JPS61202488A - Manufacture of buried semiconductor laser - Google Patents

Manufacture of buried semiconductor laser

Info

Publication number
JPS61202488A
JPS61202488A JP4407585A JP4407585A JPS61202488A JP S61202488 A JPS61202488 A JP S61202488A JP 4407585 A JP4407585 A JP 4407585A JP 4407585 A JP4407585 A JP 4407585A JP S61202488 A JPS61202488 A JP S61202488A
Authority
JP
Japan
Prior art keywords
mesa
layer
type
grown
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4407585A
Other languages
Japanese (ja)
Inventor
Katsuhiro Kihara
木原 且裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP4407585A priority Critical patent/JPS61202488A/en
Publication of JPS61202488A publication Critical patent/JPS61202488A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To improve a manufacturing yield by growing a paired substrate reverse conductive type block layers for burying both sides of strip mesa which contains an active layer of double hetero junction thickly to become higher than the upper surface of the mesa, thereby suppressing the improper growth. CONSTITUTION:An InGaAsP active layer 2 and a P<+> type InP clad layer 3 are grown on an InP substrate 1. A mask film 5 of SiO2 is formed to form a strip thereon, with it as a mask it is mesa etched to form a mesa 6 in a reverse mesa. Then, P<+> type InP block layers 9 are grown at both sides of the mesa 6, and then an N<+> type InP block layer 8 a P-type InP layer 13 are grown. Then, the film 5 is removed, a P<+> type InP layer 13 and a P<+> type InGaAsP contacting layer 14 are grown on the entire surface, and metal electrodes 9, 10 ohmically contacted with the upper and lower surfaces are coated to complete a semiconductor laser.

Description

【発明の詳細な説明】 (概要) 埋込型半導体レーザの製造方法であって、ダブルヘテロ
接合をなす活性層を含む帯状のメサの両側を埋める対基
板逆導電型ブロツク層を、該メサ上面より高(なるまで
厚く成長することによって、該ブロック層に従来多発し
ていた成長不良個所の発生を抑制し、製造歩留りを向上
させる。
DETAILED DESCRIPTION OF THE INVENTION (Summary) A method for manufacturing a buried semiconductor laser, in which a blocking layer of opposite conductivity to the substrate is filled on both sides of a band-shaped mesa including an active layer forming a double heterojunction, and By growing the block layer thicker to a higher thickness, it is possible to suppress the occurrence of defective growth spots, which have conventionally occurred frequently in the block layer, and improve the manufacturing yield.

〔産業上の利用分野〕[Industrial application field]

本発明は、ダブルヘテロ接合をなす活性層を含む帯状メ
サの両側をブロック層で埋込む埋込型半導体レーザの製
造方法に係り、特に、該ブロック層の形成方法に関す。
The present invention relates to a method for manufacturing a buried semiconductor laser in which both sides of a band-shaped mesa including an active layer forming a double heterojunction are buried with a block layer, and particularly to a method for forming the block layer.

□半導体レーザは、光を媒体にして多量の情報を扱う光
通信や情報処理の光信号源として多用されるようになっ
てきた。
□Semiconductor lasers have come to be widely used as optical signal sources for optical communication and information processing, which use light as a medium to handle large amounts of information.

このように使用される半導体レーザは、特性が良く (
例えば、発振しきい値電流が小さく効率が高い)然も製
造歩留りのよいものであることが望まれる。
The semiconductor laser used in this way has good characteristics (
For example, it is desired that the oscillation threshold current is small and the efficiency is high) and that the manufacturing yield is also high.

(従来の技術〕 従来の低しきい値電流、高効率の半導体レーザの代表的
なものとして第3図(a)〜(C)の工程順側断面図に
その製造手順を示した埋込型半導体レーザがある。
(Prior Art) As a typical conventional semiconductor laser with low threshold current and high efficiency, the manufacturing procedure is shown in the process-order side cross-sectional views of FIGS. 3(a) to (C). There is a semiconductor laser.

