JPS61201457A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPS61201457A
JPS61201457A JP4218285A JP4218285A JPS61201457A JP S61201457 A JPS61201457 A JP S61201457A JP 4218285 A JP4218285 A JP 4218285A JP 4218285 A JP4218285 A JP 4218285A JP S61201457 A JPS61201457 A JP S61201457A
Authority
JP
Japan
Prior art keywords
insulating film
length
insulating films
pattern
deltal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4218285A
Other languages
Japanese (ja)
Inventor
Hideyuki Kondo
近藤 日出行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4218285A priority Critical patent/JPS61201457A/en
Publication of JPS61201457A publication Critical patent/JPS61201457A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a resistor, second insulating films and resistance length at pitches finer than the pitches of the layout of electrodes by using several kinds of patterns in which spaces among the second insulating films and contact windows differ. CONSTITUTION:Spaces d', d'' among insulating films 4 and contact windows 7 do not constant, and take different values. That is, a pattern A consisting of a silicon coating 2 in the same width as a previously cell-registered fundamental pattern, a contact window 7 and an electrode 8a or either of patterns B, C in which insulating films 4 in the same width as the fundamental pattern and length of DELTAL are superposed on the pattern A, the size of DELTAL is changed and spaces among the insulating films 4 and the contact windows 7 are altered is selected and arranged to an end section in the long direction of the fundamental pattern composed of a silicon coating 2 and an insulating film 4. Since resistance length is constituted by the sum of the length L of the insulating film 4 in the fundamental pattern and the length DELTAL of the insulating films 4 in variation cells, the variation cells, the size of DELTAL thereof is varied, are selected properly. Accordingly, resistance length at pitches finer than the pitches of a layout is acquired easily.

Description

【発明の詳細な説明】 〔成業上の利用分野〕 本発明は半導体集積回路用抵抗に関し、特に絶縁膜上に
形成した高精度なシリコン被膜抵抗に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a resistor for a semiconductor integrated circuit, and more particularly to a highly accurate silicon film resistor formed on an insulating film.

〔従来の技術〕[Conventional technology]

従来、絶縁膜上に形成したシリコン被膜抵抗は第4図及
び第5図に示す構造のものが知られている。第4図はそ
の平面図、第5図はその断面図である6図において1は
絶縁膜、2は一導電型のシリコン被膜で例えばポリシリ
コン、3はシリコン被膜を選択酸化することに工9形成
した絶縁膜、4uシlJコン被膜の表面を酸化してパタ
ーンニングした絶縁膜、5は金属シリサイド層で絶縁膜
4にバfi−7ニング後、繕出しtシリコン被膜2に白
金を蒸着し熱処理後に白金の選択エツチングにより形成
される。6は絶縁膜、7はコンタクト窓、8°aは電極
、8bU電極8aと同材質の配緋である。
Conventionally, a silicon film resistor formed on an insulating film has a structure shown in FIGS. 4 and 5. 4 is a plan view thereof, and FIG. 5 is a cross-sectional view thereof. In FIG. 6, 1 is an insulating film, 2 is a silicon film of one conductivity type, such as polysilicon, and 3 is a process for selective oxidation of the silicon film. The formed insulating film is an insulating film patterned by oxidizing the surface of the 4U silicon film, 5 is a metal silicide layer, and after buffing the insulating film 4 to 7, platinum is deposited on the repaired silicon film 2. It is formed by selective etching of platinum after heat treatment. 6 is an insulating film, 7 is a contact window, 8°a is an electrode, and 8b is made of the same material as the U electrode 8a.

