 12, transparent electrodes 13 and 14, and an alignment film 15. , 16, a seal 17, and a liquid crystal layer 18.
Among these, the alignment films 15 and 16 are vertical alignment films in which the alignment direction of liquid crystal molecules is substantially perpendicular to the surface. In this vertical alignment film, for example, by introducing a long-chain alkyl group (which may be partially or fully fluorinated) into polyimide or a silane compound, an organic material that makes the liquid crystal to be used substantially vertical is stable. The orientation can be maintained. That is, an organic material such as lecithin that is amphiphilic and has a C14 to C22 long chain alkyl group and a C18 long chain alkyl group such as octadecylchlorosilane is aligned perpendicularly to the substrate surface, whereby liquid crystal molecules Stable vertical alignment can be maintained by utilizing the property that the molecular long axis of each is aligned in parallel with the long-chain alkyl group.

本実施形態によれば、透明電極13と透明電極14に外部の交流電源より電圧を印加することにより、液晶層18の液晶分子の配向が変化し、その結果リタデーション値の変化が生じる。   According to this embodiment, by applying a voltage to the transparent electrode 13 and the transparent electrode 14 from an external AC power supply, the orientation of the liquid crystal molecules in the liquid crystal layer 18 changes, and as a result, the retardation value changes.

次に、この液晶素子10の構成要素と作製手順の一例について、以下に説明する。
はじめに、透明基板11、12の片面に、透明電極13、14を形成する。透明電極13、14は、ITO(In+SnO)やSnOなどの材料からなり、これらの材料をスパッタリング法や真空蒸着法により膜厚5〜300nm程度に成膜する。
さらに、この透明電極13、14上に、配向膜15、16を形成する。この配向膜14、16は、液晶分子の配向方向がその表面に略垂直となる垂直配向膜を用いる。この垂直配向膜は、前述したように、例えばポリイミドやシラン化合物に(一部もしくはすべてがフッ素化されていて良い)長鎖アルキル基を導入することにより、使用する液晶を略垂直とする有機材料が、安定した垂直配向性を保持できる。
Next, components of the liquid crystal element 10 and an example of a manufacturing procedure will be described below.
First, the transparent electrodes 13 and 14 are formed on one side of the transparent substrates 11 and 12. The transparent electrodes 13 and 14 are made of a material such as ITO (In 2 O 3 + SnO 2 ) or SnO 2 , and these materials are formed into a film thickness of about 5 to 300 nm by a sputtering method or a vacuum evaporation method.
Further, alignment films 15 and 16 are formed on the transparent electrodes 13 and 14. The alignment films 14 and 16 are vertical alignment films in which the alignment direction of liquid crystal molecules is substantially perpendicular to the surface. As described above, this vertical alignment film is, for example, an organic material in which a liquid crystal to be used is substantially vertical by introducing a long-chain alkyl group (which may be partially or fully fluorinated) into a polyimide or a silane compound. However, stable vertical alignment can be maintained.

ここで、透明基板11と透明基板12に外部より交流電圧を印加するとき、後述する液晶層18の液晶の配向が一定方向に傾斜するように配向規制することが好ましい(図6のγ参照)。具体的には、以下の4種の配向規制方法がある。
(1)垂直配向膜の表面を特定方向にラビング処理することにより、電圧非印加時に垂直配向膜界面の液晶分子が特定方向にプレチルトさせる。
(2)透明電極上または配向膜上に微細な凹凸を形成し、凹凸形状に規制された方向に液晶分子が傾斜するようにする。
(3)透明電極を予め微細にパターニングしておき、電圧印加時に発生する電界分布の方向に液晶分子が傾斜するようにする。
(4)酸化珪素、金属酸化物、金属フッ化物、複合酸化物等の無機材料を斜方蒸着させ配向膜とする。使用する金属酸化物としては、例えば、Ta、WO、Bi、等が挙げられ、複合酸化物としては、[(1−y)SiO]+[yZrO]、[(1−y)SiO]+[yTiO](0<x<2、0<y<1)等が挙げられる。これらのうち、配向状態の安定性に優れることから、SiO(0<x<2)が好ましい。
なお、(2)および(3)、(4)に比べて、(1)の配向規制法が高い配向均一性を確保するのに有利である。このときのプレチルト角は、0.5°から5°程度で、配向膜面に対する傾斜角度は89.5°から85°程度である。表面のラビング処理により電圧印加時の液晶配向性を発生させる垂直配向膜材料として、前述したように、例えばポリイミドやシラン化合物に(一部もしくは全てがフッ素化されていて良い)長鎖アルキル基を導入することにより、使用する液晶を略垂直とする有機材料が好ましい。本実施形態では、垂直配向膜をX軸と45°の角度方向にラビング処理して用いる。
このように、垂直配向膜を用いることにより、オフ状態(印加電圧V=0)で液晶分子が基板面に対してほぼ垂直方向に揃っているため、液晶層18のリタデーション値は安定してゼロとなる。その結果、直交ニコル配置とすることにより、入射光の波長および入射角度に依存すること無く、出射光を偏光子の有する消光比のレベルで決まる遮断性能が実現できる。
Here, when an AC voltage is applied from the outside to the transparent substrate 11 and the transparent substrate 12, it is preferable to regulate the alignment so that the liquid crystal alignment of the liquid crystal layer 18 described later is inclined in a certain direction (see γ in FIG. 6). . Specifically, there are the following four types of orientation regulation methods.
(1) By rubbing the surface of the vertical alignment film in a specific direction, liquid crystal molecules at the interface of the vertical alignment film are pretilted in a specific direction when no voltage is applied.
(2) Fine irregularities are formed on the transparent electrode or the alignment film so that the liquid crystal molecules are inclined in a direction regulated by the irregular shape.
(3) The transparent electrode is finely patterned in advance so that the liquid crystal molecules are inclined in the direction of the electric field distribution generated when a voltage is applied.
(4) An inorganic material such as silicon oxide, metal oxide, metal fluoride, or composite oxide is obliquely deposited to form an alignment film. Examples of the metal oxide to be used include Ta 2 O 5 , WO 3 , Bi 2 O 3 , and the like, and examples of the composite oxide include [(1-y) SiO X ] + [yZrO 2 ], [ (1-y) SiO X] + [yTiO 2] (0 <x <2,0 <y <1) , and the like. Of these, SiO 2 (0 <x <2) is preferable because of excellent stability of the alignment state.
In addition, compared with (2), (3), and (4), the alignment regulation method of (1) is advantageous for ensuring high alignment uniformity. The pretilt angle at this time is about 0.5 ° to 5 °, and the tilt angle with respect to the alignment film surface is about 89.5 ° to 85 °. As described above, for example, a polyimide or silane compound (which may be partially or wholly fluorinated) has a long-chain alkyl group as a vertical alignment film material that generates liquid crystal alignment during voltage application by rubbing the surface. The organic material which makes the liquid crystal to be used substantially vertical by introducing is preferable. In the present embodiment, the vertical alignment film is used after being rubbed in an angle direction of 45 ° with respect to the X axis.
As described above, by using the vertical alignment film, the liquid crystal molecules are aligned in a substantially vertical direction with respect to the substrate surface in the off state (applied voltage V = 0), so that the retardation value of the liquid crystal layer 18 is stably zero. It becomes. As a result, by adopting the orthogonal Nicol arrangement, it is possible to realize the blocking performance determined by the level of the extinction ratio of the polarizer without depending on the wavelength and the incident angle of the incident light.