即ち先ず〔図(al参照〕、n型インジウム燐(InP
)の基板l上に、インジウムガリウム砒素燐(InGa
AsP)の活性層2、p+型InPのクラッド層3、p
+型1nGaAsPのコンタクト層4を成長する。その
上に帯状をなす二酸化シリコン(Si02)のマスク膜
5を形成し、これをマスクにメサエッチングして帯状で
下部の幅が上部より幅の狭いメサ(いわゆる逆メサ)6
を形成する。
That is, first of all, [see figure (al)], n-type indium phosphide (InP
) on a substrate l of indium gallium arsenide phosphide (InGa
AsP) active layer 2, p + type InP cladding layer 3, p
A contact layer 4 of + type 1nGaAsP is grown. A band-shaped mask film 5 of silicon dioxide (Si02) is formed on top of the mask film 5, and this is used as a mask for mesa etching, resulting in a band-shaped mesa whose lower part is narrower than its upper part (a so-called reverse mesa) 6.
form.

このメサ6を逆メサにするのは、半導体レーザの特性を
良くするために活性層2の幅を小さくするのが容易にな
るからである。
The reason why the mesa 6 is an inverted mesa is that it becomes easy to reduce the width of the active layer 2 in order to improve the characteristics of the semiconductor laser.

次いで〔図(b)参照〕、メサ6の両側にp+型1nP
のブロック層7を活性層2が埋まる範囲で出来るだけ薄
く成長し、その上にn+型InPのブロック層8をメサ
7が丁度埋まる程度に成長する。
Next [see figure (b)], p+ type 1nP is placed on both sides of mesa 6.
The block layer 7 is grown to be as thin as possible so as to fill the active layer 2, and the n+ type InP block layer 8 is grown thereon to the extent that the mesa 7 is just filled.

次いで〔図(C)参照〕、マスク膜5を除去し、上下面
のそれぞれにオーミック接触する金属の電極9と10と
を被着して半導体レーザを完成する。
Next (see Figure (C)), the mask film 5 is removed and metal electrodes 9 and 10 are deposited on the upper and lower surfaces, respectively, in ohmic contact to complete the semiconductor laser.

この半導体レーザは、活性層2がダブルヘテロ接合をな
しており、電極9と10との間に電極9を正にした電流
を通ずると、ブロック層7と8とのP−N接合面で電流
が阻止され、またクラッド層3とブロック層7との接合
面積が小さく且つブロック層7と基板1との接合面の立
ち上がり電圧が活性層2領域の立ち上がり電圧より大き
いことによりaで示す漏洩電流が抑えられ、電流は活性
層2領域に集中して、低しきい値電流、高効率で活性層
2からレーザ光を出射する。
In this semiconductor laser, the active layer 2 forms a double heterojunction, and when a current is passed between electrodes 9 and 10 with electrode 9 being positive, a current flows at the P-N junction between blocking layers 7 and 8. Also, since the junction area between the cladding layer 3 and the block layer 7 is small and the rise voltage at the junction surface between the block layer 7 and the substrate 1 is larger than the rise voltage at the active layer 2 region, the leakage current shown by a is The current is suppressed and concentrated in the active layer 2 region, and laser light is emitted from the active layer 2 with a low threshold current and high efficiency.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら上記製造方法は、図(b)図示のブロック
層7の成長において、ブロック層7の厚さが薄いため図
(C)に対応させて示した第4図に示す如く成長不良個
所11が屡発生し、bで示す漏洩電流のために製造歩留
りが低下する問題を有している。
However, in the above manufacturing method, in the growth of the block layer 7 shown in Figure (b), since the thickness of the block layer 7 is thin, there are often defective growth spots 11 as shown in Figure 4, which corresponds to Figure (C). There is a problem in that the manufacturing yield is reduced due to the leakage current shown by b.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点は、本発明の要旨を示す第1図の側断面図図
示の如く、−導電型半導体基板1上にダブルヘテロ接合
をなす活性層2を含む多層半導体膜を成長し、メサエッ
チングにより該活性層を含む帯状のメサ6を形成する工
程と、該メサ6の両側に逆導電型半導体のブロック層7
を該メサ6の上面より高くなるまで成長する工程とを含
んでなる製造方法によって解決される。
The above problem can be solved by growing a multilayer semiconductor film including an active layer 2 forming a double heterojunction on a -conductivity type semiconductor substrate 1, and then using mesa etching to solve the above problem, as shown in the cross-sectional side view of FIG. A step of forming a band-shaped mesa 6 including the active layer, and forming a blocking layer 7 of a semiconductor of an opposite conductivity type on both sides of the mesa 6.
This problem is solved by a manufacturing method including a step of growing the mesa 6 until it becomes higher than the upper surface of the mesa 6.

