JPS61193106A - Functional optical element - Google Patents

Functional optical element

Info

Publication number
JPS61193106A
JPS61193106A JP3328285A JP3328285A JPS61193106A JP S61193106 A JPS61193106 A JP S61193106A JP 3328285 A JP3328285 A JP 3328285A JP 3328285 A JP3328285 A JP 3328285A JP S61193106 A JPS61193106 A JP S61193106A
Authority
JP
Japan
Prior art keywords
substance
grating
light
substances
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3328285A
Other languages
Japanese (ja)
Inventor
Hajime Sakata
肇 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP3328285A priority Critical patent/JPS61193106A/en
Priority to DE19863605516 priority patent/DE3605516A1/en
Priority to FR8602406A priority patent/FR2577694B1/en
Priority to GB8604310A priority patent/GB2173605B/en
Publication of JPS61193106A publication Critical patent/JPS61193106A/en
Priority to US07/391,621 priority patent/US5013141A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a functional optical element having no dependency on the polarization characteristic of used light by forming a phase diffraction grating arranging two substances having optical axes different to each other alternately. CONSTITUTION:A functional optical element is formed of triangular wave grating using a substance 1 and 2. The optical axis of the substance 1 is arranged in the direction of grooves of the grating and the optical axis of the substance 2 is arranged in the direction of the row of the grating. A rectangular grating is formed in the element using the substances 1 and 2. Further, the optical axis of the substance 1 is arranged in the direction of the grooves of the grating and the optical axis of the substance 2 is arranged in the perpendicular direction to the arranged surface of the grating. Such substances having the specified optical axes are those represented by so-called optically anisotropic substances such as LiNbO3, LiTaO3, PLZT, liquid crystal, SiO2, CdS, CaCO3, ZrO2, Al2O3, MgF2, etc. The two substances for forming a phase diffraction grating may be different to each other or same.

Description

【発明の詳細な説明】 (1)技術分野 本発明は、光記録用、光結合用、光通信用。[Detailed description of the invention] (1) Technical field The present invention is for optical recording, optical coupling, and optical communication.

光演算用等の各種装置のデバイスとして好適な機能光学
素子に関する。
The present invention relates to a functional optical element suitable as a device for various devices such as those for optical calculation.

(2)従来技術 従来1機能光学素子として各種回折格子が応用されてお
り、例えば1分光器や分岐9合波器又は反射器として用
いられている。最近は、半導体レーザー及び光集積回路
に於ける応用も加わって、更に重要な光学素子と成って
いる。
(2) Prior Art Conventionally, various diffraction gratings have been applied as single-function optical elements, and are used, for example, as a 1-spectrometer, a 9-branch multiplexer, or a reflector. Recently, with the addition of applications in semiconductor lasers and optical integrated circuits, it has become an even more important optical element.

上記各種回折格子の内1位相型回折格子は位相変化を与
える手段として表面に凹凸を形成したり、あるいは媒質
内部に屈折率の変化を施す等の方法を一般に用いている
。この様な回折格子に使用する媒質は1通常光学的に等
方性を有する物質により構成されており使用する光の偏
光特性に依存せず本来の機能を発揮する。しかしながら
、近年、回折格子を所定の光学軸を有する結晶等の光学
的異方性物質で構成する機会が増えている。この場合、
使用する光の偏光方向によって回折格子の特性が変化し
てしまう。
Among the various types of diffraction gratings mentioned above, one of the phase type diffraction gratings generally uses methods such as forming irregularities on the surface or changing the refractive index inside the medium as a means for imparting a phase change. The medium used in such a diffraction grating is usually composed of an optically isotropic material and exhibits its original function regardless of the polarization characteristics of the light used. However, in recent years, there have been increasing opportunities for diffraction gratings to be constructed of optically anisotropic materials such as crystals having a predetermined optical axis. in this case,
The characteristics of the diffraction grating change depending on the polarization direction of the light used.

従って、光源にレーザー等を用い直線偏光した光を利用
する場合を除いては、偏光板等を介して所定の方向に直
線偏光させる必要があり、この段階で光利用効率が大き
く減少していた。
Therefore, unless a laser or the like is used as a light source and linearly polarized light is used, it is necessary to linearly polarize the light in a predetermined direction via a polarizing plate, and at this stage the light utilization efficiency is greatly reduced. .

