JPS61199665A - Thin film semiconductor device - Google Patents

Thin film semiconductor device

Info

Publication number
JPS61199665A
JPS61199665A JP3877385A JP3877385A JPS61199665A JP S61199665 A JPS61199665 A JP S61199665A JP 3877385 A JP3877385 A JP 3877385A JP 3877385 A JP3877385 A JP 3877385A JP S61199665 A JPS61199665 A JP S61199665A
Authority
JP
Japan
Prior art keywords
region
layer
grow
film
polycrystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3877385A
Other languages
Japanese (ja)
Inventor
Takashi Aoyama
隆 青山
Yoshikazu Hosokawa
細川 義和
Takaya Suzuki
誉也 鈴木
Nobutake Konishi
信武 小西
Akio Mimura
三村 秋男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3877385A priority Critical patent/JPS61199665A/en
Publication of JPS61199665A publication Critical patent/JPS61199665A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/167Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System further characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78672Polycrystalline or microcrystalline silicon transistor
    • H01L29/78675Polycrystalline or microcrystalline silicon transistor with normal-type structure, e.g. with top gate

Abstract

PURPOSE:To decrease the leakage current and to make the current ratio, Ion: Ioff, sufficiently larger, by a method wherein the trapping layer for trapping carriers having a deep energy level is separated from the traveling region of the carriers. CONSTITUTION:An I-type polycrystalline Si region 9 is made to grow using the quartz substrate as a substrate 1 by a molecular evaporation method. Then, a polycrystalline Si layer is made to grow while gold is doped and a trapping layer 8 having a deep energy level is formed. Then, an undoped I-type polycrystalline Si layer is made to grow to form a source region 2, a channel region 3 and a drain region 4. Then, after a polycrystalline Si film is made to grow, an SiO2 film 5 is adhered to form the insulating layer. Subsequently, a polycrystalline Si film 6 for gate electrode is adhered, and the source and drain regions 2 and 4 are formed by implanting phosphorus. Subsequently, PSG films 11, Al electrodes 10 and an ITO film 12 are evaporated. By this way, the leakage current is decreased without harming the mobility of carriers in the thin film transistor, thereby enabling to obtain the TFT capable of making larger sufficiently its current ratio, Ion:Ioff, at the time of actuation and stop.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は薄膜半導体装置に係り、特に液晶を表示に用い
るディスプレイに好適な薄膜トランジスタに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a thin film semiconductor device, and particularly to a thin film transistor suitable for a display using liquid crystal for display.

〔発明の背景〕[Background of the invention]

近年、液晶を表示に用いるディスプレイなどでは、各画
素の液晶を駆動するために、各画素ごとに薄膜トランジ
スタ(Th1n pilm Transistor略し
てTPT )を形成するアクティブマトリクス方式が用
いられている。第2図に示すように、このTPTは、普
通、石英基板かガラス基板1上に成長した多結晶シリコ
ン(Po1ycrystolline3i1icon 
略してpoly−8ilか非晶質シリコン(7vnor
phous 5ilicon略してa−3i)9忙形成
される。poly−3i を用いて通常のエンハンスメ
ント([nhancement )型のMO8(Met
elOxyside Sem1conductor) 
トランジスタを作ると、ソース、ドレイン両領域2.4
間の漏れ電流が大きい。このため、チャネルが形成され
る領域3はp型、n型いずれの場合も不純物をドープし
ない真性t )ntrinsic略してi)半導体を使
用する。トランジスタを作動するときは、酸化膜5を介
してゲート電極6に電圧を印加してi領域3にチャネル
を形成する。尚、7は酸化膜である。
In recent years, in displays using liquid crystal for display, an active matrix method is used in which a thin film transistor (TPT) is formed for each pixel in order to drive the liquid crystal of each pixel. As shown in FIG. 2, this TPT is usually made of polycrystalline silicon grown on a quartz or glass substrate 1.
Abbreviated as poly-8il or amorphous silicon (7vnor)
phous 5iliconabbreviated a-3i)9. Using poly-3i, the usual enhancement type MO8 (Met
elOxyside Sem1conductor)
When making a transistor, both the source and drain regions are 2.4
The leakage current between the two is large. For this reason, the region 3 in which the channel is formed uses an intrinsic semiconductor which is not doped with impurities, whether p-type or n-type. When the transistor is operated, a voltage is applied to the gate electrode 6 through the oxide film 5 to form a channel in the i-region 3. Note that 7 is an oxide film.