〔作用〕[Effect]

従来の製造において、第3図(C)図示の漏洩電流aを
抑えるのに、先に説明したようにクラッド層3とブロッ
ク層7との接合面積を小さくすることと、ブロック層7
と基板1との接合面の立ち上がり電圧の大きさとの両効
果を期待して、ブロック層7の成長厚さを薄くしていた
が、それが第4図で説明したように成長不良個所11(
第1図では破線で示す)の発生を誘起していた。
In conventional manufacturing, in order to suppress the leakage current a shown in FIG.
The growth thickness of the block layer 7 was made thinner in hopes of increasing the rise voltage at the junction surface with the substrate 1, but as explained in FIG.
(indicated by a broken line in Fig. 1).

本発明は漏洩電流aの抑制をブロック層7と基板1との
接合面に依存して、成長不良個所11が発生しないよう
にブロック層7の厚さを厚くしたものであり、このブロ
ック層7の形成は、メサ6の上面より高くなるまで成長
するのを目安にすることにより成長不良個所11の発生
をなくするのに十分な厚さになる。
In the present invention, the leakage current a is suppressed depending on the bonding surface between the block layer 7 and the substrate 1, and the thickness of the block layer 7 is made thick so as to prevent the occurrence of defective growth portions 11. When forming the mesa 6, the thickness is sufficient to eliminate the occurrence of defective growth spots 11 by growing it to a height higher than the upper surface of the mesa 6.

本願の発明者は、本製造方法を採用して製造された半導
体レーザが、第3図図示の方法で製造された半導体レー
ザの良品と比較して殆ど同一の特性を有し、然も大幅に
製造歩留りを向上させることを確認した。
The inventor of the present application believes that a semiconductor laser manufactured using the present manufacturing method has almost the same characteristics as a good semiconductor laser manufactured using the method shown in FIG. It was confirmed that the manufacturing yield was improved.

このことは、漏洩電流aの抑制をブロック層7と基板1
との接合面に依存することで良いことと、第4図図示の
漏洩電流すの発生が大幅に低減したことを裏付けている
This means that the leakage current a can be suppressed between the blocking layer 7 and the substrate 1.
This proves that the leakage current shown in FIG. 4 has been significantly reduced.

〔実施例〕〔Example〕

以下本発明の方法による半導体レーザ製造の実施例につ
いてその製造手順を示す第2図(al〜(C)の工程順
側断面図により説明する。
An example of manufacturing a semiconductor laser by the method of the present invention will be described below with reference to step-order side cross-sectional views of FIGS. 2A to 2C showing the manufacturing procedure.

即ち先ず〔図+8)参照〕、n型インジウム燐(InP
)の基板1上に、インジウムガリウム砒素燐(InGa
AsP)の活性層2、ρ“型1nPのクラッド層3を成
長する。その上に帯状をなす二酸化シリコン(Si02
)のマスク膜5を形成し、これをマスクにメサエッチン
グして第3図fa)図示と同様な逆メサをなすメサ6を
形成する。
That is, first of all, see [Figure +8]], n-type indium phosphide (InP
) on the substrate 1 of indium gallium arsenide phosphide (InGa
A silicon dioxide (Si02
) is formed, and mesa etching is performed using this as a mask to form a mesa 6 forming an inverted mesa similar to that shown in FIG. 3fa).

次いで〔図(b)参照〕、メサ6の両側にp+型1nP
のブロック層7をメサ6の上面より高くなるまでを目安
にして成長する。かくすることによりブロック層7は成
長不良個所がなくなるのに十分な厚さになる。続いてそ
の上にn+型InPのブロック層8とp型1nP層12
とを成長する。
Next [see figure (b)], p+ type 1nP is placed on both sides of mesa 6.
The block layer 7 is grown until it becomes higher than the upper surface of the mesa 6. By doing so, the block layer 7 becomes thick enough to eliminate any defective growth areas. Subsequently, an n+ type InP block layer 8 and a p type 1nP layer 12 are formed thereon.
and grow.

