JPH01120868A - Thin film semiconductor device - Google Patents

Thin film semiconductor device

Info

Publication number
JPH01120868A
JPH01120868A JP27833887A JP27833887A JPH01120868A JP H01120868 A JPH01120868 A JP H01120868A JP 27833887 A JP27833887 A JP 27833887A JP 27833887 A JP27833887 A JP 27833887A JP H01120868 A JPH01120868 A JP H01120868A
Authority
JP
Japan
Prior art keywords
source
drain
layer
tpt
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27833887A
Other languages
Japanese (ja)
Inventor
Takashi Aoyama
隆 青山
Genshirou Kawachi
玄士朗 河内
Nobutake Konishi
信武 小西
Takaya Suzuki
誉也 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP27833887A priority Critical patent/JPH01120868A/en
Publication of JPH01120868A publication Critical patent/JPH01120868A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To reduce a leakage current without loss of the ON current of a TFT by providing a semiconductor region having a conductivity type opposite to that of source and drain under a semiconductor region which becomes the source and drain. CONSTITUTION:An i-layer polycrystalline silicon film is deposited on a glass substrate 1, photoetched to allow a polysilicon layer for forming a TFT to remain, and a gate insulating film 6 and a gate electrode 7 are deposited. Then, boron is implanted, and a P-type region is formed on a source 2, a drain 3 and a semiconductor region 5 having a conductivity type opposite to that of the source 2, and the drain 3. Further, phosphorus is implanted, thereby forming an N-type semiconductor region which become the source 2 and the drain 3. Then, after a PSG is deposited, an ion implanted layer is activated. Subsequently, after a contact hole is formed, aluminum is sputtered, and then photoetched to form aluminum electrodes 9, thereby forming the TFT.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、薄膜半導体装置に係り、特に、液晶等を表示
に用いたアクティブマトリックス方式のデイスプレィに
用いて好適な薄膜半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a thin film semiconductor device, and particularly to a thin film semiconductor device suitable for use in an active matrix type display using liquid crystal or the like for display.

〔従来の技術〕[Conventional technology]

一般に、液晶等を表示に用いるデイスプレィ装置は、各
画素の液晶を駆動するために、各画素毎に薄膜トランジ
スタ(Thin Film Transistor、以
下TPTという)を形成するアクティブマトリックス方
式を用いて構成されている。
In general, display devices that use liquid crystal or the like for display are configured using an active matrix method in which a thin film transistor (hereinafter referred to as TPT) is formed for each pixel in order to drive the liquid crystal of each pixel.

以下、従来技術によるTPTを図面により説明する。Hereinafter, TPT according to the prior art will be explained with reference to the drawings.

第2図及び第3図は従来技術によるTPTの概略を示す
断面図であり、第2図、第3図において、■はガラス基
板、2はソース、3はドレイン、4はチャネル領域、6
はゲート絶縁膜、7はゲート電極、8はPSG膜、9は
AA電極、10は高不純物濃度層である。
2 and 3 are cross-sectional views schematically showing TPTs according to the prior art. In FIGS. 2 and 3, ■ is a glass substrate, 2 is a source, 3 is a drain, 4 is a channel region, and 6
7 is a gate insulating film, 7 is a gate electrode, 8 is a PSG film, 9 is an AA electrode, and 10 is a high impurity concentration layer.

第2図に示すTPTは、ごく−膜内なTPTの構造を示
すものであり、ガラス基板1上に成長させた多結晶シリ
コン(Po1ycrystalline  S 1li
cOn%以下ポリシリコンという)を活性層として使用
するため、n−1−n(あるいはp−1−p)構造を有
する。すなわち、このTPTは、nSi域(あるいはp
領域)のソース2、不純物をドープしない真性半導体(
intrinsic semiconductor、以
下iという)層のチャネル領域4、n領域(あるいはp
 6i域)のドレイン3がガラス基板1の上に形成され
、チャネル領域4の上層にゲート絶縁膜6を介してゲー
ト電極7が設けられ、ソース2及びドレイン3の上部に
Al電極9が設けられ、さらに、その他の部分がPSG
膜8に覆われて構成されている。
The TPT shown in FIG.
Since cOn% or less polysilicon (referred to as polysilicon) is used as the active layer, it has an n-1-n (or p-1-p) structure. That is, this TPT is in the nSi region (or p
source 2 of the region), an intrinsic semiconductor (
Intrinsic semiconductor (hereinafter referred to as i) layer has a channel region 4, an n region (or p
6i region) is formed on a glass substrate 1, a gate electrode 7 is provided on the upper layer of the channel region 4 via a gate insulating film 6, and an Al electrode 9 is provided on the upper part of the source 2 and drain 3. , furthermore, other parts are PSG
It is covered with a membrane 8.