TPTを停止するときは、pn接合の電位障壁でなく、
i層の高抵抗領域を利用する方法がとられている。しか
しながら、この方向もまだ十分とはいえない。一般に、
poly−3iのキャリアの移動度は1〜10m/VS
と単結晶の場合に比べて2桁以上小さく、また、i層の
抵抗率は半絶縁体と考えるほど大きくけなめ。このため
、TPTを作動したときの電流、■、、c主としてキャ
リアの移動度に関係する)が十分でなく、TPTを停止
したときの電流、LttC主としてi層の抵抗率に関係
する)が小さくならない。このため両者の化工、。/L
tt  が十分大きくとれず、液晶を用いた表示が鮮明
でないという問題がやった。
When stopping TPT, do not use the potential barrier of the pn junction,
A method has been adopted that utilizes the high resistance region of the i-layer. However, this direction is still not sufficient. in general,
The carrier mobility of poly-3i is 1-10m/VS
This is more than two orders of magnitude smaller than that of a single crystal, and the resistivity of the i-layer is so large that it can be considered a semi-insulator. For this reason, the current when the TPT is activated (■, , c, which is mainly related to the carrier mobility) is not sufficient, and the current when the TPT is stopped, LttC (which is mainly related to the resistivity of the i-layer), is small. No. For this reason, both chemicals and engineering. /L
The problem was that tt was not large enough, and the display using liquid crystal was not clear.

a−8iを用いたTPTの場合、漏れ電流はpoly−
8iの場合より小さいが、キャリア移動度が1cIII
/vS以下とさらに小さ贋。このため、1、− / 1
.tt  はpoly−3iの場合より小さく、液晶を
用いた表示は一層不鮮明である(実開昭57−5755
5号公報)。
In the case of TPT using a-8i, the leakage current is
Although it is smaller than the case of 8i, the carrier mobility is 1cIII
An even smaller fake with /vS or less. Therefore, 1, - / 1
.. tt is smaller than that of poly-3i, and the display using liquid crystal is even more unclear (Utility Model Application Publication No. 57-5755).
Publication No. 5).

〔発明の目的〕[Purpose of the invention]

本発明の目的は、キャリアの移動度をそこなわずにTP
Tの漏れ電流を減らし、1.、/I。ff を十分大き
くすることができるTPTを提供することにある。
The object of the present invention is to transfer TP without impairing carrier mobility.
Reduce T leakage current, 1. ,/I. The object of the present invention is to provide a TPT that can make ff sufficiently large.

〔発明の概要〕[Summary of the invention]

本発明は、深いエネルギ単位を持ったキャリアのトラッ
プ層をキャリアの走行領域と分離したことを特徴とする
The present invention is characterized in that the carrier trap layer having deep energy units is separated from the carrier travel region.

本発明は、特にpoly−3iの抵抗率とキャリアの移
動度が結晶粒径、結晶粒界におけるキャリアのトラップ
密度、結晶粒内のキャリアの濃度に密接に関連すること
を確認して成し遂げられた。
The present invention was achieved by confirming that the resistivity and carrier mobility of poly-3i are closely related to the grain size, the carrier trap density at the grain boundaries, and the carrier concentration within the grains. .

本発明を具体的に述べれば次のようになる。The present invention will be specifically described as follows.