次いで〔図(C)参照〕、マスク膜5を除去し、全面に
ρ1型1nP層13とρ“型InGaAsPのコンタク
ト層14とを成長した後、上下面のそれぞれにオーミッ
ク接触する金属の電極9と10とを被着して半導体レー
ザを完成する。
Next [see figure (C)], after removing the mask film 5 and growing a ρ1-type 1nP layer 13 and a ρ"-type InGaAsP contact layer 14 on the entire surface, metal electrodes 9 are formed to make ohmic contact with each of the upper and lower surfaces. and 10 are deposited to complete the semiconductor laser.

この半導体レーザは、図(b)図示の成長により上面の
メサ6部が凹型になったのをp+型InP層13で補填
して上面を平坦にしており、完成体のマウントに際して
具合良くなっている。なおp型1nP層12はp+型I
nP層13の高濃度不純物がn+型のブロック層8に拡
散するのを抑える作用をしている。
In this semiconductor laser, the concave shape of the mesa 6 on the top surface due to the growth shown in Figure (b) is compensated for by the p+ type InP layer 13 to make the top surface flat, making it easier to mount the finished product. There is. Note that the p-type 1nP layer 12 is p+ type I
It functions to suppress diffusion of high concentration impurities in the nP layer 13 into the n+ type block layer 8.

本願の発明者は、第2図図示実施例の方法と従来の第3
図図示方法とにより、活性層2の断面寸法を、幅約1μ
m、厚さ約0.15μmにした半導体レーザを製造し、
両者の良品の特性が共に、発振しきい値電流約20mA
、微分量子効率約25%と差のないことを確認した。ま
たこの際の実施例の方法による場合の漏洩電流による不
良率は、従来の方法による場合より約1桁低減している
The inventor of the present application has proposed the method of the illustrated embodiment in FIG. 2 and the conventional third method.
By the method shown in the figure, the cross-sectional dimension of the active layer 2 is set to a width of about 1 μm.
m, a semiconductor laser with a thickness of about 0.15 μm was manufactured,
The characteristics of both good products are that the oscillation threshold current is approximately 20mA.
It was confirmed that there was no difference in the differential quantum efficiency of about 25%. Furthermore, the defect rate due to leakage current when using the method of this embodiment is reduced by about one order of magnitude compared to when using the conventional method.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の構成によれば、ダブルヘ
テロ接合をなす活性層を含む帯状メサの両側をブロック
層で埋込む埋込型半導体レーザの製造において、特性を
低下させることなしに漏洩電流による不良を低減させる
製造方法が提供出来て、光信号源に適した上記半導体レ
ーザの製造歩留り向上を可能にさせる効果がある。
As explained above, according to the configuration of the present invention, leakage can be prevented without deteriorating the characteristics in manufacturing a buried semiconductor laser in which both sides of a band-shaped mesa including an active layer forming a double heterojunction are buried with blocking layers. It is possible to provide a manufacturing method that reduces defects caused by current, and has the effect of making it possible to improve the manufacturing yield of the semiconductor laser suitable for an optical signal source.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の要旨を示す側断面図、第2図(al〜
(C)は本発明の方法による半導体レーザ製造の実施例
を示す工程順側断面図、第3図(al〜(C)は従来の
方法による半導体レーザ製造の工程順側断面図、 第4図は第3図図示製造における問題点を示す側断面図
である。 第1図〜第4図において、 1はn型の基板、 2は活性層、 3はp+型のクラッド層、 6はメサ、 7はρ“型のブロック層、 8はn+型のブロック層、 11は成長不良個所、 a、bは漏洩電流、である。 代理人  弁理士  松岡宏四部 亥掩タリの工移不棒・新17図    向層点を示す側
断甜2蕃2g       $4囚
Fig. 1 is a side sectional view showing the gist of the present invention, and Fig. 2 (al~
(C) is a process-order side cross-sectional view showing an example of semiconductor laser manufacturing by the method of the present invention; FIGS. 3 is a side sectional view showing problems in the manufacturing shown in FIG. 3. In FIGS. 1 to 4, 1 is an n-type substrate, 2 is an active layer, 3 is a p+-type cladding layer, 6 is a mesa, 7 is a ρ" type block layer, 8 is an n+ type block layer, 11 is a growth failure area, and a and b are leakage currents. Agent: Patent attorney Hiroshi Matsuoka Figure 17: Side cut showing the layer point 2 g, $4