一般に、TPTをn−p−n(あるいはp−n−p)型
のエンハンスメントMO3)ランジスタで構成すると、
このTPTは、チャネル領域内に反転層を得るために必
要なゲート電圧が高くなり、しかも、TPTを動作させ
たときのオン電流が充分でないという問題点を有する。
Generally, when the TPT is configured with an n-p-n (or p-n-p) type enhancement MO3) transistor,
This TPT has the problem that the gate voltage required to obtain an inversion layer in the channel region is high and, moreover, the on-current when the TPT is operated is insufficient.

このため、前記従来技術によるTPTは、第2図に示す
ように、チャネル領域4として1層を使用して構成され
ている。このTPTは、動作時、ソース2.ドレイン4
がn層であるnチャネル構造の場合、ゲート電極7に正
電圧を印加して、チャネル領域4内に反転層というより
は、電子の蓄積層を形成させ、また、pチャネル構造の
場合、ゲート電極7に負電圧を印加して、チャネル領域
4内に、正孔の蓄積層を形成させ、この蓄積層を介して
充分なオン電流を流すことを可能としている。
For this reason, the TPT according to the prior art is constructed using one layer as the channel region 4, as shown in FIG. In operation, this TPT is connected to source 2. drain 4
In the case of an n-channel structure, in which the gate electrode 7 is an n-layer, a positive voltage is applied to the gate electrode 7 to form an electron accumulation layer rather than an inversion layer in the channel region 4; A negative voltage is applied to the electrode 7 to form a hole accumulation layer in the channel region 4, making it possible to flow a sufficient on-current through this accumulation layer.

第3図に示すTPTは、第2図に示すTPTがガラス基
板1からポリシリコン層に拡散してくる不純物により、
リーク電流を生じ、オン電流を減少させるという欠点を
解決するものである。すなわち、このTPTは、絶縁基
板上のシリコン(Si1icon  On I n5u
latorx略してSo I)技術に関して、ガラス基
板1とポリシリコン層との界面領域にドープする不純物
濃度を高くすることによって、ガラス基板1の界面付近
に反転層を生じないようにして、リーク電流を低減して
いる。第3図に示す例では、ガラス基板1と、ソース2
.チャネル領域4.ドレイン5を作るポリシリコンとの
間に設けられているp+層による高不純物濃度層が前述
した界面領域にドープされた高不純物濃度層である。そ
して、第3図に示すTPTにおけるチャネル領域4は、
ソース2及びドレイン3の下層部に延びているが、TP
Tとしての動作は、第2図に示す場合と同様である。
The TPT shown in FIG. 3 is different from the TPT shown in FIG. 2 due to impurities diffused from the glass substrate 1 into the polysilicon layer.
This solves the drawbacks of generating leakage current and reducing on-state current. That is, this TPT is made of silicon on an insulating substrate.
latorx (abbreviated as So I) technology, by increasing the impurity concentration doped in the interface region between the glass substrate 1 and the polysilicon layer, an inversion layer is not generated near the interface of the glass substrate 1, and leakage current is reduced. It is decreasing. In the example shown in FIG. 3, a glass substrate 1, a source 2
.. Channel region 4. The high impurity concentration layer formed by the p+ layer provided between the polysilicon forming the drain 5 is the high impurity concentration layer doped in the aforementioned interface region. The channel region 4 in the TPT shown in FIG.
Although it extends to the lower layer of the source 2 and drain 3, the TP
The operation as T is the same as that shown in FIG.