このような抵抗は、金属シリサイド/!5の層抵抗が5
Ω/口以下と低い為、シリコン被膜20層抵抗と、絶縁
膜4の直下のシリコン被膜2の形状、fなわら図に示す
り、Wで抵抗値を決めることが出来る。通常、シリコン
被膜20層抵抗は数百Ωルの低抵抗用と、数(昨の高抵
抗用の2種類を作り分けることにエリ、抵抗面積の縮小
化を図っている。又、絶縁膜4とコンタクト窓70間隔
dは、絶縁膜4とコンタクト窓7間のアライメントマー
ジンですべての抵抗が同一寸法に統一されている。
Such resistance can be achieved by metal silicide/! The layer resistance of 5 is 5
Since it is as low as Ω/mouth or less, the resistance value can be determined by the 20-layer resistance of the silicon film, the shape of the silicon film 2 directly under the insulating film 4, and W as shown in the figure. Usually, silicon coated 20-layer resistors are manufactured in two types: one for low resistance of several hundred ohms, and one for high resistance of several hundred ohms, in order to reduce the resistor area. The spacing d between the contact windows 70 and the contact windows 70 is an alignment margin between the insulating film 4 and the contact windows 7, and all the resistors are unified to have the same size.

〔発明が解決しょうとする問題点〕[Problem that the invention seeks to solve]

上述した従来の抵抗において、図に示す各領域を作り込
む為のホトマスクの設計に、通常、トランジスタ、抵抗
、配線等全正確に配置した数百〜1000倍のレイアウ
ト図面を作図し、それを基に、デジタイズ作業にLり図
形処理装置へ配置情報を入力して、パターンジェネレー
タ又は電子描画装置にエリホトマスクデータに変換する
手順がとられている。又、図に示す各領域の寸法は、レ
イアウト図面の倍率にエリ最小ピッチが異なり、例えば
レイアウト図面の作図ピッチ及びデジタイズ作業の入力
分解能1k1mm とすると、200倍のレイアウト図
面では5μピツチ、1000倍のレイアウト図面では1
μピツチとなる。
In the conventional resistor described above, when designing a photomask to create each region shown in the figure, a layout drawing several hundred to 1000 times larger in which all transistors, resistors, wiring, etc. are placed accurately is usually drawn, and this is used as a basis. In the digitizing work, a procedure is taken in which arrangement information is input to a graphic processing device and converted into photomask data by a pattern generator or electronic drawing device. In addition, the dimensions of each area shown in the figure differ in the minimum pitch of the area depending on the magnification of the layout drawing. For example, if the drawing pitch of the layout drawing and the input resolution of the digitizing work are 1k1mm, a layout drawing of 200 times has a 5μ pitch, and a layout drawing of 1000 times has a 5μ pitch. 1 in the layout drawing
It becomes μ pitch.

従って、抵抗長りも200倍では5μピツチ、1000
倍でに1μピツチと飛び飛びの値しか得ることが出来な
い。この為、抵抗値設計精度の低下、あるいに、抵抗長
L?α5〜0,1μピッチで設計し、抵抗値設計精度を
上げるには、5000〜10000倍のレイアウト図面
を作図しなければならず、膨大な設計工数を必要とする
等の問題がある。さらに、抵抗幅W、シリコン被膜2の
形状、電極8a。
Therefore, when the resistance length is 200 times, the pitch is 5μ, 1000
It is only possible to obtain discrete values with a 1μ pitch. For this reason, the resistance value design accuracy decreases, or the resistance length L? In order to design with a pitch of α5 to 0.1μ and to increase the accuracy of resistance value design, it is necessary to draw a layout drawing 5000 to 10000 times larger, which poses problems such as requiring an enormous number of design man-hours. Furthermore, the resistance width W, the shape of the silicon film 2, and the electrode 8a.

配線8b、抵抗間隔、配線又に電極間隔は、5μピツチ
でも精度良く設計出来るので200倍のレイアウト図面
で十分であるが、抵抗長りを細かぐ設計する為に、これ
ら領域は1000倍以上のレイアウト図金作図しなけれ
ばならないという欠点もある。
The wiring 8b, the resistor spacing, and the wiring or electrode spacing can be designed accurately even with a 5μ pitch, so a layout drawing 200 times larger is sufficient, but in order to design the resistor length finely, these areas are designed with a 1000 times larger size or more. There is also the disadvantage that layout drawings must be drawn.