(3)発明の概要 本発明の目的は、従来の欠点を除去し、使用する光の偏
光特性に依存しない新規な機能光学め 素子を提供する事になる。
(3) Summary of the Invention An object of the present invention is to eliminate the conventional drawbacks and provide a novel functional optical element that does not depend on the polarization characteristics of the light used.

上記目的を達成する為に、本発明に係る機能光学素子は
、互いに光学軸の方向が異なる2つの物質を交互に配接
位相型回折格子を形成した△ 事を特徴とする・ 上記所定の光学軸を有する物質は所謂光学的異方性物質
に代表される物質であり、例えば、LiNbO3,Li
TaO3,PLZT。
In order to achieve the above object, the functional optical element according to the present invention is characterized in that a phase type diffraction grating is formed by alternately arranging two materials having different directions of optical axes. A substance having an axis is a substance represented by a so-called optically anisotropic substance, for example, LiNbO3, Li
TaO3, PLZT.

Gd2 (MoOa)3 、B14Tt30t2゜Bi
t2SiO12,GaAs、Si 、ZnTe 。
Gd2 (MoOa)3, B14Tt30t2゜Bi
t2SiO12, GaAs, Si, ZnTe.

As2Se3 、Se 、AsGe5eS 、BaTi
O3、TiO2,KDP、DKDP、ADP。
As2Se3, Se, AsGe5eS, BaTi
O3, TiO2, KDP, DKDP, ADP.

ZnO,MnB1 、Ba2NaNb5015.液晶、
5i02.CdS、CaCO3,ZrO2゜Al2O3
,MgF2等が挙げられる。 又、本発明に於ける上記
位相型回折格子を形成する2つの物質は、互いに異なる
物質でも又は同じ物質であっても構わない、要は本機能
光学素子の作成時に於て、光学軸の方向を任意に設定で
きることであり、異なる物質を用いるか同じ物質を用い
るかの判別は1本機能光学素子に与える機能や製作の容
易性等で決まる。
ZnO, MnB1, Ba2NaNb5015. liquid crystal,
5i02. CdS, CaCO3, ZrO2゜Al2O3
, MgF2, etc. In addition, the two materials forming the above-mentioned phase-type diffraction grating in the present invention may be different materials or the same material.In short, when creating the functional optical element, the direction of the optical axis is determined. can be set arbitrarily, and the decision whether to use different materials or the same material is determined by the function provided to the single-function optical element, ease of manufacture, etc.

更に、交互に配列された2つの物質の光学軸方向は通常
具ならせて使用するが、該光学軸方向の、異ならせ方も
使用する物質、素子の作成上に於る制約、及び本素子の
仕様に関する条件等により様々な形態が考えられる。
Furthermore, although the optical axes of the two alternately arranged materials are normally used in the same manner, there are also restrictions on the materials that can be used with different optical axes, constraints on the production of the device, and the present device. Various forms are conceivable depending on the conditions regarding the specifications, etc.

本機能光学素子を用いる事により、例えば光の分岐、偏
光はもちろんのこと、任意の偏光特性を有する光から所
定の直線偏光した光を取り出したり、二つの互いに偏光
方向が異なる直線偏光した光に分ける等各種機能を行な
わせる事ができる。更に回折格子の形状を変える事によ
り結像機能を持つことも可能である。この様に本素子が
多機能を有するのは、回折格子を光学軸の方向が異なる
2つの物質で形成し、2つの物質に対し使用光の偏光成
分によって感じる屈折率が異なる事に着目して積極的に
回折格子へ応用した為である。
By using this functional optical element, you can, for example, not only split and polarize light, but also extract a predetermined linearly polarized light from light with arbitrary polarization characteristics, or combine two linearly polarized lights with different polarization directions. It can perform various functions such as dividing. Furthermore, it is also possible to provide an imaging function by changing the shape of the diffraction grating. The reason why this device has such multiple functions is that the diffraction grating is formed from two materials with different optical axes, and the two materials have different refractive indexes depending on the polarization component of the light used. This is because it was actively applied to diffraction gratings.