次に、透明基板11の片面にギャップ制御材が混入された図示外の接着材を印刷パターニングしてシール17を形成し、透明基板12と重ね合わせ、圧着して空セルを作製する。さらに、シール17の一部に設けられた注入口(図示せず)から常光屈折率nおよび異常光屈折率n(但し、n≠n)を有するネマティック液晶を注入し、この注入口を封止して液晶をセル内に密封して層厚Gの液晶層18を形成し、本実施形態の液晶素子10とする。
なお、図1、図2に示すように、透明基板11側に形成された電極14Aを通して透明電極14に電圧を印加するため、あらかじめシール17に導電性金属粒子を混入してシール圧着することによりシール厚方向に導電性を発現させ、透明電極14と電極14Aを導通する。透明電極13に接続された電極13Aと、第2の透明電極14に接続された電極14Aとに、外部の交流電源を接続して、液晶層18に交流電圧を印加する。透明電極13、14は予めパターニングされているとともに、配向膜14、16もシール17に接触しないようにパターニングされている。
Next, an adhesive (not shown) mixed with a gap control material on one side of the transparent substrate 11 is printed and patterned to form a seal 17, which is superimposed on the transparent substrate 12 and pressed to produce an empty cell. Moreover, injection port provided in a portion of the seal 17 ordinary (not shown) the refractive index n o and extraordinary refractive index n e (where, n o ≠ n e) injecting a nematic liquid crystal having, this note The inlet is sealed and the liquid crystal is sealed in the cell to form a liquid crystal layer 18 having a layer thickness G, whereby the liquid crystal element 10 of this embodiment is obtained.
As shown in FIGS. 1 and 2, in order to apply a voltage to the transparent electrode 14 through the electrode 14 </ b> A formed on the transparent substrate 11 side, conductive metal particles are mixed in the seal 17 in advance and the seal is pressure-bonded. Conductivity is developed in the seal thickness direction, and the transparent electrode 14 and the electrode 14A are conducted. An external AC power source is connected to the electrode 13A connected to the transparent electrode 13 and the electrode 14A connected to the second transparent electrode 14, and an AC voltage is applied to the liquid crystal layer 18. The transparent electrodes 13 and 14 are patterned in advance, and the alignment films 14 and 16 are also patterned so as not to contact the seal 17.

次に、液晶分子長軸方向の比誘電率ε//と液晶分子短軸方向の比誘電率εとの差である誘電異方性△ε(=ε//−ε)が負のネマティック液晶を用いて、液晶層18を形成するときの具体的な条件などについて、定性的に説明する。
なお、ここで、誘電異方性△εが負の液晶を用いると、電圧印加により生じる電界と垂直方向に液晶の配向方向(すなわち、異常光屈折率nの方向)を揃えることができる。また、本実施形態では、配向膜14、16表面のラビング処理を同一方向(X軸と45°の角度方向)とすることにより、低電圧で液晶層18の大きなリタデーション値変化を得る構成とする。
一般に、WDM通信システムにおける使用波長λは、1490nmから1620nmと長波長であり、直交ニコル配置のオン状態(印加電圧V=Vp)で高い透過率を得るためには、液晶層18のリタデーション値がλ/2となることが必要である。一方、誘電異方性△εが負のネマティック液晶としては、例えば、P.Kirsch等が報告している(Liquid Crystals,26,449(1999))ように、芳香環を含む環構造を結合基で結合して分子長軸を形成し、誘電異方性を負とするため、長軸には、たとえばアルキル基、アルキキシ基などの極性の小さい官能基を、一方、短軸方向に1つ以上の極性基(フッ素原子、塩素原子に代表されるハロゲン原子、-CN(シアノ)、−NO、−NCS(イソチオシアネート)、−CF、−OCFなど)を有する液晶化合物からなる液晶組成物が用いられる。
また、オン状態で液晶層18のリタデーション値(λ/2)を得るためには、垂直配向膜のラビング方向の液晶層18の平均屈折率n(Vp)は、次式
{n(Vp)−n}×G=λ/2 ・・・(1)
但し、n;常光屈折率
G;層厚
λ;(WDM通信システムにおける)使用波長
を満たすことが必要である。
なお、平均屈折率n(Vp)は、ラビング方向の偏光面の直線偏光(すなわち、異常光偏光)に対する液晶層18の光路長/層厚に相当する。
Next, a dielectric anisotropy △ ε (= ε // -ε ⊥ ) is negative the difference between the relative dielectric constant of the liquid crystal molecular long axis direction epsilon // and the dielectric constant of the liquid crystal molecules minor axis direction epsilon Specific conditions for forming the liquid crystal layer 18 using nematic liquid crystal will be qualitatively described.
Here, the dielectric anisotropy △ epsilon uses a negative liquid crystal may be the electric field and the vertical direction caused by the voltage applied to align the liquid crystal alignment direction (i.e., direction of the extraordinary refractive index n e). In the present embodiment, the surface of the alignment films 14 and 16 is rubbed in the same direction (angular direction of 45 ° with respect to the X axis) to obtain a large change in the retardation value of the liquid crystal layer 18 at a low voltage. .
In general, the wavelength λ used in the WDM communication system is a long wavelength of 1490 nm to 1620 nm, and in order to obtain a high transmittance in the ON state (applied voltage V = Vp) of the crossed Nicols arrangement, the retardation value of the liquid crystal layer 18 is It is necessary to be λ / 2. On the other hand, examples of the nematic liquid crystal having a negative dielectric anisotropy Δε include P.I. As reported by Kirsch et al. (Liquid Crystals, 26, 449 (1999)), a ring structure containing an aromatic ring is bonded with a linking group to form a molecular long axis and negative dielectric anisotropy. In the major axis, for example, a functional group having a small polarity such as an alkyl group or an alkoxy group, and one or more polar groups in the minor axis direction (a halogen atom represented by a fluorine atom or a chlorine atom, -CN (cyano ), —NO 2 , —NCS (isothiocyanate), —CF 3 , —OCF 3, etc.).
In order to obtain the retardation value (λ / 2) of the liquid crystal layer 18 in the on state, the average refractive index n (Vp) of the liquid crystal layer 18 in the rubbing direction of the vertical alignment film is expressed by the following formula:
{N (Vp) -n o} × G = λ / 2 ··· (1)
Where n o : ordinary light refractive index
G: Layer thickness
It is necessary to satisfy the wavelength used (in a WDM communication system).
The average refractive index n (Vp) corresponds to the optical path length / layer thickness of the liquid crystal layer 18 with respect to linearly polarized light (that is, extraordinary light polarized light) on the polarization plane in the rubbing direction.

一般に、液晶分子が低電圧で大きな配向変化を生むためには、誘電異方性△εの絶対値が大きな液晶であるほど好ましい。また、オン状態からオフ状態への応答時間は、液晶層18の層厚(G)の二乗に逆比例するため、液晶層18の層厚(G)が薄いほど高速応答に有利である。従って、薄い層厚(G)で前述の(1)式を満たす大きな平均屈折率n(Vp)を得るためには、複屈折量△n(=n―n)が大きな液晶ほど好ましい。具体的には、3V以上10V以下の印加電圧Vpで、かつ、1490nmから1620nmの波長域でオン状態となるようにするため、(1)式で記載される液晶層18のリタデーション値を0.78μmとする。 In general, a liquid crystal having a large absolute value of dielectric anisotropy Δε is more preferable in order for the liquid crystal molecules to produce a large alignment change at a low voltage. Further, the response time from the on state to the off state is inversely proportional to the square of the layer thickness (G) of the liquid crystal layer 18, so that the thinner the layer thickness (G) of the liquid crystal layer 18, the more advantageous is the high-speed response. Therefore, in order to obtain a thin thickness (G) in the above (1) is larger average refractive index satisfying the equation n (Vp) is preferably birefringence △ n (= n e -n o ) is larger the crystal. Specifically, the retardation value of the liquid crystal layer 18 described by the formula (1) is set to 0. 0 in order to be in the on state in the applied voltage Vp of 3 V or more and 10 V or less and in the wavelength range of 1490 nm to 1620 nm. 78 μm.

