JPS6325991A - Optical semiconductor device - Google Patents

Optical semiconductor device

Info

Publication number
JPS6325991A
JPS6325991A JP16781386A JP16781386A JPS6325991A JP S6325991 A JPS6325991 A JP S6325991A JP 16781386 A JP16781386 A JP 16781386A JP 16781386 A JP16781386 A JP 16781386A JP S6325991 A JPS6325991 A JP S6325991A
Authority
JP
Japan
Prior art keywords
layer
ohmic
grown
inp
type inp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16781386A
Other languages
Japanese (ja)
Inventor
Yukio Chinen
幸勇 知念
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP16781386A priority Critical patent/JPS6325991A/en
Publication of JPS6325991A publication Critical patent/JPS6325991A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide an optical semiconductor device characterized by a low resistance and high-speed operation, by burying both side surfaces of stripe layers, in which an InGaAsP layer is held by InP clad layers, with InP layers having two different conductivity types, and growing an InGaAs or InGaAsP ohmic layer on the InP clad layer and the InP embedded layer. CONSTITUTION:On an N type InP semiconductor substrate 1, an N type InP clad layer 9 is grown. An InGaAsP active layer 2 is grown on the clad layer 9. A P type InP clad layer 3 is grown on the active layer 2. After embedded layers 4 and 5 are grown, an SiO2 film is removed by a chemical etching treatment. Thereafter, an ohmic layer 6 having the composition of InGaAs is grown on the P type InP clad layer 3 and the N type InP embedded layer 5. Then, ohmic electrodes 7 and 8, which depend on the respective conductivity types, are formed on the substrate 1 and the ohmic layer 6. By making InGaAs to be the ohmic layer 6, a lower resistance layer can be formed with high concentration carriers. The band gap can be made small. The resistance of the laser diode can be made small. As a result, high-speed modulation can be carried out at a basic mode.

Description

【発明の詳細な説明】 、〔発明の目的〕 (産業上の利用分野) 本発明は、光半導体装置に関し、特にその構造と組成を
改良した光半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION OBJECTS OF THE INVENTION (Industrial Application Field) The present invention relates to an optical semiconductor device, and particularly to an optical semiconductor device whose structure and composition are improved.

(従来の技術) 半導体レーザのような光半導体装置においては、低閾値
、基板横モードを達成するために埋め込み型構造が用い
られる。InP系半導体レーザの場合は、第2図に示す
ように、ストライプ状InGaAsP活性層(2)をp
型InP埋め込み層(4)とn型InP埋め込み層(5
)とからなるp−n逆接合半導体層で埋め込み、更にI
nPクラッド@ (3)を成長させ、そげ上にInGa
AsPオーミック層(6)を成長させている。
(Prior Art) In optical semiconductor devices such as semiconductor lasers, buried structures are used to achieve low threshold and substrate transverse modes. In the case of an InP-based semiconductor laser, as shown in FIG.
type InP buried layer (4) and n-type InP buried layer (5)
) is buried with a p-n reverse junction semiconductor layer consisting of
Grow nP cladding @ (3) and add InGa on top.
An AsP ohmic layer (6) is grown.

しかしながら、InPクラッド層(3)はキャリアi度
を十分に高くすることができず、上述の構成では低抵抗
レーザダイオードが得られにくい。
However, the InP cladding layer (3) cannot make the carrier i degree sufficiently high, and it is difficult to obtain a low resistance laser diode with the above configuration.

(発明が解決しようとする問題点) 従来技術では半導体レーザの低抵抗化が出来ず、高速化
が困難でめった。
(Problems to be Solved by the Invention) Conventional techniques have not been able to reduce the resistance of semiconductor lasers, making it difficult to increase the speed.

本発明は、低抵抗で高速動作が可能な光半導体装置を提
供することを目的とする。
An object of the present invention is to provide an optical semiconductor device that has low resistance and can operate at high speed.

(発明の構成〕 (問題点を解決するための手段) 本発明は、InGaAsP層を■nPクラッド層で挟み
こんだストライプ層の両側面を異なる2つの導電型のI
nP層で埋め込み、InPクラッド層とInP埋め込み
層の上にInGaAsまたはInGaAsPオーミック
層を成長させたことを¥f徴とする光半導体装置でおる
(Structure of the Invention) (Means for Solving the Problems) The present invention provides two different conductivity type I
This is an optical semiconductor device characterized by having an nP layer buried therein and an InGaAs or InGaAsP ohmic layer grown on the InP cladding layer and the InP buried layer.