なお、この種nin構造のTPTに関する従来技術とし
て、[日経エレクトロニクスJ  (1984,9,1
0、第211頁)に記載された技術が知られており、ま
たバック チャネル防止に関する従来技術として、「ア
イ イー イー イー トランザクション エレクトロ
ン デバイスJED−25,868(197B) (I
EEE  Trans、 Electron Devi
ces  E D  25.86B (197B) 〕
に記載された技術が知られている。
In addition, as a conventional technology regarding this type of nin structure TPT, [Nikkei Electronics J (1984, September 1
0, p. 211) is known, and as a prior art related to back channel prevention, "I
EEE Trans, Electron Devi
ces E D 25.86B (197B)]
The technique described in is known.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、前述の第2図に示す従来技術は、ソース2.ド
レイン3と、チャネル領域4とのn−1(あるいはp−
i)接合におけるポテンシャル障壁が充分でないため、
リーク電流、特に、ゲート電極7に負電圧を印加した場
合のリーク電流が大きいという問題点がある。このリー
ク電流は、ドレイン接合における空乏層内で、結晶粒界
におけるトラップ準位を介して生じる電子−正孔対によ
ると考えられる。従って、n−i接合面を小さ(してリ
ーク電流を抑えることを目的として、ポリシリコン層を
薄くする方法も行われている。しかし、この方法による
TPTは、接合やチャネルを形成する領域におけるポリ
シリコンの結晶粒径が充分でなく、かつ、基板からポリ
シリコン層に拡散してくる不純物領域に、接合やチャネ
ル領域が入ってしまうため、リーク電流を充分に抑える
ことができず、かつ、オン電流も減少してしまうという
問題点を有する。
However, in the prior art shown in FIG. 2 mentioned above, source 2. n-1 (or p-
i) Because the potential barrier at the junction is not sufficient,
There is a problem in that the leakage current, especially when a negative voltage is applied to the gate electrode 7, is large. This leakage current is thought to be caused by electron-hole pairs generated within the depletion layer at the drain junction via trap levels at crystal grain boundaries. Therefore, a method of thinning the polysilicon layer is also being used in order to reduce the n-i junction surface (to suppress leakage current). However, TPT using this method is The polysilicon crystal grain size is not sufficient, and the junction and channel region are included in the impurity region that diffuses from the substrate into the polysilicon layer, making it impossible to sufficiently suppress leakage current, and This has the problem that the on-state current also decreases.

また、第3図に示すTPTは、TPTを構成するシリコ
ン層が単結晶か、それに準するような粒径の大きい多結
晶シリコン層である場合に目的とする効果を充分に奏す
ることができるが、結晶粒径の小さい多結晶シリコンの
場合には効果が少ないという問題点を有する。
Furthermore, the TPT shown in FIG. 3 can sufficiently achieve the desired effect when the silicon layer constituting the TPT is a single crystal or a similar polycrystalline silicon layer with a large grain size. However, in the case of polycrystalline silicon with a small crystal grain size, there is a problem that the effect is small.

本発明の目的は、前述した従来技術の問題点を解決し、
TPTのオン電流をそこなうことなく、リーク電流を低
減させることのできる薄膜半導体装置を提供することに
ある。
The purpose of the present invention is to solve the problems of the prior art described above,
An object of the present invention is to provide a thin film semiconductor device that can reduce leakage current without impairing the on-current of TPT.

〔問題点を解決するための手段〕[Means for solving problems]

本発明によれば、前記目的は、ソース及びドレインとな
る半導体領域の下に、ソース及びドレインとは逆の導電
型の半導体領域を備えることによって達成される。
According to the present invention, the above object is achieved by providing a semiconductor region of a conductivity type opposite to that of the source and drain under the semiconductor region serving as the source and drain.