従って、このような構成の液晶素子10にY軸方向の偏光面の直線偏光が入射すると、オフ状態では偏光状態が変化することなく透過する。一方、オン状態ではX軸方向の偏光面の直線偏光となって液晶素子10を透過する。従って、液晶素子10の光出射側に直交ニコルで偏光子を配置すると、オフ状態で光が遮断され、オン状態で高い透過率となり、印加電圧の切り替えにより高消光比の光シャッタとなる。また、印加電圧をゼロからVpまで変化させると出射光の光量をゼロから最大まで調整できる光減衰器の機能が得られる。   Accordingly, when linearly polarized light having a polarization plane in the Y-axis direction is incident on the liquid crystal element 10 having such a configuration, the polarization state is transmitted without change in the off state. On the other hand, in the ON state, the light is transmitted through the liquid crystal element 10 as linearly polarized light having a polarization plane in the X-axis direction. Therefore, when a polarizer is arranged with crossed Nicols on the light emitting side of the liquid crystal element 10, light is blocked in the off state, high transmittance is obtained in the on state, and an optical shutter having a high extinction ratio is obtained by switching the applied voltage. Further, when the applied voltage is changed from zero to Vp, the function of an optical attenuator that can adjust the amount of emitted light from zero to the maximum can be obtained.

[第2の実施形態]
次に、本発明の第2の実施形態に係る液晶素子20の構成例について、図3に示す側面図を参照しながら、詳細に説明する。
第2の実施形態に係る液晶素子20は、第1の実施形態の液晶素子10の光入射側と光出射側に設けた各透明基板11、12の外側に、偏光回折型偏光子20A、20Bが一体化されている。なお、偏光回折型偏光子20A、20Bの構成および作用効果については、前述の特許文献2に記載されているため、詳細な説明は省略する。
この偏光回折型偏光子20A(20B)は、透明基板11(12)、透明基板23A(23B)、透明基板24A(24B)と、これらの基板間に狭持された偏光回折格子層21A(21B)と偏光回折格子層22A(22B)とを備えた構造のものからなる。
[Second Embodiment]
Next, a configuration example of the liquid crystal element 20 according to the second embodiment of the present invention will be described in detail with reference to a side view shown in FIG.
The liquid crystal element 20 according to the second embodiment includes polarization diffraction polarizers 20A and 20B on the outer sides of the transparent substrates 11 and 12 provided on the light incident side and the light emission side of the liquid crystal element 10 of the first embodiment. Are integrated. In addition, since it describes in the above-mentioned patent document 2 about the structure and effect of polarization diffraction type polarizer 20A, 20B, detailed description is abbreviate | omitted.
This polarization diffraction type polarizer 20A (20B) includes a transparent substrate 11 (12), a transparent substrate 23A (23B), a transparent substrate 24A (24B), and a polarization diffraction grating layer 21A (21B) sandwiched between these substrates. ) And the polarization diffraction grating layer 22A (22B).

ここで、図4に偏光回折型偏光子20A(20B)の断面図を参照しながら、偏光回折型偏光子20A(20B)の構成要素と作製手順の一例について説明する。
初めに、透明性基板23A(23B)および透明性基板24A(24B)のそれぞれの片面に、常光屈折率nおよび異常光屈折率n(n≠n)の複屈折性材料層を、その遅相軸(異常光屈折率を示す方向)が特定方向に揃うように形成する。次に複屈折性材料層を、断面形状が段差dかつ格子ピッチpの凹凸状の周期構造を有する回折格子25と、断面形状が段差dかつ格子ピッチpの凹凸状の周期構造を有する回折格子26とに加工する。
その後、少なくとも回折格子それぞれの凹部に屈折率n(常光屈折率nまたは異常光屈折率nに等しい)の等方性透明材料27を充填する。このようにして、透明性基板23A(23B)および透明基板24A(24B)上に偏光回折格子層21A(21B)と偏光回折格子層22A(22B)を形成するとともに、透明性基板23A(23B)と透明基板24A(24B)と液晶素子10の透明基板11(12)を積層して、偏光回折型偏光子20A(20B)とする。
Here, referring to a cross-sectional view of the polarization diffractive polarizer 20A (20B) in FIG. 4, an example of components and a manufacturing procedure of the polarization diffractive polarizer 20A (20B) will be described.
First, a birefringent material layer having an ordinary light refractive index n o and an extraordinary light refractive index n e (n o ≠ n e ) is provided on one side of each of the transparent substrate 23A (23B) and the transparent substrate 24A (24B). The slow axis (the direction showing the extraordinary light refractive index) is aligned in a specific direction. Then the birefringent material layer, a diffraction grating 25 which cross-sectional shape having an uneven periodic structure of the step d 1 and the grating pitch p 1, cycle sectional shape of the step d 2 and the grating pitch p 2 concavo-convex structure To a diffraction grating 26 having
Then, filling the isotropic transparent material 27 having a refractive index in at least diffraction grating respective recesses n s (ordinary equal to the refractive index n o or the extraordinary refractive index n e). In this way, the polarizing diffraction grating layer 21A (21B) and the polarizing diffraction grating layer 22A (22B) are formed on the transparent substrate 23A (23B) and the transparent substrate 24A (24B), and the transparent substrate 23A (23B). The transparent substrate 24A (24B) and the transparent substrate 11 (12) of the liquid crystal element 10 are stacked to form a polarization diffraction polarizer 20A (20B).

なお、偏光回折格子層21A、21B、22A,22Bを構成する回折格子25と回折格子26の格子凸部の長手方向は、透明基板24Aと透明基板24Bとの間で、所定の角度をなしていることが好ましい。すなわち、偏光回折型偏光子20Aと20Bを構成する回折格子により発生する回折光が多重回折して直進透過光に重畳しないように、4種の偏光回折格子層21A、22A、21B、22Bの回折格子の格子長手方向を全て異なる(例えば、図6のβ〜ε)ように加工することが好ましい。   The longitudinal direction of the grating convex portions of the diffraction grating 25 and the diffraction grating 26 constituting the polarization diffraction grating layers 21A, 21B, 22A and 22B forms a predetermined angle between the transparent substrate 24A and the transparent substrate 24B. Preferably it is. That is, the diffraction of the four types of polarization diffraction grating layers 21A, 22A, 21B, and 22B is prevented so that the diffracted light generated by the diffraction gratings constituting the polarization diffraction polarizers 20A and 20B is not multiplexly diffracted and superimposed on the linearly transmitted light. It is preferable to process the lattices so that the lattice longitudinal directions are all different (for example, β to ε in FIG. 6).

図5(A)、(B)に、回折格子25と回折格子26の格子長手方向のX軸との成す角度がθ1とθ2の場合の平面図を示す。
ここで、例えば屈折率nが常光屈折率nとほぼ等しい等方性透明材料27を用い、リタデーション値|n−n|×dおよび|n−n|×dが入射光の波長の略半分となる段差dおよびdとすると、異常光偏光の入射光に対して直進透過光の光量が最小となり、直進透過する常光偏光の透過率との比である消光比が高い値となる。回折格子に用いられる複屈折材料の遅相軸方向が揃った偏光回折格子層21A(21B)と偏光回折格子層22A(22B)を積層しているため、単層の場合に比べて直進透過光に対して高い消光比の偏光子が得られる。
複屈折材料からなる回折格子25と回折格子26としては、複屈折量が大きな高分子液晶を用いることが好ましい。高分子液晶からなる回折格子は、例えば、配向処理された基板面に液晶モノマーを塗布した後に紫外線を照射することにより、配向処理した方向に分子配向が揃った一定膜厚の高分子液晶層を形成し、フォトリソグラフィーや反応性イオンエッチングなどにより格子形状に加工できる。
5A and 5B are plan views in the case where the angles formed by the diffraction grating 25 and the X axis in the longitudinal direction of the diffraction grating 26 are θ1 and θ2.
Here, for example, the refractive index n s is using approximately equal isotropic transparent material 27 and the ordinary refractive index n o, the retardation value | is × d 2 | n e -n s | × d 1 and | n e -n s Assuming that the steps d 1 and d 2 are approximately half the wavelength of the incident light, the amount of the linearly transmitted light is minimized with respect to the incident light of the extraordinary light polarization, and the extinction is the ratio of the transmittance of the ordinary light polarized light that is transmitted in the straight direction. The ratio is high. Since the polarizing diffraction grating layer 21A (21B) and the polarizing diffraction grating layer 22A (22B) in which the slow axis directions of the birefringent materials used for the diffraction grating are aligned are laminated, the linearly transmitted light is compared with the case of a single layer. In contrast, a polarizer having a high extinction ratio can be obtained.
As the diffraction grating 25 and the diffraction grating 26 made of a birefringent material, it is preferable to use a polymer liquid crystal having a large amount of birefringence. For example, a diffraction grating made of a polymer liquid crystal can be used to form a polymer liquid crystal layer having a constant film thickness in which molecular alignment is aligned in the direction of alignment treatment by irradiating ultraviolet rays after applying a liquid crystal monomer to the substrate surface subjected to the alignment treatment. It can be formed and processed into a lattice shape by photolithography or reactive ion etching.