′又、トランジスタパターンに見られる工うに、あらか
じめ高倍率でパターンを作図しておき、図形処理装置に
セル登録しておくことにエリ、レイアウト図面上では、
該当するセルe200倍で配置する階層手段があるが、
一般に、集積回路に含まれる抵抗に同一抵抗値に少なく
、抵抗値が異なること、及び抵抗の形状がレイアウト配
置段階で決まること等にエクセル数が膨大になり現実的
でにない。
'Also, in order to see the effects seen in transistor patterns, it is a good idea to draw the pattern at high magnification in advance and register the cells in the graphic processing device.
There is a hierarchical method to arrange the corresponding cell e200 times,
In general, the number of Excels required is unrealistic because some of the resistors included in an integrated circuit have the same resistance value, but have different resistance values, and the shape of the resistor is determined at the layout arrangement stage.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に上述した従来のシリコン被膜抵抗の問題点を除
去し、低倍率のレイアウト図面でも高倍率のレイアウト
図面と同精度の抵抗設計を簡単な方法にエフ得ることを
目的としている。すなわち本発明の要旨は、半導体基板
上の第一絶縁膜上に形成したシリコン被膜と、前記シリ
コン被膜の一部を被う第2絶縁膜と、前記シリコン被膜
の残された部分を被う金属シリサイド層と、前記第2絶
縁膜と前記金属シリサイド層を被うgX3絶縁膜と、前
記第3絶縁膜の一部を開口したコンタクト窓により、前
記金属シリサイ、ド層と接続する電極とを含み、前記第
2絶縁膜下のシリコン被膜を抵抗体とする半導体集積回
路用抵抗において、前記第2絶縁膜と前記コンタクト窓
との間隔が異なるパターンを数種類用いることに工り、
前記抵抗体及び第2絶縁膜、及び電極のレイアウトピッ
チェ0細かいピッチの抵抗長′jk:#ること′fr:
%徴とする半導体集積回路用抵抗にある。
It is an object of the present invention to eliminate the above-mentioned problems of conventional silicon film resistors, and to easily obtain resistor design with the same precision as a high-magnification layout drawing even in a low-magnification layout drawing. That is, the gist of the present invention is to provide a silicon film formed on a first insulating film on a semiconductor substrate, a second insulating film covering a part of the silicon film, and a metal covering the remaining part of the silicon film. a silicide layer, a gX3 insulating film covering the second insulating film and the metal silicide layer, and an electrode connected to the metal silicide layer through a contact window opening a part of the third insulating film. , in a resistor for a semiconductor integrated circuit in which a silicon film under the second insulating film is used as a resistor, several types of patterns with different intervals between the second insulating film and the contact window are used;
Layout pitch of the resistor, second insulating film, and electrode Pitch 0 Resistance length with fine pitch 'jk: #'fr:
It is in the resistance for semiconductor integrated circuits, which is expressed as a percentage.

〔実施例〕〔Example〕

次に本発明について図面全参照して説明する。 Next, the present invention will be explained with reference to all the drawings.

第1図は本発明の一実施例の平面図、又第2図はそれを
構成するパターンの平面図、さらに第3図は111g1
laの断面図である。図において、絶縁膜1゜3.4,
6、シリコン被膜2、金属シリサイド5、コンタクト窓
7、電極8a、配置8b[従来と同様の方法で形成され
ており、従来と異なるところは、絶縁膜4とコンタクト
窓7の間隔d’ 、d“が一定でなくまちまちの値にな
っていることである。
Fig. 1 is a plan view of one embodiment of the present invention, Fig. 2 is a plan view of a pattern constituting it, and Fig. 3 is a 111g1
FIG. In the figure, the insulation film is 1°3.4,
6. Silicon film 2, metal silicide 5, contact window 7, electrode 8a, arrangement 8b [formed by the same method as the conventional method, the difference from the conventional method is that the distance between the insulating film 4 and the contact window 7 is d', d ``is not constant but varies in value.