〔作用〕[Effect]

本発明の構成では、TPTを構成するポリシリコン層の
厚さを充分に厚くすることができるため、チャネル領域
の蓄積層が形成されるiN上部のポリシリコン層の平均
粒径を充分大きくすることができ、かつ、基板ガラスか
らポリシリコン中に拡散してくる不純物の影響を受ける
ことが少なくなる。従って、ゲート電極に正電圧(ある
いは負電圧)を印加し、TPTをオンとさせた場合、本
発明のTPTは、通常のn−1−n(あるいはp−1−
p)型の場合と同等のオン電流を得ることができる。一
方、ゲート電極に電圧を印加しないか、TPTをオフと
するような電圧を印加した場合、n−1(あるいはp−
i)接合は、ポリシリコンの平均粒径が大きく、かつ、
基板から拡散する不純物の影響の小さい領域にあるため
、特に、ドレイン接合において、トラップ準位を介して
のり一り電流、すなわち、オフ電流は低減される。また
、n−1(あるいはp−i)接合の面積が小さいため、
これもリーク電流をさらに低減させる効果を奏する0本
発明によるTPTは、従来技術によるTPTに比較して
、p−n接合領域が新たに生じることになるが、この接
合も、n−i、(あるいはp−i)接合と同様に、結晶
粒径が充分に大きく、かつ、基板から拡散する不純物領
域の外にあり、この接合を介したリーク電流はきわめて
少ないものとなる。
In the configuration of the present invention, since the thickness of the polysilicon layer constituting the TPT can be made sufficiently thick, the average grain size of the polysilicon layer above the iN where the accumulation layer of the channel region is formed can be made sufficiently large. In addition, it is less affected by impurities that diffuse into the polysilicon from the substrate glass. Therefore, when a positive voltage (or negative voltage) is applied to the gate electrode to turn on the TPT, the TPT of the present invention turns on the normal n-1-n (or p-1-
An on-state current equivalent to that of the p) type can be obtained. On the other hand, if no voltage is applied to the gate electrode or if a voltage is applied that turns off the TPT, n-1 (or p-
i) The bond has a large average grain size of polysilicon, and
Since the region is in a region where the influence of impurities diffused from the substrate is small, the current flowing through the trap level, that is, the off-state current, is reduced, particularly in the drain junction. Also, since the area of the n-1 (or p-i) junction is small,
This also has the effect of further reducing leakage current.In the TPT according to the present invention, a new p-n junction region is generated compared to the TPT according to the prior art, but this junction also has n-i, ( Alternatively, similar to the p-i junction, the crystal grain size is sufficiently large and located outside the impurity region diffused from the substrate, so that leakage current through this junction is extremely small.

〔実施例〕〔Example〕

以下、本発明による薄膜半導体装置の一実施例を図面に
より詳細に説明する。
Hereinafter, one embodiment of a thin film semiconductor device according to the present invention will be described in detail with reference to the drawings.

第1図は本発明の一実施例の構造を示す断面図、第4図
は本発明の一実施例によるTPTのV−1曲線を示す図
である。第1図において、5はソース、ドレインと反対
導電型の半導体層、他の符号は、第2図、第3図により
説明したと同一である。
FIG. 1 is a sectional view showing a structure of an embodiment of the present invention, and FIG. 4 is a diagram showing a V-1 curve of TPT according to an embodiment of the present invention. In FIG. 1, reference numeral 5 denotes a semiconductor layer of a conductivity type opposite to that of the source and drain, and the other symbols are the same as those explained in FIGS. 2 and 3.

第1図に示す本発明によるTPTの一実施例は、第2図
により説明した従来技術によるTPTのn領域(あるい
はp領域)のソース2及びn61域(あるいはp 6N
域)のドレイン3の下層に、ソース2及びドレイン3を
構成する半導体領域とは逆の導電型の半導体領域である
pl!(あるいはn層)を設けて構成され、その他の部
分は、第2図の場合と同様に構成される。
One embodiment of the TPT according to the present invention shown in FIG. 1 is similar to the source 2 and n61 regions (or p 6N
pl!, which is a semiconductor region of a conductivity type opposite to that of the semiconductor regions constituting the source 2 and drain 3, is located below the drain 3 of the region). (or n layers), and the other parts are constructed in the same manner as in the case of FIG.

次に、第1図に示す一実施例の製造方法をnチャネルT
PTを例として説明する。
Next, the manufacturing method of one embodiment shown in FIG.
This will be explained using PT as an example.