本素子に於ても透過型9反射型とすることが可能で、透
過型の場合は当然構成部材が利用光に対して透明性を有
していなければならず1反射型の場合は基板もしくは所
定の部材に反射性のものを使用するか反射膜を設ける必
要がある。
This element can also be made into a transmissive type and a reflective type.In the case of a transmissive type, the constituent members must have transparency to the light used, and in the case of a reflective type, the substrate or It is necessary to use a reflective material or provide a reflective film for the predetermined member.

以下1本発明を実施例で詳細に述べる。The present invention will be described in detail below using examples.

(4)実施例 第1図(A)〜(C)は本機能光学素子の基本構成例を
示し、1及び2は各々光学軸の方向を異ならせた物質、
3は入射光、4及び4′は各々入射光3の互いに直交す
る偏光成分を示している。尚、第1図に於る構成例は全
て透過型の素子であり1図を理解し易いように光学軸及
び入射光3の偏光成分の方向は各々→印、Φ印で示して
いる。
(4) Example Figures 1 (A) to (C) show examples of the basic configuration of this functional optical element, and 1 and 2 are materials whose optical axes have different directions, respectively.
Reference numeral 3 indicates the incident light, and 4 and 4' indicate mutually orthogonal polarization components of the incident light 3, respectively. The configuration examples shown in FIG. 1 are all transmission type elements, and the optical axis and the direction of the polarized light component of the incident light 3 are indicated by → marks and Φ marks, respectively, to facilitate understanding of FIG. 1.

第1図(A)に係る素子は物質1及び2により三角波状
の格子を形成し誓おり、各々の光学軸は物質1が格子の
溝方向(紙面垂直方向)、物質2が格子の配列方向(紙
面左右方向)を向いている。第1図(B)に係る素子は
物質1及び2により矩形状の格子を形成しており、各々
の光学軸は物質1が格子の溝方向、物質2が回折格子の
配列面に対して垂直方向に向いている。
The element shown in FIG. 1(A) has substances 1 and 2 forming a triangular wave-like lattice, and the optical axis of each substance 1 is in the groove direction of the lattice (perpendicular to the paper), and substance 2 is in the lattice arrangement direction. (towards the left and right of the page). In the element shown in FIG. 1(B), substances 1 and 2 form a rectangular grating, and each optical axis is perpendicular to the groove direction of the grating for substance 1 and to the array plane of the diffraction grating for substance 2. facing the direction.

第1図(C)に係る素子は物質1及び2の光学軸方向が
第1図(B)と同様であり、2つの物質l及び2で形成
する回折格子が正弦波状となっている。
In the element shown in FIG. 1(C), the optical axis directions of the substances 1 and 2 are the same as in FIG. 1(B), and the diffraction grating formed by the two substances 1 and 2 has a sine wave shape.

本実施例に於る機能光学素子は、該素子を構成する2つ
の物質1及び2の光学軸方向が空間内で直交しているが
必ずしも直交する必要は無い、要は入射光から見て2つ
の物質l及び2の光学軸方向が交叉していればよく、前
述の様に種々の制約1条件から配置は決定される。但し
、一般的には2つの光学軸方向の相対的角度差(入射光
から見た)θが、θ≧30’を満足する事で本機能光学
素子はより良好に機能する。以下、図面を用いて本機能
光学素子の機能の一例を説明する。
In the functional optical element of this embodiment, the optical axis directions of the two substances 1 and 2 constituting the element are orthogonal in space, but do not necessarily need to be orthogonal; It is sufficient that the optical axis directions of the two substances 1 and 2 intersect, and the arrangement is determined based on various constraints as described above. However, in general, this functional optical element functions better when the relative angular difference θ (as seen from the incident light) between the two optical axis directions satisfies θ≧30'. Hereinafter, an example of the function of the present functional optical element will be explained using the drawings.