第1図に本発明の概略図を示す。尚、第1図において、
9は真性半導体領域であシ、第2図と同−物相当物には
同一符号を付けている。ゲートに電圧を印加してTPT
を作動させるときは、チャネル領域3とキャリアのトラ
ップ層8が分離隣接されているために1キヤリアはトラ
ップに妨害されることなく通常の移動度で移動する。ゲ
ート電圧をアースにおとしてT’ F Tを停止すると
きは、チャネル領域3のキャリアはその下にある深いエ
ネルギ単位に“トラップされ、ソース、ドレイン両領域
2.4間のキャリア濃度が小さくなる。これは、特にp
oly−8iの結晶粒は等方向な大きさでなく、pol
y−8i膜の成長方向(この場合、チャネルと垂直方向
)に長く、キャリアはこの方向に移動しやすいためであ
る。
FIG. 1 shows a schematic diagram of the present invention. In addition, in Figure 1,
9 is an intrinsic semiconductor region, and the same reference numerals are given to the same parts as in FIG. 2. TPT by applying voltage to the gate
When the carrier is operated, one carrier moves with normal mobility without being hindered by the trap because the channel region 3 and the carrier trap layer 8 are separated and adjacent to each other. When the gate voltage is grounded to stop the T' F T, carriers in the channel region 3 are "trapped" in the deep energy unit below, and the carrier concentration between the source and drain regions 2.4 becomes small. .This is especially true for p
The crystal grains of oly-8i are not isodirectional in size and have pol
This is because the y-8i film is long in the growth direction (in this case, perpendicular to the channel), and carriers tend to move in this direction.

一般に、TPTの作動、停止時におけるソースドレイン
両領域2.4間の電流は、それぞれ、と表わされる。こ
こで、μはpoly−8iの移動度、ρはチャネル領域
の抵抗率、tはトランジスタの厚さ、W/Lはチャネル
の幅と長さの比、vlはゲート電圧、vtkはしきい値
電圧、Co1は酸化膜の容量である。W/Lは工□とI
ettの個々の値に対するパラメータであるが%  L
m / Iettなる比はW/Lに依存しない。(1)
、 (2)式から、1.、/I。ffなる比を大きぐす
るには、μρなる積を大きくしなければならないことが
わかる。一般に、pOly−8iの成長温度を下げれば
、結晶粒径が小さくなり、トラップ密度が増加してρは
大きくなる。しかし、トラップ密度の増加は急激なμの
減少をもたらすために、1.、/I。ffは減少する。
Generally, the current between the source and drain regions 2.4 when the TPT is activated and deactivated is expressed as follows. Here, μ is the mobility of poly-8i, ρ is the resistivity of the channel region, t is the thickness of the transistor, W/L is the ratio of channel width to length, vl is the gate voltage, and vtk is the threshold value. The voltage Co1 is the capacitance of the oxide film. W/L is engineering□ and I
The parameter for each value of ett is %L
The ratio m/Iett is independent of W/L. (1)
, From equation (2), 1. ,/I. It can be seen that in order to increase the ratio ff, the product μρ must be increased. Generally, if the growth temperature of pOly-8i is lowered, the crystal grain size becomes smaller, the trap density increases, and ρ becomes larger. However, since an increase in trap density causes a rapid decrease in μ, 1. ,/I. ff decreases.

poly−8iの成長温度をさらに下げると、a−3i
が形成される。この場合、ρ゛の増加、μの減少が起シ
、I−、/L−ttは減少する。
When the growth temperature of poly-8i is further lowered, a-3i
is formed. In this case, ρ' increases and μ decreases, so that I- and /L-tt decrease.