次に、本実施形態の液晶素子20において、偏光回折型偏光子20Aおよび偏光回折型偏光子20Bの高分子液晶からなる回折格子25と回折格子26の配向方向(すなわち、異常光屈折率の方向)と格子長手方向のX軸とのなす角度θと角度θ、液晶素子10の液晶層18のオン状態の液晶分子傾斜方向(すなわち、配向膜14および配向膜16の配向処理方向)の関係の一例を、図6に示す。 Next, in the liquid crystal element 20 of the present embodiment, the orientation directions of the diffraction grating 25 and the diffraction grating 26 (that is, the direction of the extraordinary light refractive index) made of polymer liquid crystals of the polarization diffraction polarizer 20A and the polarization diffraction polarizer 20B. ) And the X axis in the longitudinal direction of the lattice, the angle θ 1 and the angle θ 2 , and the on-state liquid crystal molecule tilt direction of the liquid crystal layer 18 of the liquid crystal element 10 (that is, the alignment treatment direction of the alignment film 14 and the alignment film 16) An example of the relationship is shown in FIG.

初めに、偏光回折型偏光子20Aにおける、偏光回折格子層21Aおよび偏光回折格子層22Aの高分子液晶は、図6において、X軸方向に配向している。また、回折格子25はθ=90°(図6のα)で、回折格子26はθ=0°(図6のβ)としている。すなわち、偏光回折型偏光子20Aに入射するY軸方向の偏光面の直線偏光は回折されることなく直進透過し、X軸方向の偏光面の直線偏光はX軸方向およびY軸方向に回折されて直進透過する光はほとんどない。
一方、偏光回折型偏光子20Bにおける、偏光回折格子層21Bおよび偏光回折格子層22Bの高分子液晶は、図6において、Y軸方向に配向している。また、回折格子25はθ=135°(図6のδ)で回折格子26はθ=45°(図6のε)としている。すなわち、偏光回折型偏光子20Bに入射するX軸方向の偏光面の直線偏光は回折されることなく直進透過し、Y軸方向の偏光面の直線偏光は45°方向および135°方向に回折されて直進透過する光はほとんどない。
First, the polymer liquid crystals of the polarization diffraction grating layer 21A and the polarization diffraction grating layer 22A in the polarization diffraction polarizer 20A are aligned in the X-axis direction in FIG. Further, the diffraction grating 25 has θ 1 = 90 ° (α in FIG. 6), and the diffraction grating 26 has θ 2 = 0 ° (β in FIG. 6). That is, the linearly polarized light of the polarization plane in the Y-axis direction incident on the polarization diffraction type polarizer 20A is transmitted straight without being diffracted, and the linearly polarized light of the polarization plane in the X-axis direction is diffracted in the X-axis direction and the Y-axis direction. There is almost no light that passes straight through.
On the other hand, the polymer liquid crystals of the polarization diffraction grating layer 21B and the polarization diffraction grating layer 22B in the polarization diffraction polarizer 20B are aligned in the Y-axis direction in FIG. The diffraction grating 25 has θ 1 = 135 ° (δ in FIG. 6), and the diffraction grating 26 has θ 2 = 45 ° (ε in FIG. 6). That is, the linearly polarized light of the polarization plane in the X-axis direction incident on the polarization diffraction type polarizer 20B is transmitted straight without being diffracted, and the linearly polarized light of the polarization plane in the Y-axis direction is diffracted in 45 ° and 135 ° directions. There is almost no light that passes straight through.

従って、偏光回折型偏光子20A側から液晶素子20に入射するX軸方向の偏光面の直線偏光は、偏光回折型偏光子20Aで回折されるため、液晶素子20を直進透過する光はほとんどない。一方、Y軸方向の偏光面の直線偏光は、偏光回折型偏光子20Aで回折されることなく直進透過し、液晶素子10に入射する。
ここで、液晶素子10がオフ状態の時、偏光状態は変わらずY軸方向の偏光面の直線偏光のまま偏光回折型偏光子20Bに入射し、偏光回折型偏光子20Bで回折されるため、液晶素子20を直進透過する光はほとんどない。一方、液晶素子10がオン状態の時、偏光状態が変化しX軸方向の偏光面の直線偏光となって偏光回折型偏光子20Bに入射し、偏光回折型偏光子20Bで回折されることなく、液晶素子20を直進透過する。ここで、偏光回折型偏光子20Aによる回折光が偏光回折型偏光子20Bにより回折された場合、各回折格子による回折光の回折方向が異なるため、直進透過光に重畳することはない。
すなわち、液晶素子20は、オフ状態で入射光の偏光状態に係わらず入射光を回折し、オン状態ではY軸方向の偏光面の直線偏光のみを高い効率にて直進透過する。
なお、図3に示す液晶素子20では光入射側に偏光回折型偏光子20Aが配置されているが、入射光が直線性の高いY軸方向の偏光面の直線偏光であれば、偏光回折型偏光子20Aは用いなくともよい。
Therefore, the linearly polarized light in the polarization plane in the X-axis direction that enters the liquid crystal element 20 from the polarization diffraction type polarizer 20A side is diffracted by the polarization diffraction type polarizer 20A, and therefore there is almost no light that passes straight through the liquid crystal element 20. . On the other hand, the linearly polarized light on the plane of polarization in the Y-axis direction passes straight without being diffracted by the polarization diffraction polarizer 20 </ b> A and enters the liquid crystal element 10.
Here, when the liquid crystal element 10 is in the OFF state, the polarization state does not change and the linearly polarized light with the polarization plane in the Y-axis direction is incident on the polarization diffraction type polarizer 20B and is diffracted by the polarization diffraction type polarizer 20B. There is almost no light that passes straight through the liquid crystal element 20. On the other hand, when the liquid crystal element 10 is in the ON state, the polarization state changes, and the light enters the polarization diffractive polarizer 20B as linearly polarized light on the polarization plane in the X-axis direction without being diffracted by the polarization diffractive polarizer 20B. The liquid crystal element 20 passes straight through. Here, when the diffracted light by the polarization diffraction type polarizer 20 </ b> A is diffracted by the polarization diffraction type polarizer 20 </ b> B, the diffraction directions of the diffracted light by the respective diffraction gratings are different, so that they are not superimposed on the straight transmitted light.
That is, the liquid crystal element 20 diffracts incident light in the off state regardless of the polarization state of the incident light, and in the on state, it linearly transmits only linearly polarized light on the polarization plane in the Y-axis direction with high efficiency.
In the liquid crystal element 20 shown in FIG. 3, the polarization diffractive polarizer 20A is arranged on the light incident side. However, if the incident light is linearly polarized light with a high linearity in the polarization direction in the Y-axis direction, the polarization diffractive type is used. The polarizer 20A may not be used.