第2図(A)、(B)は本機能光学素子の機能説明図で
、第1図と同様の部材及び記号には同番号を付し、5及
び5′は高次回折光、6は零次透過光を示す。
Figures 2 (A) and (B) are functional explanatory diagrams of this functional optical element, in which the same members and symbols as in Figure 1 are given the same numbers, 5 and 5' are higher-order diffracted lights, and 6 is a zero. The following shows the transmitted light.

第1図(A)に係る素子は、物質l及び2により矩形状
の回折格子を形成しており、物質lの光学軸は回折格子
の溝方向、物質2の光学軸は回折格子の配列方向を向き
互いに直交している。
In the element shown in FIG. 1(A), substances 1 and 2 form a rectangular diffraction grating, and the optical axis of substance 1 is in the groove direction of the diffraction grating, and the optical axis of substance 2 is in the direction in which the diffraction gratings are arranged. are orthogonal to each other.

一般にランダムな偏光方向を有する光、換言すれば任意
の偏光特性を持つ光は第1図で示した様にその成分を直
交する二つの成分4.4′に分ける事が可能である。第
2図(A)の素子に於て、入射光3の偏光成分4は物質
lの光学軸方と平行になり物質1の異常屈折率neを感
じる。更に物質2の光学軸方向とは直交して物質2の常
屈折率n′oを感じる。又、入射光3の偏光成分4′は
物質1の常屈折率noを、物質2の異常屈折率αeを感
じる。従って、入射光3の互いに直交する偏光成分4,
4′が各々屈折率neとrI’o、noとn′eの物質
から成る回折格子を独立に通過すると考える事ができる
。ここで1両偏光成分に対する格子の屈折率差Δnを、
偏光成分4に対してはΔ1=lne−n’ol。
In general, light having a random polarization direction, in other words, light having arbitrary polarization characteristics, can be divided into two orthogonal components 4.4' as shown in FIG. In the element shown in FIG. 2(A), the polarized light component 4 of the incident light 3 is parallel to the optical axis of the substance 1, and the extraordinary refractive index ne of the substance 1 is sensed. Furthermore, the ordinary refractive index n'o of the substance 2 is felt perpendicularly to the optical axis direction of the substance 2. Further, the polarized light component 4' of the incident light 3 senses the ordinary refractive index no of the substance 1 and the extraordinary refractive index αe of the substance 2. Therefore, mutually orthogonal polarization components 4 of the incident light 3,
4' can be considered to pass independently through diffraction gratings made of materials with refractive indices ne and rI'o, and no and n'e, respectively. Here, the refractive index difference Δn of the grating for one polarization component is
For polarization component 4, Δ1=lne-n'ol.

偏光成分4′に対してはΔα=lno−ffelと表わ
す時、Δn=Δn′を満足するように設定する事により
1本機能光学素子の回折格子は恰も等方性物質で形成さ
れた如く両偏光成分に対して同じ回折作用を及ぼす、従
って、任意の偏光特性を有する光に対し有効に機能し得
る。
For the polarization component 4', when expressed as Δα = lno-ffel, by setting Δn = Δn', the diffraction grating of the single-function optical element can be expressed as if it were made of an isotropic material. It exerts the same diffraction effect on polarized light components, and therefore can function effectively for light having arbitrary polarization characteristics.

以下、第2図(A)に係る素子の作成例と性能評価の結
果を述べる。TiO2結晶を結晶軸に沿ってスライスし
、50X50X1mm”の板状に成形した後両面研磨、
洗浄を行なった透明基板2枚を用意する。この2枚の基
板面上にRD−200ON (日立製作所製ネガ型レジ
スト)をスピナー塗布して所定のプリベークを行なう、
その後、マスク露光、現像処理によよってレジストから
成るピッチ1.61Lm、厚さ4000人の格子を形成
した。但し両基板の回折格子配列方向は、一方が結晶軸
方向、他方が結晶軸と直交する方向となっている。続い
て、オ CF4−O2混合ガスを用いてイ嘱ン・エツチング法に
より四基板面を深さ1.54ルmに食刻した後、レジス
トリムーバでレジストを除去し。
Hereinafter, an example of fabrication of the device according to FIG. 2(A) and results of performance evaluation will be described. After slicing the TiO2 crystal along the crystal axis and forming it into a plate shape of 50 x 50 x 1 mm, both sides were polished.
Two cleaned transparent substrates are prepared. Apply RD-200ON (a negative resist manufactured by Hitachi, Ltd.) on the surfaces of these two substrates using a spinner, and perform a prescribed pre-bake.
Thereafter, a grating made of resist with a pitch of 1.61 Lm and a thickness of 4000 people was formed by mask exposure and development. However, the direction in which the diffraction gratings are arranged on both substrates is such that one is in the direction of the crystal axis and the other is in the direction perpendicular to the crystal axis. Subsequently, the four substrate surfaces were etched to a depth of 1.54 lumens by an etching method using a CF4-O2 mixed gas, and then the resist was removed using a resist remover.