本発明は、チャネル領域3のすぐ下に深いエネルギ準位
を持つトラップ層8を設け、チャネル領域3とトラップ
層8を分離し、キャリア走行領域にトラップが存在しな
いようにしたことにより、キャリアの移動度をそこなわ
ずにチャネル領域3の抵抗率を大きくすることができる
。このため、(l)、(2)式よりTPTのI−/Lt
tが増加し、液晶などを用いたアクティブマトリクス方
式の表示を鮮明にすることができる。
The present invention provides a trap layer 8 having a deep energy level immediately below the channel region 3, separates the channel region 3 and the trap layer 8, and prevents the existence of traps in the carrier travel region. The resistivity of the channel region 3 can be increased without impairing the mobility. Therefore, from equations (l) and (2), I-/Lt of TPT
t increases, and active matrix display using liquid crystal or the like can be made clearer.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を説明する。第3図は本発明を
用いたTPT全体の断面構造を示す。基板lとして石英
を用いている。基板温度を550Cに保ち、分子線蒸着
(Mo1ecular BeamDepos i t 
ion略してMBD)法により厚さ1500人のpol
y−8iのi領域9を成長させる。次に、伝導帯から約
0.55 e V下にアクセプタ準位を持っている金(
略してAu)を約I X l O”cm−3の濃度でド
ーピングしながら、約400人のpoly−3ii成長
させ深いエネルギ準位を有するトラップ層9を形成する
。次に、ドーピングをしないi層poly−8i金20
OA成長してTF”Tのソース、ドレイン、チャネル領
域2〜4を作る。基板温度を一定にしておいても、絶縁
膜上に成長したpoly−8iの結晶粒径は、初め小さ
く、かつ、a−Si成分を含んでいる。膜厚が厚くなる
に従い、結晶粒径は徐々に大きくなる。約1000人の
膜厚ではpoly−3iの結晶粒は平均直径約200人
、長さ約400人の内在状になる。本実施例で絶縁膜上
に成長した最初のpoly−f3ii領域9はその上に
成長するトラップ層8およびソース、ドレイン、チャネ
ル領域2〜4のキャリアの移動度を大きくする効果があ
る。全体で約2100人の厚さのpoly−8i膜の成
長後、CVD法によりSing膜5を1000人つけて
絶縁層を形成する。続いて、減圧CVD法によりゲート
電極用poly−8i6を1500人つける。次に、リ
ン(略してP)k50KeVのエネルギ、5 X 10
”cm−2のドーズ量で打込んでソースとドVイン領域
2,4を形成する。
An embodiment of the present invention will be described below. FIG. 3 shows the cross-sectional structure of the entire TPT using the present invention. Quartz is used as the substrate l. The substrate temperature was maintained at 550C and molecular beam deposition was performed.
ion (abbreviated as MBD) method with a thickness of 1500 people.
Grow i-region 9 of y-8i. Next, gold (
A trap layer 9 having a deep energy level is formed by growing about 400 poly-3ii layers while doping Au (abbreviated as Au) at a concentration of about IXlO"cm-3. Next, a trap layer 9 having a deep energy level is formed. layer poly-8i gold 20
The source, drain, and channel regions 2 to 4 of TF''T are formed by OA growth. Even if the substrate temperature is kept constant, the crystal grain size of poly-8i grown on the insulating film is small at first, and Contains a-Si component.As the film thickness increases, the crystal grain size gradually increases.With a film thickness of about 1000, poly-3i crystal grains have an average diameter of about 200 and a length of about 400. In this example, the first poly-F3II region 9 grown on the insulating film increases the mobility of carriers in the trap layer 8 and the source, drain, and channel regions 2 to 4 grown thereon. After growing a poly-8i film with a total thickness of approximately 2,100 layers, a 1,000 layer Sing film 5 is deposited using the CVD method to form an insulating layer.Subsequently, a poly-8i film for the gate electrode is grown using a low pressure CVD method. Attach 1500 8i6. Next, phosphorus (abbreviated P) k50KeV energy, 5 X 10
The source and V-in regions 2 and 4 are formed by implanting at a dose of "cm-2."

続いて、P S G (Phospho Si 1ic
ate Glass )11、At電極10、透明電極
であるITO12を蒸着する。ITOを蒸着したもう一
枚の石英基板との間にT N (Twisted Ne
matic )型の液晶を封入して表示装置が完成する
Subsequently, P S G (Phospho Si 1ic
ate Glass) 11, an At electrode 10, and a transparent electrode ITO 12 are deposited. Twisted Ne (Twisted Ne
matic) type liquid crystal is sealed to complete the display device.

本実施例のTPTのチャネル幅、チャネル長はそれぞれ
20μm、10μmである。このとき1、、/x、tt
ノ値は5X10’となり、従来の1×104以下の値に
比べ1桁以上大きくなるため、従来わ表示に比べ鮮明な
画像が得られる。
The channel width and channel length of the TPT in this example are 20 μm and 10 μm, respectively. In this case, 1, , /x, tt
The value is 5×10′, which is more than an order of magnitude larger than the conventional value of 1×10 4 or less, so a clearer image can be obtained than in the conventional display.

第4図には他の一実施例を示す。ここでは、前実施例で
金をpoly−8iKドーピングするかわシに、不純物
を用いないで単に基板温度をsso’cから400tt
で下げる。このようにすると、poly−8iのかわり
にトラップ密度が大きいa −8iが形成されトラップ
層8となる。a−8it−400人成長させた後、再び
基板温度を550Cまで下げてpoly−8iを200
人成長してソース。
FIG. 4 shows another embodiment. Here, instead of doping gold with poly-8iK in the previous example, we simply raised the substrate temperature from sso'c to 400tt without using any impurities.
lower it. In this way, a-8i having a large trap density is formed instead of poly-8i, and becomes the trap layer 8. After growing 400 a-8i, lower the substrate temperature to 550C and grow 200 poly-8i.
People grow and source.