次に、図7は、本発明の液晶素子20を用いて印加電圧に応じて透過光量が変化する光シャッタあるいは光減衰器とする場合の光学系構成の一例を示す側面図である。
この光学系では、液晶素子20の出射側に集光レンズ1を配置した構成としており、液晶素子20にX軸方向およびY軸方向の偏光面の直線偏光が混在した平行光が入射すると、オン状態の液晶素子20を直進透過したY軸方向の偏光面の直線偏光は、集光レンズ1の光軸上の焦点面に集光される。一方、液晶素子20で回折された光は集光レンズ1の光軸外の焦点面に集光される。したがって、集光レンズ1の光軸上の焦点面に開口部を有する開口絞り2を配置することにより、液晶素子20がオン状態の時にのみY軸方向の偏光面の直線偏光の入射光を透過し、オフ状態では入射光を遮断する光シャッタとなる。
ここで、開口絞り2の替わりに、開口部に相当する受光部を有する光検出器を配置してもよい。また、光伝送用の光ファイバーのコア部を開口部の代わりに配置しても同様の機能が得られる。また、オフ状態(印加電圧V=0)とオン状態(印加電圧V=Vp)の中間域の電圧では、直進透過光の光量が印加電圧の大きさに応じて可変な光減衰器となる。
このように、図7の液晶素子20を用いた光学系の場合、入射光のうちX軸方向の偏光面の光は信号光として利用されない。
Next, FIG. 7 is a side view showing an example of an optical system configuration in the case where the liquid crystal element 20 of the present invention is used as an optical shutter or an optical attenuator in which the amount of transmitted light changes according to the applied voltage.
In this optical system, the condensing lens 1 is arranged on the exit side of the liquid crystal element 20, and when parallel light mixed with linearly polarized light in the polarization planes in the X-axis direction and the Y-axis direction is incident on the liquid crystal element 20, the optical system is turned on. The linearly polarized light on the polarization plane in the Y-axis direction that has been transmitted straight through the liquid crystal element 20 in the state is condensed on the focal plane on the optical axis of the condenser lens 1. On the other hand, the light diffracted by the liquid crystal element 20 is condensed on the focal plane outside the optical axis of the condenser lens 1. Therefore, by disposing the aperture stop 2 having an aperture on the focal plane on the optical axis of the condenser lens 1, the linearly polarized incident light on the polarization plane in the Y-axis direction is transmitted only when the liquid crystal element 20 is in the ON state. In the off state, the light shutter blocks the incident light.
Here, instead of the aperture stop 2, a photodetector having a light receiving portion corresponding to the opening may be arranged. The same function can be obtained even if the core of the optical fiber for optical transmission is arranged instead of the opening. Further, in the voltage in the intermediate range between the off state (applied voltage V = 0) and the on state (applied voltage V = Vp), the light attenuator in which the amount of light transmitted through the straight line is variable according to the magnitude of the applied voltage is obtained.
As described above, in the case of the optical system using the liquid crystal element 20 of FIG. 7, the light of the polarization plane in the X-axis direction is not used as signal light in the incident light.

次に、入射光の偏光状態に係わらず光利用効率の高い光シャッタおよび光減衰器を実現するために、液晶素子20を備えた偏光無依存光シャッタおよび光減衰器30の構成を図8に示す。
この光シャッタおよび光減衰器30では、液晶素子20の光入射側および光出射側に偏光変換素子3Aと偏光変換素子3Bが配置された構成となっている。
この偏光変換素子3A、3Bは、直角2等辺ガラスプリズムの斜面に偏光分離ミラー31A、31Bと全反射ミラー32A、32Bが形成されており、それぞれ底面が平行四辺形の四角柱ガラスの平行面に接着された構成となっている。
偏光分離ミラー31A、31Bは、誘電体多層膜からなり、Y軸方向の偏光面の直線偏光を透過し、X軸方向の偏光面の直線偏光を反射する。さらに、1/2波長板33A、33Bがこの偏光変換素子3A、3Bの光入出射面の一部に接着されており、X軸方向の偏光面の直線偏光をY軸方向の偏光面の直線偏光に変換する。
偏光変換素子3Aの偏光分離ミラー31Aに入射する光は、X軸方向の偏光面の直線偏光が反射されて1/2波長板33Aを透過した後、Y軸方向の偏光面の直線偏光となって液晶素子20に入射する。一方、偏光分離ミラー31Aに入射する光のうち、Y軸方向の偏光面の直線偏光は、偏光分離ミラー31Aを透過して液晶素子20に入射する。すなわち、液晶素子20の入射光は、いずれも、Y軸方向の偏光面の直線偏光となる。
次に、液晶素子20がオン状態の時、図8に示すように、液晶素子20を透過してX軸方向の偏光面の直線偏光となる偏光成分の内、偏光変換素子3Bの1/2波長板33Bを透過した光は、Y軸方向の偏光面の直線偏光となって偏光分離ミラー31Bを透過し、偏光変換素子3BからZ軸方向に出射する。また、全反射ミラー32Bで反射されるX軸方向の偏光面の光は、偏光分離ミラー31Bで反射し、X軸方向の偏光面のまま偏光変換素子3BからZ軸方向に出射する。このとき、Z方向の光出射側には、図7と同様に、集光レンズ1と開口絞り2(図示せず)が配置されている。
一方、液晶素子20がオフ状態の時、液晶素子20を透過するY軸方向の偏光面の直線偏光の回折光のうち、偏光変換素子3Bの1/2波長板33Bを透過した光は、X軸方向の偏光面の直線偏光となって偏光分離ミラー31Bで反射され、偏光変換素子3BからY軸方向に出射する。また、全反射ミラー32Bで反射されるY軸方向の偏光面の光は、偏光分離ミラー31Bを透過し、偏光変換素子3Bから同じ偏光面のままY軸方向に出射する。なお、液晶素子20には、交流電源を用いて交流電圧が印加される。
Next, in order to realize an optical shutter and optical attenuator having high light utilization efficiency regardless of the polarization state of incident light, the configuration of the polarization-independent optical shutter and optical attenuator 30 provided with the liquid crystal element 20 is shown in FIG. Show.
The optical shutter and optical attenuator 30 has a configuration in which the polarization conversion element 3A and the polarization conversion element 3B are arranged on the light incident side and the light emission side of the liquid crystal element 20.
In the polarization conversion elements 3A and 3B, polarization separation mirrors 31A and 31B and total reflection mirrors 32A and 32B are formed on the inclined surface of a right-angled isosceles glass prism. It has a bonded configuration.
The polarization separation mirrors 31A and 31B are made of a dielectric multilayer film, and transmit linearly polarized light having a polarization plane in the Y-axis direction and reflect linearly polarized light having a polarization plane in the X-axis direction. Further, the half-wave plates 33A and 33B are bonded to a part of the light incident / exit surfaces of the polarization conversion elements 3A and 3B, and the linearly polarized light in the X-axis direction is converted to the straight line in the Y-axis direction. Convert to polarized light.
The light incident on the polarization separation mirror 31A of the polarization conversion element 3A becomes linearly polarized light having a polarization plane in the Y-axis direction after the linearly polarized light having the polarization plane in the X-axis direction is reflected and transmitted through the half-wave plate 33A. Incident on the liquid crystal element 20. On the other hand, of the light incident on the polarization separation mirror 31A, the linearly polarized light with the polarization plane in the Y-axis direction passes through the polarization separation mirror 31A and enters the liquid crystal element 20. That is, all the incident light of the liquid crystal element 20 is linearly polarized light with a polarization plane in the Y-axis direction.
Next, when the liquid crystal element 20 is in the ON state, as shown in FIG. 8, the polarization component that is transmitted through the liquid crystal element 20 and becomes linearly polarized light in the polarization plane in the X-axis direction is half that of the polarization conversion element 3B. The light transmitted through the wave plate 33B becomes linearly polarized light having a polarization plane in the Y-axis direction, passes through the polarization separation mirror 31B, and is emitted from the polarization conversion element 3B in the Z-axis direction. The light having the polarization plane in the X-axis direction that is reflected by the total reflection mirror 32B is reflected by the polarization separation mirror 31B and is emitted from the polarization conversion element 3B in the Z-axis direction while maintaining the polarization plane in the X-axis direction. At this time, the condenser lens 1 and the aperture stop 2 (not shown) are disposed on the light emitting side in the Z direction, as in FIG.
On the other hand, when the liquid crystal element 20 is in the OFF state, the light transmitted through the half-wave plate 33B of the polarization conversion element 3B out of the linearly polarized diffracted light of the polarization plane in the Y-axis direction that transmits the liquid crystal element 20 is X It becomes linearly polarized light of the polarization plane in the axial direction, is reflected by the polarization separation mirror 31B, and is emitted from the polarization conversion element 3B in the Y-axis direction. Further, the light of the polarization plane in the Y-axis direction reflected by the total reflection mirror 32B passes through the polarization separation mirror 31B and is emitted from the polarization conversion element 3B in the Y-axis direction with the same polarization plane. An AC voltage is applied to the liquid crystal element 20 using an AC power source.