すなわち、第2図に示すシリコン被膜2と絶縁膜4から
なる基本パターンの長さ方向の端部に、あらかじめセル
登録した基本パターンと同一幅のシリコン被膜2とコン
タクト窓7及び電極8aからなるAパターンもしくld
、Aパターンに基本パターンと同一幅でΔLの長さをも
つ絶縁膜4を重ねて、ΔLの寸法金変えて絶縁膜4とコ
ンタクト窓70間隔を変えたB、Cパターンのいづれか
全選択して配置する工うにしたCとである。これにエフ
、基本パターン及びA、B、Cのバリエーションセル全
低倍率、例えば200倍でレイアウトしても、抵抗長は
基本パターンの絶縁膜4の長さLと、バリエーションセ
ルの絶縁膜4の長さ△Lの和で構成される為、△Lの寸
法を変えたバリエーションセルを登録しておき適宜選択
することにエフ、レイアウトピッチエリ細かいピッチの
抵抗長を容易に得ることが出来る。又、基本パターンに
レイアウト図面上に任意の形状を構成することが出来る
ので、登録するセルは前述バリエーションセルのみで良
く、従来の工うに膨大なセルを登録する必要もない。
That is, at the end in the length direction of the basic pattern made of the silicon film 2 and the insulating film 4 shown in FIG. pattern or ld
, overlay the insulating film 4 having the same width as the basic pattern and the length ΔL on the A pattern, and select all of the B and C patterns in which the distance between the insulating film 4 and the contact window 70 is changed by changing the dimension of ΔL. This is C, which was designed to be placed. Even if all the variation cells of F, basic pattern, and A, B, and C are laid out at low magnification, for example, 200 times, the resistance length is the length L of the insulating film 4 of the basic pattern and the insulating film 4 of the variation cell. Since it is composed of the sum of lengths ΔL, by registering variation cells with different dimensions of ΔL and selecting them appropriately, it is possible to easily obtain a resistance length with a fine pitch in the layout pitch area. Furthermore, since the basic pattern can have any shape on the layout drawing, only the aforementioned variation cells need be registered, and there is no need to register a huge number of cells as in the conventional method.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、半導体集積回路
の設計上において、トランジスタ、抵抗、配線等のレイ
アウトピッチエリ細かなピッチの抵抗長を有するシリコ
ン被膜抵抗を、トランジスタ、抵抗、配線等のレイアウ
トに必要な倍率のレイアウト図面を得ることが出来る為
、従来工り設計精度の高いシリコン被膜抵抗ヲ答易に得
ることが出来る。
As explained above, according to the present invention, when designing a semiconductor integrated circuit, a silicon film resistor having a resistance length with a fine pitch can be used for layout pitches of transistors, resistors, wiring, etc. Since it is possible to obtain a layout drawing with the necessary magnification for the layout, it is possible to easily obtain a silicon film resistor with high precision in conventional manufacturing design.

又、従来と同−設計精度のシリコン被膜抵抗を得る場合
に、従来りつ低倍率のレイアウト図面を作図すれば良い
為、設計工数の低減を図ることが出来る。
Furthermore, in order to obtain a silicon film resistor with the same design precision as the conventional one, it is sufficient to draw a layout drawing with a lower magnification than the conventional one, so that the number of design steps can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図に本発明の一実施例の平面図、第2図にそれ全構
成するパターンの平面図、第3図に第1図の断面図、第
4図に従来のシリコン被膜の平面図、第5図はその断面
図である。 1・・・・・・絶縁膜、2・・・・・・シリコン被膜(
ポリシリiン)、3・・・・・・絶縁膜、4・・・・・
・絶縁膜、5・・・・・・金属シリサイド層、6・・・
・・・絶縁膜、7・・・・・・コンタクト窓、8a・・
・・・・電極、8b・・・・・・配線。 #lWJ 竿5回
FIG. 1 is a plan view of an embodiment of the present invention, FIG. 2 is a plan view of the pattern that constitutes the whole, FIG. 3 is a sectional view of FIG. 1, and FIG. 4 is a plan view of a conventional silicon coating. FIG. 5 is a sectional view thereof. 1... Insulating film, 2... Silicon coating (
polysilicon), 3...insulating film, 4...
・Insulating film, 5...Metal silicide layer, 6...
...Insulating film, 7...Contact window, 8a...
...Electrode, 8b...Wiring. #lWJ rod 5 times

Claims (1)