(作用) 半導体レーザのような光半導体装置においては、光変調
速度は埋め込み層の空乏層容量とオーミック層の抵抗の
積によって決まるCR時定数に支配される。本発明は、
特にオーミック層を低抵抗化することにより、このCR
時定数を低くする。
(Function) In an optical semiconductor device such as a semiconductor laser, the optical modulation speed is controlled by the CR time constant determined by the product of the depletion layer capacitance of the buried layer and the resistance of the ohmic layer. The present invention
In particular, by lowering the resistance of the ohmic layer, this CR
Lower the time constant.

(実施例) 以下、本発明を典型的な実施例を示す第1図を参照して
説明する。第1図は本発明の光半導体装置゛の断面構造
を示す図である。なおこの実施例は、発明を埋め込み型
レーザダイオードに適用したものでおる。
(Example) The present invention will be described below with reference to FIG. 1 showing a typical example. FIG. 1 is a diagram showing a cross-sectional structure of an optical semiconductor device of the present invention. In this embodiment, the invention is applied to a buried laser diode.

まず、n型InP半導体基板(1)上にn型InPクラ
ッド(9)を、クラッド(9)上にJnQa、A、SP
活性層(2)を、更にその活性層(2)の上にp型In
Pクラッド(3)を順次成長させる。次に、p型InP
クラッド(3)上に幅2μm以下のストライブ状の3i
02膜マスクを形成し、化学エツチング処理をほどこし
、このヘテロ接合構造をストライブ状に形成する。更に
、5i02膜マスクをつけた状態で、p型InP埋め込
み層(4)とn型InP埋め込み層(5)を順次成長さ
せストライブ状へテロ接合構造を埋め込む。この成長で
は、ストライブ状へテロ接合構造の上にS i O2膜
が形成されているため、通常使用される液相法による結
晶成長では、SiO2の上には結晶が成長しないaなお
、この成長工程では、第1図に示すように、n型InP
埋め込み@(5)をp型InPクラッド(3)の表面よ
りも突出させる。
First, an n-type InP cladding (9) is placed on an n-type InP semiconductor substrate (1), and JnQa, A, and SP are placed on the cladding (9).
The active layer (2) is further coated with p-type In on the active layer (2).
P cladding (3) is grown sequentially. Next, p-type InP
Striped 3i with a width of 2 μm or less on the cladding (3)
A 02 film mask is formed and a chemical etching process is performed to form this heterojunction structure in the form of a stripe. Furthermore, with the 5i02 film mask attached, a p-type InP buried layer (4) and an n-type InP buried layer (5) are sequentially grown to bury a striped heterojunction structure. In this growth, a SiO2 film is formed on a striped heterojunction structure, so crystals do not grow on SiO2 in the commonly used liquid phase method. In the growth process, as shown in Figure 1, n-type InP
The buried @(5) is made to protrude beyond the surface of the p-type InP cladding (3).

埋め込み層(4)、(5)を成長後、SiO2膜を化学
エツチング処理で除去する。その後、p型InPクラッ
ド(3)、n型InP埋め込み@(5)の上にInGa
As組成のオーミック層(6)を成長させる。次に基板
(1)とオーミック層(6)上にそれぞれの導電型に依
存したオーミック電極(7)、 (8)を形成する。な
お、半導体レーザの横モード制御のためには、InGa
AsP活性層(2)の幅は2μm以下が望ましい。従っ
て、5i02マスクのストライブ幅で活性層(2)の幅
が正確に化学エツチングできるように、p型InPクラ
ッド、fl(3)の厚さを2μm以下とすることが好ま
しい。
After growing the buried layers (4) and (5), the SiO2 film is removed by chemical etching. After that, InGa was placed on the p-type InP cladding (3) and the n-type InP embedding@(5).
An ohmic layer (6) having an As composition is grown. Next, ohmic electrodes (7) and (8) depending on their respective conductivity types are formed on the substrate (1) and the ohmic layer (6). Note that for transverse mode control of semiconductor lasers, InGa
The width of the AsP active layer (2) is preferably 2 μm or less. Therefore, it is preferable that the thickness of the p-type InP cladding, fl(3), be 2 μm or less so that the width of the active layer (2) can be chemically etched accurately with the stripe width of the 5i02 mask.