その結果、入射光の偏光常態に係わらず、液晶素子20がオフ状態では入射光は回折されて偏光変換素子3Bを直進透過する光はほとんどない。また、液晶素子20がオン状態では入射光は回折されることなく偏光変換素子3BをZ軸方向に直進透過する。ここで、偏光変換素子3A、3Bの偏光分離ミラー31A、31Bの偏光分離能が不十分であっても、液晶素子20が高い消光比で有るため、偏光無依存光シャッタおよび光減衰器として高い消光比およびダイナミックレンジが実現する。   As a result, regardless of the normal polarization state of the incident light, when the liquid crystal element 20 is in the off state, the incident light is diffracted and there is almost no light that passes straight through the polarization conversion element 3B. In addition, when the liquid crystal element 20 is in an on state, incident light is transmitted through the polarization conversion element 3B in a straight line in the Z-axis direction without being diffracted. Here, even if the polarization separation mirrors 31A and 31B of the polarization conversion elements 3A and 3B are insufficient, the liquid crystal element 20 has a high extinction ratio, so that it is high as a polarization-independent optical shutter and an optical attenuator. Extinction ratio and dynamic range are realized.

次に、本発明に係る液晶素子10について、図1を用いて具体的に説明する。
波長1.55μmで常光屈折率n(LC)が1.49および異常光屈折率n(LC)が1.63で、誘電異方性△ε(=ε//−ε)が−4のネマティック液晶を、透明電極13、14が片面に形成された透明基板11、12に挟持し、液晶層18の層厚Gを12.5μmとした液晶素子10を作製した。
透明電極13、14の液晶層18に接する面には、ポリイミドから成る垂直配向膜15、16が形成されており、X軸と45°の角度にラビング処理されている。この時、液晶層18の垂直配向膜界面の液晶分子は基板平面に対して略89°のプレチルト角をなし、X軸と45°の角度方向に一様に傾斜している。
透明電極13、14に交流電圧を印加しないオフ状態では、波長λが1.55μmの光に対する液晶層18のリタデーション値はほぼゼロであり、入射光の偏光状態は変化することなく液晶素子10を透過する。次に、透明電極13、14に電圧を印加すると、印加電圧に応じて液晶層18の液晶分子が、X軸と45°の角度方向でXY面方向に傾斜し、液晶層18のリタデーション値が増加する。そして、印加電圧3.6Vでリタデーション値がλ/2となる。
Next, the liquid crystal element 10 according to the present invention will be specifically described with reference to FIG.
In the wavelength 1.55μm ordinary refractive index n o (LC) is 1.49 and the extraordinary refractive index n e (LC) is 1.63, the dielectric anisotropy △ ε (= ε // -ε ⊥ ) is - The nematic liquid crystal 4 was sandwiched between the transparent substrates 11 and 12 having the transparent electrodes 13 and 14 formed on one side, and the liquid crystal element 10 having a liquid crystal layer 18 having a layer thickness G of 12.5 μm was produced.
Vertical alignment films 15 and 16 made of polyimide are formed on the surfaces of the transparent electrodes 13 and 14 in contact with the liquid crystal layer 18 and are rubbed at an angle of 45 ° with the X axis. At this time, the liquid crystal molecules at the interface of the vertical alignment film of the liquid crystal layer 18 form a pretilt angle of approximately 89 ° with respect to the substrate plane, and are uniformly inclined in the angle direction of 45 ° with respect to the X axis.
In an off state in which no AC voltage is applied to the transparent electrodes 13 and 14, the retardation value of the liquid crystal layer 18 with respect to light having a wavelength λ of 1.55 μm is almost zero, and the polarization state of incident light is not changed. To Penetrate. Next, when a voltage is applied to the transparent electrodes 13 and 14, the liquid crystal molecules of the liquid crystal layer 18 are tilted in the XY plane direction at an angle direction of 45 ° with respect to the X axis according to the applied voltage, and the retardation value of the liquid crystal layer 18 is To increase. The retardation value becomes λ / 2 at an applied voltage of 3.6V.

次に、図3に示すように、液晶素子10の光入射側および光出射側に偏光回折型偏光子20A、20Bを一体化して液晶素子20とする。
偏光回折型偏光子20A(20B)の偏光回折格子層21A(21B)と偏光回折格子層22A(22B)は、何れも、高分子液晶からなる回折格子25および回折格子26としている。高分子液晶は、常光屈折率n(=1.55)および異常光屈折率n(=1.67)で、何れも断面が矩形形状であり、格子凸部の膜厚が6.3μmから6.6μmの直線格子である。また、格子ピッチを何れも20μmとし、波長λ(=1.55μm)に対して±1次回折光の回折角が4.4°となる。回折格子25および回折格子26の高分子液晶の配向方向、格子長手方向のX軸とのなす角度、および液晶素子10の液晶層18の配向方向は、第2の実施形態で説明した図6の関係とする。また、均一屈折率n(=1.55)の透明接着材27を回折格子25および回折格子26の凹部に充填するとともに、透明基板11(12)および透明基板23A(23B)に接着固定する。
Next, as shown in FIG. 3, polarization diffractive polarizers 20 </ b> A and 20 </ b> B are integrated on the light incident side and the light emitting side of the liquid crystal element 10 to form the liquid crystal element 20.
The polarization diffraction grating layer 21A (21B) and the polarization diffraction grating layer 22A (22B) of the polarization diffraction polarizer 20A (20B) are both a diffraction grating 25 and a diffraction grating 26 made of polymer liquid crystal. Liquid crystalline polymers, with the ordinary refractive index n o (= 1.55) and an extraordinary refractive index n e (= 1.67), both cross-section a rectangular shape, the film thickness of the grid convex portion 6.3μm To 6.6 μm linear grid. In addition, the grating pitch is 20 μm in all cases, and the diffraction angle of ± first-order diffracted light is 4.4 ° with respect to the wavelength λ (= 1.55 μm). The alignment direction of the polymer liquid crystal of the diffraction grating 25 and the diffraction grating 26, the angle formed with the X axis in the longitudinal direction of the grating, and the alignment direction of the liquid crystal layer 18 of the liquid crystal element 10 are the same as those in FIG. 6 described in the second embodiment. It is related. Further, a transparent adhesive 27 having a uniform refractive index n s (= 1.55) is filled in the concave portions of the diffraction grating 25 and the diffraction grating 26, and is bonded and fixed to the transparent substrate 11 (12) and the transparent substrate 23A (23B). .