した、この2枚の基板を各々の格子を噛み合わせて密着
して第2図(A)の機能光学素子を作成した。尚、波長
8300人の光に対してTiO2の常屈折率no は2
.51常屈折率neは2.78である。従って、Δn=
0.27  となる。
The functional optical element shown in FIG. 2(A) was produced by closely attaching these two substrates with their respective gratings interlocked. In addition, the ordinary refractive index no of TiO2 for light with a wavelength of 8300 is 2
.. 51 ordinary refractive index ne is 2.78. Therefore, Δn=
It becomes 0.27.

さて1本機能光学素子を形成する位相型回折格子に於て
、透過回折光が存在する次数は以下の式で与えられる。
Now, in a phase type diffraction grating forming a single functional optical element, the order in which transmitted diffracted light exists is given by the following equation.

ここで、入0は入射光の波長、Δは回折格子のピッチ、
mは透過回折光の次数を表わす。本機能光学素子の性能
評価に用いた光はランダムな偏光方向を有する光(入Q
=8300人)であり、各条件を上式に代入すると、存
在しうる回折光の次数mは−1,0,1となる。又、本
素子のような矩形状の回折格子に於る零次透過回折光の
回折効率η0は次の(1)式で表わせる。
Here, 0 is the wavelength of the incident light, Δ is the pitch of the diffraction grating,
m represents the order of transmitted diffracted light. The light used to evaluate the performance of this functional optical element was light with a random polarization direction (input Q
= 8300 people), and by substituting each condition into the above equation, the orders m of the diffracted light that may exist are -1, 0, and 1. Furthermore, the diffraction efficiency η0 of the zero-order transmitted diffracted light in a rectangular diffraction grating like the present element can be expressed by the following equation (1).

−rto=−Ar−(1+c o s (2w””) 
) −−−(1)λ0 (1)式に於て Δn−T=(+十m)入o  (m=o、1.2,3.
−−−−)−−−−(2)を満足する場合、η0=Qと
なり零次透過回折光は存在せず1本実施例の各条件は(
2)式を満足して図に示すように生じる回折光は±1次
回折光5.5′のみとなった。更に格子形状が対称であ
る為に+1次回折光5と一1次回折光5′の工゛ネルギ
ー配分は等しくなり、全体の光利用□ 効率は80%以上、S/N比は100:1以上となった
-rto=-Ar-(1+cos (2w"")
) --- (1) λ0 In equation (1), Δn-T=(+10m) in o (m=o, 1.2, 3.
-----)---When (2) is satisfied, η0=Q and zero-order transmitted diffracted light does not exist, and each condition of this example is (
As shown in the figure, the diffracted light that satisfies the equation 2) is only the ±1st-order diffracted light 5.5'. Furthermore, since the lattice shape is symmetrical, the energy distribution between the +1st-order diffracted light 5 and the 11st-order diffracted light 5' is equal, resulting in an overall light utilization efficiency of over 80% and an S/N ratio of over 100:1. became.

第2図(B)に係る素子は、偏光板もしくは。The element according to FIG. 2(B) is a polarizing plate or a polarizing plate.

偏光ビームスプリッタ−に類似した機能を有する機能光
学素子であり、6は零次透過光を示す。
It is a functional optical element having a function similar to a polarizing beam splitter, and 6 indicates zero-order transmitted light.