半導体レーザのオーミック抵抗は、電極(7)とp型オ
ーミック層(6)との接合抵抗とp型オーミック層(6
)の比抵抗できまる。接合抵抗を小さくするにはp型オ
ーミック層(6)への不純物高濃度添加によるキャリア
濃度増加が必要であるが、InP組成では1019cI
n−3以上のキャリア濃度にするには困難である。これ
に対して、InGaAs組成では容易に高濃度添加が可
能であり、低抵抗とできる。
The ohmic resistance of a semiconductor laser is determined by the junction resistance between the electrode (7) and the p-type ohmic layer (6) and the p-type ohmic layer (6).
) is determined by the specific resistance. To reduce the junction resistance, it is necessary to increase the carrier concentration by adding a high concentration of impurity to the p-type ohmic layer (6), but with the InP composition, the carrier concentration is 1019cI.
It is difficult to achieve a carrier concentration of n-3 or higher. On the other hand, the InGaAs composition can easily be doped at a high concentration, resulting in low resistance.

更にバンドギャップがInPの場合1.35 eVで必
るのに対し、Ir1GaASの場合0.75eVと約1
72と小さく、オーミック接合が極めて容易でおる。
Furthermore, the band gap is 1.35 eV for InP, whereas it is 0.75 eV for Ir1GaAS, which is about 1
72, making ohmic connection extremely easy.

即ち、InGaAsをオーミック層とすることにより、
高濃度キャリアによる低抵抗層とでき、更にバンドギャ
ップが小ざく、レーザダイオード抵抗を小さくできる。
That is, by using InGaAs as an ohmic layer,
A low-resistance layer with a high concentration of carriers can be obtained, and the band gap is small, making it possible to reduce the laser diode resistance.

また更に、レーザダイオードの高速化のためには、埋め
込み層(4)、(5)のp−n接合の空乏層の容量を低
減することが好ましい。n型InP埋め込み層(5)の
空乏層容量低減にはキャリア濃度低減と層厚の増大が必
要であるが、本実施例の如り5102被覆による埋め込
み層(4)、(5)の成長では、十分な厚さのn型In
P埋め込み層(5)の成長が可能でおる。特に、埋め込
み層の容量を小さくするためには、n型InP埋め込み
層(5)のキャリア濃度は2X1016cm″′3以下
にすると効果的で必る。またn型InP埋め込み層(5
)の厚さを1μm以上にすることで容量の低減はより容
易になる。
Furthermore, in order to increase the speed of the laser diode, it is preferable to reduce the capacitance of the depletion layer of the pn junction of the buried layers (4) and (5). To reduce the depletion layer capacitance of the n-type InP buried layer (5), it is necessary to reduce the carrier concentration and increase the layer thickness, but the growth of the buried layers (4) and (5) by coating with 5102 as in this example , a sufficiently thick n-type In
It is possible to grow a P buried layer (5). In particular, in order to reduce the capacitance of the buried layer, it is effective to keep the carrier concentration of the n-type InP buried layer (5) below 2X1016 cm'''3.
) The capacitance can be more easily reduced by setting the thickness of the layer to 1 μm or more.

従って本発明による光半導体装置では、低抵抗で且つ低
容量のレーザダイオードが得られ、基本モードで高速な
変調が可能となる。
Therefore, in the optical semiconductor device according to the present invention, a laser diode with low resistance and low capacity can be obtained, and high-speed modulation in the fundamental mode is possible.