ドレイン、チャネル領域2〜4を形成する。以後のプロ
セスは前実施例と同じである。本実施例におけ;b T
 F T (i層) I−/ I−tt すb値は2×
lO8となシ、液晶を用いた表示の画像は鮮明である。
Drain and channel regions 2 to 4 are formed. The subsequent processes are the same as in the previous embodiment. In this example; b T
F T (i layer) I-/I-tt b value is 2×
As with lO8, images displayed using liquid crystal are clear.

第5図には本発明の一変形例を示す。絶縁基板l上に半
導体層を成長させるとき、最初から深いエネルギ準位を
持つ約1800人のトラップ層8を作す、ソの上にソー
ス、ドレイン、チャネル各領域2〜4のための約200
人のi層を形成する。
FIG. 5 shows a modified example of the present invention. When growing a semiconductor layer on an insulating substrate, a trap layer 8 of about 1,800 layers with deep energy levels is created from the beginning, and about 200 layers for each of the source, drain, and channel regions 2 to 4 are formed on top of the substrate.
Forms the i-layer of people.

トラップ単位として金をドーピングする方法を用いれば
第一番目の実施例と同じ効果が得られる。
If a method of doping gold as a trap unit is used, the same effect as in the first embodiment can be obtained.

トラップ層8をa−8iで形成すると、その上の1Np
oly−8iの結晶粒径が十分大きくならない。
When trap layer 8 is formed of a-8i, 1Np on it
The crystal grain size of oly-8i is not large enough.

このため、チャネル領域のキャリアの移動度が小さくな
り、T F T OI−a/ I−tt す7)値は1
 x 1 o’となる。上記実施例はどではないが従来
法と比較すると画像は鮮明である。
Therefore, the mobility of carriers in the channel region decreases, and the T F T OI-a/I-tt7) value becomes 1.
x 1 o'. Although the above embodiment is not unique, the image is clearer when compared with the conventional method.

尚、本発明は、ソース、ドレイン、チャネル各領域等が
単結晶半導体、α−半導体で構成されている場合も同様
に適用できる。
Note that the present invention can be similarly applied to cases where the source, drain, channel regions, etc. are made of a single crystal semiconductor or an α-semiconductor.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、薄膜トランジスタ(TPT)の中ヤリ
アの移動度をそこなわずにその漏れ電流を減らし、トラ
ンジスタの作動、停止時における電流比L−/Lttを
十分大きくしたTPTを得ることができる。
According to the present invention, it is possible to reduce the leakage current of a thin film transistor (TPT) without impairing the mobility of the internal transistor, and to obtain a TPT with a sufficiently large current ratio L-/Ltt when the transistor is activated or deactivated. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を説明するためのTPTの概略図、第2
図は従来のTPTの概略図、第3図は本発明の一実施例
を示す概略図、第4図は本発明の他の実施例を示す概略
図、第5図は本発明の変形例を示す概略図である。 1・・・基板、2・・・ソース(n型)領域、3・・・
真性半導体領域(チャネル領域)、4・・・ドレインc
n型)領域、5・・・酸化膜、6・・・ゲート電極、7
・・・酸化膜、訃・・トラップ層、9・・・真性半導体
領域、1o・・・At電極、l 1 ・P S G、 
12 ・!明tffl(I’l’0)。
Fig. 1 is a schematic diagram of TPT for explaining the present invention, Fig. 2 is a schematic diagram of TPT for explaining the present invention;
The figure is a schematic diagram of a conventional TPT, Figure 3 is a schematic diagram showing one embodiment of the present invention, Figure 4 is a schematic diagram showing another embodiment of the present invention, and Figure 5 is a schematic diagram showing a modified example of the present invention. FIG. 1...Substrate, 2...Source (n type) region, 3...
Intrinsic semiconductor region (channel region), 4... drain c
n-type) region, 5... oxide film, 6... gate electrode, 7
... Oxide film, trap layer, 9... Intrinsic semiconductor region, 1o... At electrode, l 1 ・P S G,
12 ・! Clear tffl(I'l'0).