ここで、物質1の光学軸方向は回折格子の溝方向、物質
2の光学軸方向は回折格子面に垂直な方向であり互いに
直交している。又、本素子では物質1と物質2によって
三角波状の格子が形成されている。尚、本素子に於ては
物質l及び2は同じ物質とする。  (no=n’o 
、 ne=n’e)未素子に任意の偏光特性を有する入
射光3が入射する場合、入射光3の偏光成分4は物質l
の異常屈折率ne、物質2の常屈折率n’oを感じる。
Here, the optical axis direction of the substance 1 is the groove direction of the diffraction grating, and the optical axis direction of the substance 2 is a direction perpendicular to the diffraction grating surface, so that they are orthogonal to each other. Further, in this element, substance 1 and substance 2 form a triangular wave-like lattice. In this device, substances 1 and 2 are the same substance. (no=n'o
, ne=n'e) When incident light 3 having arbitrary polarization characteristics is incident on a non-element, the polarization component 4 of the incident light 3 is a substance l
The extraordinary refractive index ne of substance 2 and the ordinary refractive index n'o of substance 2 are felt.

又、偏光成分4′は物質1の常屈折率no と物IR2
の常屈折率n′0を感じる。従って、入射光3の偏光成
分4に対しては屈折率neとrl’Q。
Moreover, the polarization component 4' is the ordinary refractive index no of the substance 1 and the substance IR2
The ordinary refractive index n'0 is felt. Therefore, for the polarization component 4 of the incident light 3, the refractive index ne and rl'Q.

偏光成分4′に対しては屈折率noとn′Oの回折格子
が存在することになる。しかし、上述の様にno=n’
o 、 ne=n’eテある為、偏光成分4′ニは実質
回折格子が存在しない事になり本素子を素通りして零次
透過光6となる。又、偏光成分4はΔn:1ne−no
lの回折格子により回折され。
For polarization component 4', there are diffraction gratings with refractive indices no and n'O. However, as mentioned above, no=n'
Since o, ne=n'e, the polarized light component 4' has no substantial diffraction grating, and passes through this element without any problem, becoming zero-order transmitted light 6. Also, polarization component 4 is Δn:1ne-no
It is diffracted by a diffraction grating of l.

以下に示す三角波状回折格子に於る零次透過回折光の回
折効率の式(3)に於て、ηO−0となるように条件を
設定しておけば、偏光成分4は高次回折光5.5′とな
り出射する。この様にランダムな偏光方向を持つ光から
所定の直線偏光した光を取り出す事が可能である。
In equation (3) for the diffraction efficiency of the zero-order transmitted diffracted light in the triangular wave diffraction grating shown below, if conditions are set so that ηO-0, the polarized light component 4 becomes the higher-order diffracted light 5. .5' and is emitted. In this way, it is possible to extract a predetermined linearly polarized light from light having a random polarization direction.

η0 = s i n c (π””)  −m−(3
)入0 通常の偏光板から直線偏光した光を取り出す場合、光の
損失が70%にも及ぶのに対し、本素子によれば光の損
失は50%程度となる。
η0 = sinc (π””) −m−(3
) Input 0 When linearly polarized light is extracted from a normal polarizing plate, the light loss is as much as 70%, but with this element, the light loss is about 50%.

第2図を用いた本機能光学素子の機能は、本素子が持つ
機能の一例にすぎず、物質l及び2によって形成する格
子形状1両物質の光学軸方向等を変える事により、様々
な機能を持たせることが可能である。又、応用としてフ
レネルレンズ。
The functions of this functional optical element using Fig. 2 are only one example of the functions of this element, and various functions can be achieved by changing the lattice shape formed by substances 1 and 2, the optical axis direction of both substances, etc. It is possible to have Also, Fresnel lens is used as an application.

曲線状グレーティング、或いはグレーティングカップラ
ー、6FBレーザー等に使用できることは言うまでもな
い。
Needless to say, it can be used for curved gratings, grating couplers, 6FB lasers, etc.