(発明の他の実施例) 上述実施例で用いたInGaAsからなるオーミック層
(6)はInGaAsP層を用いても同等の効果が得ら
れる。またInGaAsPとI rlGaAsの積層に
しても同等の効果が得られる。更に、活性層(2)とク
ラッド層(3)との間、または活性層(2)とクドッド
(9)との間にInGaAsP先導波路層を形成するこ
とで発振モードの制御が可能となるが、このような@造
においても本発明は適応できる。
(Other Embodiments of the Invention) Similar effects can be obtained even if an InGaAsP layer is used as the ohmic layer (6) made of InGaAs used in the above embodiments. Furthermore, the same effect can be obtained by stacking InGaAsP and IrlGaAs. Furthermore, by forming an InGaAsP guiding waveguide layer between the active layer (2) and the cladding layer (3) or between the active layer (2) and the cladding layer (9), the oscillation mode can be controlled. , the present invention can also be applied to such @ structures.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、低抵抗、低容量で基本横
モードで発撮する光半導体装置が得られる。
As described above, according to the present invention, it is possible to obtain an optical semiconductor device that has low resistance and low capacitance and that emits images in the fundamental transverse mode.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す断面図、第2図は従来
例を説明する断面図でおる。 (1)・・・n型InP基板、 (2)−I n G a A S P活性層、(3)・
・・p型1nPクラッド層、 (4)・・・p型1nP埋め込み層、 (5)・・・p型InP埋め込み層、 (6)−D型InGaAs層、 (7)・・・n−オーミック電極、 (8)・・・p−オーミック電極、 (9)・・・n型InPクラッド層。 代理人 弁理士 則 近 憲 佑 同  大胡典夫 第1図 第2図
FIG. 1 is a sectional view showing one embodiment of the present invention, and FIG. 2 is a sectional view illustrating a conventional example. (1)...n-type InP substrate, (2)-InGaASP active layer, (3)...
...p-type 1nP cladding layer, (4)...p-type 1nP buried layer, (5)...p-type InP buried layer, (6)-D-type InGaAs layer, (7)...n-ohmic electrode, (8)... p-ohmic electrode, (9)... n-type InP cladding layer. Agent Patent Attorney Norio Chika Yudo Norio Ogo Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] InGaAsP活性層をInPクラッド層で挟みこんだ
ストライプ層の両側面を異なる2つの導電型のInP埋
め込み層で埋め込み、前記InPクラッド層と前記In
P埋め込み層の上にInGaAsまたはInGaAsP
オーミック層を成長させたことを特徴とする光半導体装
置。
Both sides of a stripe layer in which an InGaAsP active layer is sandwiched between InP cladding layers are buried with two InP buried layers of different conductivity types, and the InP cladding layer and the InP cladding layer are
InGaAs or InGaAsP on the P buried layer
An optical semiconductor device characterized by growing an ohmic layer.
JP16781386A 1986-07-18 1986-07-18 Optical semiconductor device Pending JPS6325991A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16781386A JPS6325991A (en) 1986-07-18 1986-07-18 Optical semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16781386A JPS6325991A (en) 1986-07-18 1986-07-18 Optical semiconductor device

Publications (1)

Publication Number Publication Date
JPS6325991A true JPS6325991A (en) 1988-02-03

Family

ID=15856580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16781386A Pending JPS6325991A (en) 1986-07-18 1986-07-18 Optical semiconductor device

Country Status (1)

Country Link
JP (1) JPS6325991A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07202333A (en) * 1993-12-28 1995-08-04 Nec Corp Manufacture of semiconductor optical waveguide element of buried structure
US5721751A (en) * 1993-10-28 1998-02-24 Nippon Telegraph & Telephone Corporation Semiconductor laser

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5721751A (en) * 1993-10-28 1998-02-24 Nippon Telegraph & Telephone Corporation Semiconductor laser
JPH07202333A (en) * 1993-12-28 1995-08-04 Nec Corp Manufacture of semiconductor optical waveguide element of buried structure

Similar Documents

Publication Publication Date Title
JPS6325991A (en) Optical semiconductor device
JPS63124484A (en) Semiconductor laser element
JPS60169184A (en) Semiconductor laser
JPS61102086A (en) Semiconductor laser
JPS637691A (en) Semiconductor laser device
JPS6021586A (en) Compound semiconductor device
JP3034688B2 (en) Semiconductor device
JPS63169086A (en) Manufacture of buried semiconductor laser
JPS58114478A (en) Semiconductor laser
JPS6261383A (en) Semiconductor laser and manufacture thereof
JPS63129687A (en) Semiconductor laser and manufacture thereof
JPS6239088A (en) Semiconductor laser
JPS6344790A (en) Semiconductor laser
JPS6292385A (en) Semiconductor laser
JPS59148382A (en) Manufacture of injection laser
JPH02156591A (en) Semiconductor laser
JPS62133789A (en) Semiconductor laser
JPH01305586A (en) Manufacture of semiconductor laser element
JPH01185988A (en) Semiconductor light emitting element and manufacture thereof
JPH04320083A (en) Semiconductor laser element and manufacture thereof
JPH05226775A (en) Semiconductor laser element
JPS62158386A (en) Semiconductor laser element
JPS5858783A (en) Semiconductor laser
JPS62172781A (en) Semiconductor laser and manufacture thereof
JPS62189786A (en) Semiconductor light emitting device