次に、このようにして得られた液晶素子20と集光レンズ1とを組み合わせるとともに集光レンズ1の光軸上の焦点面に開口部を有する開口絞り2を配置した、図7に示す光シャッタあるいは光減衰器を形成する。
この光シャッタあるいは光減衰器では、偏光回折型偏光子20A側から入射した平行光は、その出射光を集光レンズ1の焦点面に集光する。また、液晶素子20で回折された光は開口絞り2で遮断され、液晶素子20を直進透過した光のみが光検出器が開口絞り2の開口部を透過し、光検出器(図示せず)にて検知する。
ここで、図2に示すように、液晶素子20の電極13Aと電極14Aに図示外の交流電源を接続し、液晶層18に交流電圧Vを印加する。そして、印加電圧Vをゼロから4Vまで変化させたときの検出光量を測定し、液晶素子20がないときの検出光量に対する比率を消光比として図9に示す。なお、同図において、□、●、○は、それぞれ、波長1.52μm、1.56μm、1.60μmの入射光に対する測定結果を示す。
図9によれば、WDM波長域の1.52μmから1.60μmの入射光に対して、液晶素子20はオフ状態(V=0)で−50dB以下の高い消光比を示すとともに、オン状態(V=Vp=3.6V)で−0.2dB程度の高い透過率が得られた。すなわち、電圧ゼロとVpの切り替えで消光比の高い光シャッタとなる。
また、印加電圧を1.8Vから3.6Vまで変化させることにより、入射光の波長依存性がほとんどなく、−50dBから−0.2dB程度まで連続的に消光比、すなわち透過光量が変化し、低電圧駆動の光減衰器となる。なお、液晶層16は高インピーダンスであり電流がほとんど流れないため、電圧印加に伴う液晶素子20の消費電力は極めて僅かである。
Next, the light shown in FIG. 7 in which the liquid crystal element 20 thus obtained and the condenser lens 1 are combined and an aperture stop 2 having an opening on the focal plane on the optical axis of the condenser lens 1 is disposed. A shutter or an optical attenuator is formed.
In this optical shutter or optical attenuator, parallel light incident from the polarization diffraction polarizer 20 </ b> A side condenses the emitted light on the focal plane of the condenser lens 1. The light diffracted by the liquid crystal element 20 is blocked by the aperture stop 2, and only the light that has been transmitted straight through the liquid crystal element 20 is transmitted by the photodetector through the opening of the aperture stop 2, and a photodetector (not shown). Detect at.
Here, as shown in FIG. 2, an AC power supply (not shown) is connected to the electrodes 13 A and 14 A of the liquid crystal element 20, and an AC voltage V is applied to the liquid crystal layer 18. Then, the detected light amount when the applied voltage V is changed from zero to 4 V is measured, and the ratio to the detected light amount when there is no liquid crystal element 20 is shown in FIG. 9 as the extinction ratio. In the figure, □, ●, and ○ indicate measurement results for incident light having wavelengths of 1.52 μm, 1.56 μm, and 1.60 μm, respectively.
According to FIG. 9, the liquid crystal element 20 exhibits a high extinction ratio of −50 dB or less in the off state (V = 0) with respect to incident light of 1.52 μm to 1.60 μm in the WDM wavelength region, and the on state ( V = Vp = 3.6 V), and a high transmittance of about −0.2 dB was obtained. That is, an optical shutter having a high extinction ratio can be obtained by switching between zero voltage and Vp.
Further, by changing the applied voltage from 1.8 V to 3.6 V, there is almost no wavelength dependency of the incident light, and the extinction ratio, that is, the amount of transmitted light continuously changes from about −50 dB to about −0.2 dB. It becomes a low voltage drive optical attenuator. Since the liquid crystal layer 16 has high impedance and almost no current flows, the power consumption of the liquid crystal element 20 due to voltage application is very small.

なお、本発明は上述した実施形態に何ら限定されるものではなく、その要旨を逸脱しない範囲において種々の形態で実施し得るものである。   The present invention is not limited to the embodiment described above, and can be implemented in various forms without departing from the gist of the present invention.

本発明の液晶素子は、波長分割多重通信システムで用いられる波長帯域において、低電圧駆動、低消費電力で高い消光比が必要とされる光シャッタや光減衰器として利用できる。特に、偏光回折型偏光子が光入射面と光出射面に一体化されているため、他の光学部品との位置調整をすることなく液晶素子単独で安定した高い消光比が要求される光学部品などに利用でき、有用である。   The liquid crystal device of the present invention can be used as an optical shutter or an optical attenuator that requires low voltage drive, low power consumption, and high extinction ratio in the wavelength band used in the wavelength division multiplexing communication system. In particular, since the polarization diffraction type polarizer is integrated on the light incident surface and the light exit surface, an optical component that requires a stable and high extinction ratio by itself without adjusting the position with other optical components. It can be used for such purposes.

本発明に係る第1の実施形態の液晶素子の構成を示す側断面図。1 is a side sectional view showing a configuration of a liquid crystal element according to a first embodiment of the present invention. 図1に示す液晶素子の構成を示す横断面図。FIG. 2 is a cross-sectional view illustrating a configuration of the liquid crystal element illustrated in FIG. 1. 本発明に係る第2の実施形態の液晶素子の構成を示す側断面図。The sectional side view which shows the structure of the liquid crystal element of 2nd Embodiment which concerns on this invention. 本発明の液晶素子の構成要素である偏光回折型偏光子の構成を示す側断面図。FIG. 3 is a side cross-sectional view showing a configuration of a polarization diffraction type polarizer that is a component of the liquid crystal element of the present invention. (A)、(B)は、それぞれ、本発明の液晶素子の各偏光回折型偏光子の構成要素である回折格子の格子長手方向の角度を示す平面図。(A), (B) is a top view which respectively shows the angle of the grating | lattice longitudinal direction of the diffraction grating which is a component of each polarization | polarized-light diffraction type polarizer of the liquid crystal element of this invention. 本発明の液晶素子の偏光回折型偏光子の構成要素である回折格子の複屈折材料(高分子液晶)配向方向と格子長手方向の角度と液晶層の配向方向との関係を示す平面図。The top view which shows the relationship between the birefringent material (polymer liquid crystal) orientation direction of the diffraction grating which is a component of the polarization diffraction type polarizer of the liquid crystal element of this invention, the angle of a grating | lattice longitudinal direction, and the orientation direction of a liquid crystal layer. 本発明の液晶素子を用いた光シャッタあるいは光減衰器の光学系構成を示す側断面図。FIG. 3 is a side sectional view showing an optical system configuration of an optical shutter or an optical attenuator using the liquid crystal element of the present invention. 本発明の液晶素子を用いた光シャッタあるいは光減衰器の他の光学系構成を示す側断面図。The sectional side view which shows the other optical system structure of the optical shutter or optical attenuator using the liquid crystal element of this invention. 本発明の液晶素子に電圧をゼロから4Vまで印加したときの透過光の検出光量の測定結果の一例を示すグラフ。The graph which shows an example of the measurement result of the detected light quantity of the transmitted light when a voltage is applied to the liquid crystal element of this invention from zero to 4V.

符号の説明Explanation of symbols

1 集光レンズ
10、20 液晶素子
11、12、23A、23B、24A、24B 透明基板
13、14 透明電極
13a、14A 電極
15、16 配向膜
17 シール
18 液晶層
2 開口絞り
20A、20B 偏光回折型偏光子
21A、21B、22A、22B 偏光回折格子層
25、26 回折格子
27 透明接着材(等方性透明材料)
3A、3B 偏光変換素子
30 光シャッタ(光減衰器)
31A、31B 偏光分離ミラー
32A、32B 全反射ミラー
33A、33B 1/2波長板
4 交流電源
DESCRIPTION OF SYMBOLS 1 Condensing lens 10, 20 Liquid crystal element 11, 12, 23A, 23B, 24A, 24B Transparent substrate 13, 14 Transparent electrode 13a, 14A Electrode 15, 16 Alignment film 17 Seal 18 Liquid crystal layer 2 Aperture stop 20A, 20B Polarization diffraction type Polarizer 21A, 21B, 22A, 22B Polarization diffraction grating layer 25, 26 Diffraction grating 27 Transparent adhesive (isotropic transparent material)
3A, 3B Polarization conversion element 30 Optical shutter (optical attenuator)
31A, 31B Polarization separation mirror 32A, 32B Total reflection mirror 33A, 33B 1/2 wavelength plate 4 AC power supply

Claims (5)