【特許請求の範囲】[Claims] 第一絶縁膜上に選択的に形成されたシリコン被膜、前記
シリコン被膜の一部を直接被う第2絶縁膜、前記シリコ
ン被膜の残された部分と接触する金属シリサイド層、前
記第2絶縁膜と前記金属シリサイド層とを被う第3絶縁
膜、および前記第3絶縁膜の一部が開口されて前記金属
シリサイド層の一部を露出するコンタクト窓を含んで構
成された抵抗体を複数個有し、これら抵抗体のうち所定
の抵抗体では、前記第2絶縁膜と前記コンタクト窓との
間隔が他の抵抗体に比し異なることを特徴とする半導体
集積回路装置。
a silicon film selectively formed on the first insulating film, a second insulating film directly covering a portion of the silicon film, a metal silicide layer in contact with the remaining portion of the silicon film, and the second insulating film and a third insulating film covering the metal silicide layer, and a plurality of resistors each including a contact window through which a part of the third insulating film is opened to expose a part of the metal silicide layer. A semiconductor integrated circuit device comprising: a predetermined resistor among these resistors, wherein a distance between the second insulating film and the contact window is different from that of other resistors.
JP4218285A 1985-03-04 1985-03-04 Semiconductor integrated circuit device Pending JPS61201457A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4218285A JPS61201457A (en) 1985-03-04 1985-03-04 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4218285A JPS61201457A (en) 1985-03-04 1985-03-04 Semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPS61201457A true JPS61201457A (en) 1986-09-06

Family

ID=12628850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4218285A Pending JPS61201457A (en) 1985-03-04 1985-03-04 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS61201457A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008235936A (en) * 2008-05-26 2008-10-02 Toshiba Corp Non-volatile semiconductor memory device
US7888728B2 (en) 1997-07-10 2011-02-15 Kabushiki Kaisha Toshiba Non-volatile semiconductor memory device and its manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7888728B2 (en) 1997-07-10 2011-02-15 Kabushiki Kaisha Toshiba Non-volatile semiconductor memory device and its manufacturing method
US8698225B2 (en) 1997-07-10 2014-04-15 Kabushiki Kaisha Toshiba Non-volatile semiconductor memory device and its manufacturing method
US8969942B2 (en) 1997-07-10 2015-03-03 Kabushiki Kaisha Toshiba Non-volatile semiconductor memory device and its manufacturing method
JP2008235936A (en) * 2008-05-26 2008-10-02 Toshiba Corp Non-volatile semiconductor memory device

Similar Documents

Publication Publication Date Title
US7323278B2 (en) Method of adding fabrication monitors to integrated circuit chips
JPH05343370A (en) Forming method for fine pattern
US6429521B1 (en) Semiconductor integrated circuit device and its manufacturing method
JP3420089B2 (en) Electronic device, semiconductor device, and electrode forming method
JPS61201457A (en) Semiconductor integrated circuit device
US7315054B1 (en) Decoupling capacitor density while maintaining control over ACLV regions on a semiconductor integrated circuit
US10497566B1 (en) Layout design for fanout patterns in self-aligned double patterning process
JP2633228B2 (en) Semiconductor device etching accuracy inspection method
KR0133269B1 (en) Glass mask for semiconductor device and making method thereof
US6953696B2 (en) Method for fabricating semiconductor integrated circuit device
JPS62102531A (en) Etching method
JPH05206292A (en) Semiconductor integrated circuit
JPH05235279A (en) Semiconductor integrated circuit device
US6326695B1 (en) Twisted bit line structures and method for making same
JP2911980B2 (en) Semiconductor integrated circuit device
JPS6214095B2 (en)
JP3604543B2 (en) Method for manufacturing semiconductor device
JPS63281443A (en) Manufacture of semiconductor device
JP3459794B2 (en) Method for manufacturing semiconductor device
JPS6221260A (en) Manufacture of semiconductor device
JP2853471B2 (en) Method for manufacturing semiconductor integrated circuit device
JPH0382031A (en) Semiconductor integrated circuit and manufacture thereof
JPS61152038A (en) Multilayer interconnection
JPH04348034A (en) Wiring pattern forming method
JPH0258227A (en) Semiconductor device