(1)ガラス基板1として歪温度640”Cのガラス基
板を用意し、該基板1の上に、減圧CVD法により、H
eで20%に希釈したモノシランを用いて、550”C
,ITorrの条件で、1層の多結晶シリコン膜を2s
ooXの厚さに堆積させる。
(1) A glass substrate with a strain temperature of 640"C is prepared as the glass substrate 1, and H
550"C using monosilane diluted to 20% with e.
, ITorr, one layer of polycrystalline silicon film was heated for 2s.
Deposit to a thickness of ooX.

(2)多結晶シリコン膜であるポリシリコン層をホトエ
ッチしてTFT部を構成するポリシリコン層を残した後
、ゲート絶縁膜6として、8.0!を常圧CVD法によ
り3500A堆積させ、次に、減圧CVD法によりゲー
ト電極7となるポリシリコン膜を2500A堆積させる
(2) After photo-etching the polysilicon layer, which is a polycrystalline silicon film, and leaving the polysilicon layer constituting the TFT section, the gate insulating film 6 is formed using 8.0! 3500 Å of polysilicon film is deposited by normal pressure CVD method, and then 2500 Å of polysilicon film which will become the gate electrode 7 is deposited by low pressure CVD method.

(3)ホトエッチにより、ゲート絶縁膜6とゲート電極
7以外のS、0!とポリシリコン膜を除去し、ゲート電
極7上に望ましくは保護層(なお、この保護層は、nチ
ャネル形式のイオン打込時にはなくてもよい)を形成し
た後、ボロンを40KeVのエネルギー、l X I 
Q 1Sc m−”のドーズ量で打込み、第1図に示す
ソース2.ドレイン3及びこれらと反対導電型を有する
半導体領域5に相当する部分にp領域を形成し、さらに
、リンを25K e V(7)エネルギー、5x 10
IScm−”のドーズ量で打込み、ソース2及びドレイ
ン3となるn型の半導体領域を形成する。
(3) By photoetching, S, 0! except for the gate insulating film 6 and the gate electrode 7! After removing the polysilicon film and forming a protective layer on the gate electrode 7 (this protective layer may not be necessary for n-channel ion implantation), boron is implanted at an energy of 40 KeV and l X I
A p-type region is formed in a portion corresponding to the source 2, drain 3 and the semiconductor region 5 having the opposite conductivity type as shown in FIG. (7) Energy, 5x 10
Implantation is performed at a dose of IScm-'' to form n-type semiconductor regions that will become the source 2 and drain 3.

(4)  常圧CVD法により、480”CでPSG(
P hospho  S 1licate 、G 1a
11)を6000A堆積させ、その後、N!中、600
”C,20時間の条件で加熱処理し、イオン打込み層を
活性化させる。
(4) PSG (
Phospho S 1licate, G 1a
11) was deposited at 6000A, and then N! Medium, 600
"C. Heat treatment is performed for 20 hours to activate the ion implantation layer.

(5)  コンタクト用穴をホトエッチで形成後、A2
を100’Cで6000Aにスパッタし、/1をホトエ
ッチしてソース2及びドレイン3の電極となるアルミ電
極9を形成して、TPTを完成させる。
(5) After forming contact holes by photoetching, A2
is sputtered to 6000 A at 100'C, and /1 is photo-etched to form aluminum electrodes 9 that will serve as source 2 and drain 3 electrodes, thereby completing the TPT.

(6)本発明によるTPTは、デイスプレィ装置の各画
素の駆動用に用いられるので、その後、図示しない透明
電極であるIOTをドレイン3の側のAl電極9に接続
して、PSG膜8上に80OAスパツタし、ホトエッチ
を行なう。図示のTPTは、画素に対応する位置に1個
ずつ、多数ガラス基板上に形成されるので、偏光膜とカ
ラーフィルタを備えた他のガラス基板との間に液晶を封
入して、表示素子が完成する。
(6) Since the TPT according to the present invention is used for driving each pixel of a display device, after that, IOT, which is a transparent electrode (not shown), is connected to the Al electrode 9 on the drain 3 side, and the TPT is placed on the PSG film 8. Sputter 80OA and photo-etch. The illustrated TPT is formed in large numbers on a glass substrate, one at a position corresponding to each pixel, so liquid crystal is sealed between a polarizing film and another glass substrate provided with a color filter, and the display element is Complete.