Claims (1)

【特許請求の範囲】[Claims] 一導電型半導体基板(1)上にダブルヘテロ接合をなす
活性層(2)を含む多層半導体膜を成長し、メサエッチ
ングにより該活性層(2)を含む帯状のメサ(6)を形
成する工程と、該メサ(6)の両側に逆導電型半導体の
ブロック層(7)を該メサ(6)の上面より高くなるま
で成長する工程とを含んでなることを特徴とする埋込型
半導体レーザの製造方法。
A step of growing a multilayer semiconductor film including an active layer (2) forming a double heterojunction on a semiconductor substrate (1) of one conductivity type, and forming a band-shaped mesa (6) including the active layer (2) by mesa etching. and growing block layers (7) of opposite conductivity type semiconductors on both sides of the mesa (6) until they are higher than the upper surface of the mesa (6). manufacturing method.
JP4407585A 1985-03-06 1985-03-06 Manufacture of buried semiconductor laser Pending JPS61202488A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4407585A JPS61202488A (en) 1985-03-06 1985-03-06 Manufacture of buried semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4407585A JPS61202488A (en) 1985-03-06 1985-03-06 Manufacture of buried semiconductor laser

Publications (1)

Publication Number Publication Date
JPS61202488A true JPS61202488A (en) 1986-09-08

Family

ID=12681500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4407585A Pending JPS61202488A (en) 1985-03-06 1985-03-06 Manufacture of buried semiconductor laser

Country Status (1)

Country Link
JP (1) JPS61202488A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56158495A (en) * 1980-05-12 1981-12-07 Nec Corp Manufacture of semiconductor light emitting device
JPS5712581A (en) * 1980-06-26 1982-01-22 Nec Corp Semiconductor laser
JPS57199284A (en) * 1981-06-02 1982-12-07 Toshiba Corp Manufacture of (alga)as hetero embedded semiconductor laser
JPS58143596A (en) * 1982-02-22 1983-08-26 Toshiba Corp Manufacture of compound semiconductor device
JPS5911675A (en) * 1982-07-12 1984-01-21 Hitachi Ltd P-side ohmic electrode for compound semiconductor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56158495A (en) * 1980-05-12 1981-12-07 Nec Corp Manufacture of semiconductor light emitting device
JPS5712581A (en) * 1980-06-26 1982-01-22 Nec Corp Semiconductor laser
JPS57199284A (en) * 1981-06-02 1982-12-07 Toshiba Corp Manufacture of (alga)as hetero embedded semiconductor laser
JPS58143596A (en) * 1982-02-22 1983-08-26 Toshiba Corp Manufacture of compound semiconductor device
JPS5911675A (en) * 1982-07-12 1984-01-21 Hitachi Ltd P-side ohmic electrode for compound semiconductor

Similar Documents

Publication Publication Date Title
US5665612A (en) Method for fabricating a planar buried heterostructure laser diode
JPS6080292A (en) Semiconductor laser
JPS61202488A (en) Manufacture of buried semiconductor laser
JPS61150393A (en) Semiconductor laser and manufacture thereof
JPS6215876A (en) Manufacture of semiconductor light emitting device
JPS61214494A (en) Semiconductor laser and manufacture thereof
JPS61187287A (en) Semiconductor light-emitting device
JPS6244440B2 (en)
JPS62159486A (en) Semiconductor light emitting device
JPS62217690A (en) Semiconductor light-emitting device and manufacture thereof
JPS62165384A (en) Manufacture of semiconductor light emitting device
JPS6132589A (en) Semiconductor laser device
JPS61236188A (en) Semiconductor laser
JPH01111393A (en) Semiconductor laser
JPH0482074B2 (en)
JPS61194886A (en) Semiconductor laser element
JPS6325991A (en) Optical semiconductor device
JPS61135181A (en) Semiconductor light-emitting device
JPS59112674A (en) Semiconductor light emitting device
JPS63133689A (en) Semiconductor light emitting element
JPH02156591A (en) Semiconductor laser
JPS59119884A (en) Semiconductor light-emitting device
JPH04111476A (en) Manufacture for compound semiconductor device
JPS61251182A (en) Manufacture of semiconductor light emitting device
JPH02202086A (en) Semiconductor laser device and manufacture thereof