Claims (2)

【特許請求の範囲】[Claims] 1.ソース、ドレイン電極が設けられる領域および両領
域間に設けられ絶縁膜を介して設けられたゲート電極に
加えられる信号で上記両領域間でキャリアを走行させる
領域を有する薄膜半導体装置において、上記キャリアの
トラップ層をキャリアの走行領域に隣接して設けている
ことを特徴とする薄膜半導体装置。
1. A thin film semiconductor device having a region in which source and drain electrodes are provided, and a region in which carriers are caused to travel between the two regions by a signal applied to a gate electrode provided between the two regions via an insulating film. A thin film semiconductor device characterized in that a trap layer is provided adjacent to a carrier travel region.
2.上記第1項において、トラップ層は絶縁膜から離し
て設けていることを特徴とする薄膜半導体装置。
2. The thin film semiconductor device according to item 1 above, wherein the trap layer is provided apart from the insulating film.
JP3877385A 1985-03-01 1985-03-01 Thin film semiconductor device Pending JPS61199665A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3877385A JPS61199665A (en) 1985-03-01 1985-03-01 Thin film semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3877385A JPS61199665A (en) 1985-03-01 1985-03-01 Thin film semiconductor device

Publications (1)

Publication Number Publication Date
JPS61199665A true JPS61199665A (en) 1986-09-04

Family

ID=12534608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3877385A Pending JPS61199665A (en) 1985-03-01 1985-03-01 Thin film semiconductor device

Country Status (1)

Country Link
JP (1) JPS61199665A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4786955A (en) * 1987-02-24 1988-11-22 General Electric Company Semiconductor device with source and drain depth extenders and a method of making the same
EP0588487A2 (en) * 1992-08-19 1994-03-23 AT&T Corp. Method of making thin film transistors
CN106847835A (en) * 2017-04-01 2017-06-13 厦门天马微电子有限公司 The preparation method and display device of a kind of display panel, display panel

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4786955A (en) * 1987-02-24 1988-11-22 General Electric Company Semiconductor device with source and drain depth extenders and a method of making the same
EP0588487A2 (en) * 1992-08-19 1994-03-23 AT&T Corp. Method of making thin film transistors
EP0588487A3 (en) * 1992-08-19 1994-09-28 At & T Corp Method of making thin film transistors
CN106847835A (en) * 2017-04-01 2017-06-13 厦门天马微电子有限公司 The preparation method and display device of a kind of display panel, display panel
CN106847835B (en) * 2017-04-01 2019-12-27 厦门天马微电子有限公司 Display panel, preparation method of display panel and display device

Similar Documents

Publication Publication Date Title
CN1155101C (en) Electronic device, array device, photoelectric display and semiconductor memory with thin-film transistors
JPS60113971A (en) Thin-film field-effect type semiconductor device and manufacture thereof
JPH0659278A (en) Liquid crystal display device and its production
JPS61199665A (en) Thin film semiconductor device
JPS61145869A (en) Thin-film transistor
US4979006A (en) Reverse staggered type silicon thin film transistor
JPH11274502A (en) Thin film transistor and method for manufacturing thin film transistor
JPH01192173A (en) Manufacture of semiconductor device
JPH01120868A (en) Thin film semiconductor device
JP2523679B2 (en) Thin film transistor and manufacturing method thereof
JP3141456B2 (en) Thin film transistor and method of manufacturing the same
JPH01309379A (en) Thin-film semiconductor element
JPH07131019A (en) Thin film transistor and fabrication thereof
JPH09107107A (en) Thin film transistor, this film transistor array and liquid crystal display device
JPS62295465A (en) Thin film semiconductor device
JP2867457B2 (en) Method of manufacturing thin film transistor matrix
JPH0571193B2 (en)
JPS6329978A (en) Manufacture of thin-film transistor
JPH02244676A (en) Thin film transistor
JPH0828513B2 (en) Thin film transistor
JPH0274077A (en) Mis type transistor
JPS60224278A (en) N type transistor
JP2837473B2 (en) Silicon thin film transistor
JPH01149480A (en) Thin film semiconductor element
JPH06163897A (en) Liquid crystal display device and its manufacture