前述した本発明の一実施例によるTPTは、キャリアの
移動度40 c m”/Vs 、L/きい値電圧9Vを
得ることができた。このTPTのV−I曲線は、第4図
に実線で示したようになり、ソース。
The TPT according to the embodiment of the present invention described above was able to obtain a carrier mobility of 40 cm"/Vs and an L/threshold voltage of 9 V. The V-I curve of this TPT is shown as a solid line in FIG. Source as shown.

ドレイン間に20v、ゲートに20Vを印加したときの
オン電流は、4X10−’A、ソース、ドレイン間に2
0Vを印加したときのオフ電流は、6XIO−”Aとな
り、オン電流は、従来技術の場合と同等の大きさが得ら
れ、オフ電流は、点線で示している従来技術の場合のオ
フ電流に比較して、約1/10の値となった。
When 20V is applied between the drain and 20V is applied to the gate, the on-current is 4X10-'A, and 20V is applied between the source and drain.
The off-state current when 0V is applied is 6XIO-"A, the on-state current is the same as that of the conventional technology, and the off-state current is the same as the off-state current of the prior art shown by the dotted line. In comparison, the value was about 1/10.

〔発明の効果〕〔Effect of the invention〕

前述したように、本発明によれば、TPTのオン電流を
そこなうことなく、オフ電流を低減でき、高性能なTP
Tを提供することができる。
As described above, according to the present invention, the off-current can be reduced without damaging the on-current of the TPT, and a high-performance TPT can be obtained.
T can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の構造を示す断面図、第2図
、第3図は従来技術によるTPTの概略を示す断面図、
第4図は本発明の一実施例によるTPTのv−1曲線を
示す図である。 1・−・−ガラス基板、2−・−・−ソース、3−・・
−ドレイン、4−・・・−チャネル領域、5−−−−−
・・−ソース、ドレインと反対導電型の半導体層、6・
・・−・ゲート絶縁膜、7・−・−・−ゲート電極、8
−・・−・−PSG膜、9・・−・A1電極、10・−
・・・・高不純物濃度層。 第1図 I・・・・rラス晶あ良        6・・グー1
色縁5月隻2・・・ソース        7・・・デ
ートtm3・・ ドレイン            8
・・・PSG月凰4・・手ヤネル#H域(j4)   
 9・・・・A1電115 ・ ソース、F“レインと
反rIV叱包の!#IsA岑112図 112図! 10・・・&千純掬1度層 第4図 ケート電圧 Vg(V)
FIG. 1 is a sectional view showing the structure of an embodiment of the present invention, FIGS. 2 and 3 are sectional views showing an outline of a TPT according to the prior art,
FIG. 4 is a diagram showing a TPT v-1 curve according to an embodiment of the present invention. 1.--Glass substrate, 2-.--Source, 3-.
- drain, 4-...-channel region, 5-------
...-semiconductor layer of the opposite conductivity type to the source and drain, 6.
---Gate insulating film, 7----Gate electrode, 8
-...--PSG film, 9...-A1 electrode, 10--
...High impurity concentration layer. Figure 1 I...r last crystal 6... goo 1
Colored May ship 2... Source 7... Date tm3... Drain 8
...PSG Getsou 4...Teyanel #H area (j4)
9...A1 electric 115 ・ Source, F "Rain and anti-rIV scolding! #IsA 岑112Figure 112 figure! 10... & Senzumi 1 degree layer Figure 4 Kate voltage Vg (V)

Claims (1)