対向する平面に透明電極が形成された一対の透明基板と、この透明基板間に液晶が挟持された液晶層とを備え、前記透明電極間に印加する電圧の大きさに応じて前記液晶層を透過する直線偏光の光に対するリタデーション値を変化させる液晶素子において、
前記液晶は、誘電異方性が負のネマティック液晶からなり、
前記液晶への電圧非印加時の液晶分子の配向方向は前記透明電極の表面に対して垂直若しくはこれに近い角度であり、
前記液晶層に3V以上10V以下の範囲にある何れかの電圧に対して前記液晶層のリタデーション値が0.78μmとなることを特徴とする液晶素子。
A pair of transparent substrates having transparent electrodes formed on opposing planes, and a liquid crystal layer in which liquid crystal is sandwiched between the transparent substrates, and the liquid crystal layer is formed according to the magnitude of a voltage applied between the transparent electrodes. In the liquid crystal element that changes the retardation value for the light of linearly polarized light that is transmitted,
The liquid crystal is a nematic liquid crystal having negative dielectric anisotropy,
The orientation direction of the liquid crystal molecules when no voltage is applied to the liquid crystal is perpendicular to or close to the surface of the transparent electrode,
The liquid crystal element, wherein a retardation value of the liquid crystal layer is 0.78 μm with respect to any voltage in the range of 3 V to 10 V in the liquid crystal layer.
前記液晶層と前記透明電極との界面に、電圧非印加時の液晶分子の配向方向が前記透明電極の表面に対して略垂直となる垂直配向膜が形成されている請求項1に記載の液晶素子。   2. The liquid crystal according to claim 1, wherein a vertical alignment film is formed at an interface between the liquid crystal layer and the transparent electrode so that an alignment direction of liquid crystal molecules when no voltage is applied is substantially perpendicular to a surface of the transparent electrode. element. 前記垂直配向膜をラビング処理することにより、液晶分子が基板法線に対し、0.5°以上5°以下の角度に傾斜している請求項2に記載の液晶素子。   The liquid crystal element according to claim 2, wherein liquid crystal molecules are inclined at an angle of 0.5 ° or more and 5 ° or less with respect to the substrate normal by rubbing the vertical alignment film. 請求項1から3のいずれかに記載の液晶素子と、この液晶素子の光入射側または光出射側の少なくとも一方の側に配置された偏光子とを備える光減衰器であって、
前記偏光子は、第1の直線偏光を直進透過するとともに前記第1の直線偏光の偏光方向と直交する偏光方向を有する第2の直線偏光を回折する、複屈折性を有する偏光回折型偏光子であることを特徴とする光減衰器。
An optical attenuator comprising the liquid crystal element according to any one of claims 1 to 3 and a polarizer disposed on at least one side of a light incident side or a light emission side of the liquid crystal element,
The polarizer is a birefringent polarization diffractive polarizer that linearly transmits the first linearly polarized light and diffracts the second linearly polarized light having a polarization direction orthogonal to the polarization direction of the first linearly polarized light. An optical attenuator characterized by
前記偏光回折型偏光子は、複屈折性を有する偏光性回折格子を少なくとも2つ積層した複層回折型偏光子からなり、
前記偏光性回折格子は、透明基板上に形成された常光屈折率nおよび異常光屈折率n(n≠n)を有する複屈折性材料層が周期的な凹凸断面形状に加工されているとともに、少なくともその凹部に屈折率がnまたはnに等しい等方性透明材料が充填されている請求項4に記載の光減衰器。
The polarization diffraction polarizer comprises a multilayer diffraction polarizer in which at least two polarizing diffraction gratings having birefringence are laminated,
The polarizing diffraction grating, birefringent material layer having ordinary formed on a transparent substrate refractive index n o and extraordinary refractive index n e (n o ≠ n e ) is processed in the periodic roughness sectional shape together and, at least optical attenuator according to claim 4, isotropic transparent material having a refractive index equal to n o or n e is filled in the concave portion.
JP2004346961A 2004-11-30 2004-11-30 Liquid crystal element and optical attenuator Withdrawn JP2006154492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004346961A JP2006154492A (en) 2004-11-30 2004-11-30 Liquid crystal element and optical attenuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004346961A JP2006154492A (en) 2004-11-30 2004-11-30 Liquid crystal element and optical attenuator

Publications (1)

Publication Number Publication Date
JP2006154492A true JP2006154492A (en) 2006-06-15

Family

ID=36632866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004346961A Withdrawn JP2006154492A (en) 2004-11-30 2004-11-30 Liquid crystal element and optical attenuator

Country Status (1)

Country Link
JP (1) JP2006154492A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016080867A (en) * 2014-10-16 2016-05-16 株式会社 オルタステクノロジー Optical switch device
WO2017154094A1 (en) * 2016-03-08 2017-09-14 株式会社オルタステクノロジー Optical switch device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0380220A (en) * 1989-08-24 1991-04-05 Seiko Epson Corp Liquid crystal electrooptical element
JP2000292815A (en) * 1999-04-12 2000-10-20 Stanley Electric Co Ltd Perpendicularly aligned ecb mode liquid crystal display device
JP2003066232A (en) * 2001-08-24 2003-03-05 Asahi Glass Co Ltd Multilayer diffraction polarizer and composite liquid crystal element
JP2003066450A (en) * 2001-08-27 2003-03-05 Asahi Glass Co Ltd Liquid crystal element and optical attenuator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0380220A (en) * 1989-08-24 1991-04-05 Seiko Epson Corp Liquid crystal electrooptical element
JP2000292815A (en) * 1999-04-12 2000-10-20 Stanley Electric Co Ltd Perpendicularly aligned ecb mode liquid crystal display device
JP2003066232A (en) * 2001-08-24 2003-03-05 Asahi Glass Co Ltd Multilayer diffraction polarizer and composite liquid crystal element
JP2003066450A (en) * 2001-08-27 2003-03-05 Asahi Glass Co Ltd Liquid crystal element and optical attenuator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016080867A (en) * 2014-10-16 2016-05-16 株式会社 オルタステクノロジー Optical switch device
WO2017154094A1 (en) * 2016-03-08 2017-09-14 株式会社オルタステクノロジー Optical switch device

Similar Documents

Publication Publication Date Title
US7764354B2 (en) Multi-layer diffraction type polarizer and liquid crystal element
KR101098202B1 (en) Polarized diffractive filter and layered polarized diffractive filter
US8989523B2 (en) Liquid crystal waveguide for dynamically controlling polarized light
KR101052451B1 (en) Liquid Crystal Light Modulation Element and Optical Head Device
WO2005052674A1 (en) Optical element using liquid crystal having optical isotropy
US7352422B2 (en) Retardation optical element and method of producing the same, and polarization element and liquid crystal display, each including retardation optical element
KR100376387B1 (en) Liquid Crystal Display and Inhibition Foil
JP2009294604A (en) Optical modulation liquid crystal element and variable optical attenuator
JP4792679B2 (en) Isolator and variable voltage attenuator
JP2006215186A (en) Diffraction element, manufacturing method of the same, and polarization selecting device using diffraction element
US20060007385A1 (en) Optical attenuator and optical head device
JP3700239B2 (en) Liquid crystal diffraction grating, manufacturing method thereof, and optical head device using the same
JP4106981B2 (en) Optical attenuator
JP2005003758A (en) Reflective optical modulator and variable optical attenuator
JP5066841B2 (en) Light source device and optical head device
JP2006154492A (en) Liquid crystal element and optical attenuator
JP2004110003A (en) Retardation optical element, manufacturing method therefor, and liquid crystal display device
JP5150992B2 (en) Liquid crystal device and optical attenuator
JP2004039004A (en) Optical head device
JP2004325790A (en) Optical modulation element and optical attenuator
JP2008197640A (en) Optical device and optical head device
JP2002258053A (en) Optical element extracting circularly polarized light, method of manufacturing the same, polarized light source device and liquid crystal display
JP2004145268A (en) Phase difference optical element, its manufacturing method, and polarizing element and liquid crystal display equipped with the phase difference optical element
JP2007248958A (en) Liquid cell for measuring azimuth angle anchoring energy
Chigrinov et al. Recent liquid crystal photonics research in HKUST

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060425

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071025

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20101207