(5)発明の詳細 な説明した様に1本発明に係る機能光学素子は、光゛学
的異方性物質により構成するにも係わらず、任意の偏光
特性を有する光に対し有効に機能し、且つ多機能を有す
る光学素子である。
(5) As described in detail of the invention, although the functional optical element according to the present invention is made of an optically anisotropic material, it functions effectively for light having arbitrary polarization characteristics. , and is an optical element having multiple functions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る機能光学素子の構成例を示す図。 第2図は本発明に係る機能光学素子の機能説明図。 1.2−一所定の光学軸を有する物質 3−−−=−入射光 4 、4’−−−一互いに直交する偏光成分5 、5’
−−−一高次回折光 6−−−−−−−一零次透過光
FIG. 1 is a diagram showing an example of the configuration of a functional optical element according to the present invention. FIG. 2 is a functional explanatory diagram of the functional optical element according to the present invention. 1.2--A substance with a predetermined optical axis 3---=-Incoming light 4, 4'----Polarized light components orthogonal to each other 5, 5'
---First higher-order diffracted light 6-----First transmitted light

Claims (1)

【特許請求の範囲】[Claims] (1)互いに光学軸の方向が異なる2つの物質を交互に
配列し、該二つの物質により位相型回折格子を形成した
事を特徴とする機能光学素子。
(1) A functional optical element characterized in that two materials having optical axes in different directions are arranged alternately and a phase type diffraction grating is formed by the two materials.
JP3328285A 1985-02-21 1985-02-21 Functional optical element Pending JPS61193106A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP3328285A JPS61193106A (en) 1985-02-21 1985-02-21 Functional optical element
DE19863605516 DE3605516A1 (en) 1985-02-21 1986-02-20 OPTICAL FUNCTIONAL ELEMENT AND OPTICAL FUNCTIONAL DEVICE
FR8602406A FR2577694B1 (en) 1985-02-21 1986-02-21 FUNCTIONAL OPTICAL ELEMENTS AND DEVICES
GB8604310A GB2173605B (en) 1985-02-21 1986-02-21 Diffractive light modulating devices
US07/391,621 US5013141A (en) 1985-02-21 1989-08-01 Liquid crystal light modulation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3328285A JPS61193106A (en) 1985-02-21 1985-02-21 Functional optical element

Publications (1)

Publication Number Publication Date
JPS61193106A true JPS61193106A (en) 1986-08-27

Family

ID=12382174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3328285A Pending JPS61193106A (en) 1985-02-21 1985-02-21 Functional optical element

Country Status (1)

Country Link
JP (1) JPS61193106A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6461726A (en) * 1987-09-01 1989-03-08 Canon Kk Optical modulation device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6461726A (en) * 1987-09-01 1989-03-08 Canon Kk Optical modulation device

Similar Documents

Publication Publication Date Title
US7079202B2 (en) Multi-layer diffraction type polarizer and liquid crystal element
US7075722B2 (en) Diffractive optical element and optical system having the same
US5029988A (en) Birefringence diffraction grating type polarizer
JP2703930B2 (en) Birefringent diffraction grating polarizer
US20040258355A1 (en) Micro-structure induced birefringent waveguiding devices and methods of making same
JP2537595B2 (en) Polarizer
JP2003066232A (en) Multilayer diffraction polarizer and composite liquid crystal element
AU739327B2 (en) Hologram-type polarized-light splitting element
JP2687451B2 (en) Polarizing element
JP2803181B2 (en) Birefringent diffraction grating polarizer
JPS61193106A (en) Functional optical element
JPS61203402A (en) Functional optical element
JPS61193105A (en) Functional optical element
JPH02205802A (en) Polarizing element
JPH0830767B2 (en) Hologram element
JP3011140B2 (en) Fiber type optical isolator and method of manufacturing the same
JP2848137B2 (en) Birefringent diffraction grating polarizer
JP3879246B2 (en) Polarizing optical element
JPS61201214A (en) Optical modulator
JPH0411208A (en) Waveguide type polarized light separating element
JP2007041207A (en) Polarized beam splitter
JPS6234141A (en) In-finder display device
JPH06242315A (en) Light polarizing element and optical pickup
JP2012013931A (en) Planar waveguide
JPH0611616A (en) Optical polarizing element