【特許請求の範囲】[Claims] 1、絶縁性基板と、該基板上に形成された半導体層とを
有する薄膜半導体装置において、半導体層内のチャネル
領域を真性半導体層で形成し、ソース及びドレイン領域
の下部に、該ソース及びドレイン領域と反対導電型の半
導体領域を備えることを特徴とする薄膜半導体装置。
1. In a thin film semiconductor device having an insulating substrate and a semiconductor layer formed on the substrate, a channel region in the semiconductor layer is formed of an intrinsic semiconductor layer, and the source and drain regions are formed under the source and drain regions. A thin film semiconductor device comprising a semiconductor region having a conductivity type opposite to that of the semiconductor region.
JP27833887A 1987-11-05 1987-11-05 Thin film semiconductor device Pending JPH01120868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27833887A JPH01120868A (en) 1987-11-05 1987-11-05 Thin film semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27833887A JPH01120868A (en) 1987-11-05 1987-11-05 Thin film semiconductor device

Publications (1)

Publication Number Publication Date
JPH01120868A true JPH01120868A (en) 1989-05-12

Family

ID=17595941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27833887A Pending JPH01120868A (en) 1987-11-05 1987-11-05 Thin film semiconductor device

Country Status (1)

Country Link
JP (1) JPH01120868A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4996575A (en) * 1989-08-29 1991-02-26 David Sarnoff Research Center, Inc. Low leakage silicon-on-insulator CMOS structure and method of making same
JPH0425179A (en) * 1990-05-21 1992-01-28 Seiko Instr Inc Semiconductor device
US5316960A (en) * 1989-07-11 1994-05-31 Ricoh Company, Ltd. C-MOS thin film transistor device manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52122484A (en) * 1976-04-07 1977-10-14 Hitachi Ltd Field effect type polisilicon resistance element
JPS5586162A (en) * 1978-12-23 1980-06-28 Fujitsu Ltd Device and manufacturing method for insulating substrate type semiconductor
JPS62193170A (en) * 1986-02-19 1987-08-25 Fujitsu Ltd Manufacture of field effect semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52122484A (en) * 1976-04-07 1977-10-14 Hitachi Ltd Field effect type polisilicon resistance element
JPS5586162A (en) * 1978-12-23 1980-06-28 Fujitsu Ltd Device and manufacturing method for insulating substrate type semiconductor
JPS62193170A (en) * 1986-02-19 1987-08-25 Fujitsu Ltd Manufacture of field effect semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5316960A (en) * 1989-07-11 1994-05-31 Ricoh Company, Ltd. C-MOS thin film transistor device manufacturing method
US4996575A (en) * 1989-08-29 1991-02-26 David Sarnoff Research Center, Inc. Low leakage silicon-on-insulator CMOS structure and method of making same
JPH0425179A (en) * 1990-05-21 1992-01-28 Seiko Instr Inc Semiconductor device

Similar Documents

Publication Publication Date Title
JP3402400B2 (en) Manufacturing method of semiconductor integrated circuit
EP0249204B1 (en) Thin film field effect transistor
JP5442228B2 (en) Display device and manufacturing method of display device
JPH0334434A (en) Thin film semiconductor device and manufacture thereof
US6288413B1 (en) Thin film transistor and method for producing same
JP2009206437A (en) Display device and method of manufacturing the same
JPH05190858A (en) Thin-film transistor and manufacture thereof
JPS625661A (en) Thin film transistor
JPH01120868A (en) Thin film semiconductor device
JP2776820B2 (en) Method for manufacturing semiconductor device
JPH11214696A (en) Thin-film transistor and its manufacture
JP2899959B2 (en) Method for manufacturing thin film transistor
JP4100655B2 (en) Thin film transistor manufacturing method
JP2761496B2 (en) Thin film insulated gate semiconductor device and method of manufacturing the same
JP2001111055A (en) Thin-film transistor and its manufacturing method
JP2917925B2 (en) Method of manufacturing thin film transistor and active matrix array for liquid crystal display device
JPH04356966A (en) Insulated gate type field-effect transistor
JPS61199665A (en) Thin film semiconductor device
JP2504630B2 (en) Active matrix substrate
JP3008929B2 (en) Method for manufacturing thin film transistor
JPH07142739A (en) Manufacture of polycrystal line silicon thin-film transistor
JPH01128573A (en) Thin film transistor
JPH06275830A (en) Accumulation-type polycrystalline silicon thin-film transistor
JPH06163897A (en) Liquid crystal display device and its manufacture
JP3153515B2 (en) Method for manufacturing insulated gate semiconductor device