JPS61195318A - Pyroelectric type infrared detector - Google Patents

Pyroelectric type infrared detector

Info

Publication number
JPS61195318A
JPS61195318A JP3691185A JP3691185A JPS61195318A JP S61195318 A JPS61195318 A JP S61195318A JP 3691185 A JP3691185 A JP 3691185A JP 3691185 A JP3691185 A JP 3691185A JP S61195318 A JPS61195318 A JP S61195318A
Authority
JP
Japan
Prior art keywords
signal charge
pyroelectric infrared
infrared detector
semiconductor substrate
pyroelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3691185A
Other languages
Japanese (ja)
Inventor
Akira Kaneko
彰 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3691185A priority Critical patent/JPS61195318A/en
Publication of JPS61195318A publication Critical patent/JPS61195318A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To prevent the influence of a signal read-out part by visible light by forming adjacently the signal charge read-out function part and an IR detecting part provided with a through-region penetrating through a semiconductor substrate on the substrate to connect each other and making incident IR rays thereon from the rear side. CONSTITUTION:An oxide film is formed over the entire surface of an Si wafer by a thermal oxidation method and the oxide film is removed from the part where an IR detecting element is constituted on one side. A recess is formed in said part by anisotropic chemical etching. The oxide film on the surface opposite from the side facing the recess is removed away and the wafer is anisotropically etched from both sides to form a through-part 25. A shift register and conductive part 28 are formed as the signal charge read-out part near the through-part 25. Electrodes 23, 24 of the pyroelectric type IR detecting element 22 consisting of a thin sheet of PbTiO3 ceramics or LiTaO3 crystal are separately formed and are fixed by a conductive adhesive agent 27 and adhesive agent 29 to the step part of the through-part 25. The register 21 and the electrode 23 are connected by the vapor deposition of Al. The IR rays are made incident on the detector from the rear side.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は焦電効果を利用した多数の焦電型赤外線検出素
子を半導体基板上に形成した焦電型赤外線検出器に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a pyroelectric infrared detector in which a large number of pyroelectric infrared detection elements utilizing the pyroelectric effect are formed on a semiconductor substrate.

従来の技術 物体からその温度に応じて放射される赤外線を利用して
物体を検出したシ、その温度を測定したりする赤外線検
出器としては、量子効果を利用したものと、赤外線を熱
として検知する熱型のものとがある。熱型のものにおい
ては焦電効果を利用したものがあり、特に焦電型赤外線
検出素子を多数個アレイ状に並べ、そこで発生した信号
電荷を順次読み出す機能を備えた構成のものとして、特
開昭57−120830号公報あるいは特開昭59−3
5119号公報等に記載されたものが知られている。以
下第6図及び第6図を参照にして、従来の焦電型赤外線
検出素子アレイとその出力電荷の読み出し機能部との構
成に関して説明する。
Conventional technology Objects are detected using infrared rays emitted from objects according to their temperature.Infrared detectors that measure the temperature of objects use quantum effects and those that detect infrared rays as heat. There is also a thermal type. Some thermal type devices utilize the pyroelectric effect, and in particular, a structure in which a large number of pyroelectric infrared detection elements are arranged in an array and has the function of sequentially reading out the signal charges generated therein has been proposed in Japanese Patent Application Publication No. Publication No. 57-120830 or JP-A-59-3
The one described in Publication No. 5119 and the like is known. The configuration of a conventional pyroelectric infrared detection element array and its output charge readout function section will be described below with reference to FIGS.

第5図a、bは焦電型赤外線検出素子アレイ部を示す概
略図であり、1は焦電素子、2は支持板、3は電極、4
はアース電極、6は導電性接着剤、6は中空部である。
Figures 5a and 5b are schematic diagrams showing the pyroelectric infrared detection element array section, where 1 is a pyroelectric element, 2 is a support plate, 3 is an electrode, and 4
6 is a ground electrode, 6 is a conductive adhesive, and 6 is a hollow portion.

焦電素子1は赤外線の照射によって加熱さnるが、その
時に下方への熱伝導による熱の逃げを防止し、感度向上
を図る目的で支持板2に中空部6が設けられている。第
6図は焦電型赤外線検出素子アレイ部1oと信号電荷読
み出し用のシフトレジスタ一部11とを結合部12で電
気的に結合し、順次信号電荷を読み出すように構成した
焦電型赤外線検出器の一従来例の結線図を示すものであ
る。ここで、13は焦電素子アレイ、14は焦電素子ア
レイ13の電極、16はスイッチ用FICT116はリ
ード線、17はシフトレジスター、18は信号出力端を
示し、信号出力は各焦電素子13で発生する信号電荷を
シフトレジスター17により、超音波ボンディング等で
形成されたリード線16を通して順次読み出し、信号出
力端18から取り出すように構成されている。
The pyroelectric element 1 is heated by irradiation with infrared rays, and a hollow portion 6 is provided in the support plate 2 for the purpose of preventing heat from escaping due to downward heat conduction and improving sensitivity. FIG. 6 shows a pyroelectric infrared detection element configured to electrically connect a pyroelectric infrared detection element array section 1o and a shift register part 11 for reading signal charges at a coupling section 12, and read out signal charges sequentially. 1 shows a wiring diagram of a conventional example of a device. Here, 13 is a pyroelectric element array, 14 is an electrode of the pyroelectric element array 13, 16 is a lead wire for the switch FICT 116, 17 is a shift register, and 18 is a signal output terminal, and the signal output is from each pyroelectric element 13. The shift register 17 sequentially reads out the signal charges generated by the shift register 17 through a lead wire 16 formed by ultrasonic bonding or the like, and outputs them from the signal output terminal 18.

発明が解決しようとする問題点 しかし、以上のような構成では焦電素子アレイの数が多
くなり、かつ焦電素子自身が小さくなってくると焦電型
赤外線検出素子アレイ部と信号電荷読み出し部とを、超
音波ボンディング等の方法によってリード線で結合する
ことは煩雑かつ困難になるだけでなく、赤外線検出器の
大きさも大きくなってしまうという問題があった。また
、赤外線検出器に赤外線とともに可視光も入射させると
信号電荷読み出し部が可視光に感じてしまい、赤外線検
出器が誤動作を起こしてしまうという問題があった。
Problems to be Solved by the Invention However, in the above configuration, as the number of pyroelectric element arrays increases and the pyroelectric elements themselves become smaller, the pyroelectric infrared detection element array section and the signal charge readout section There is a problem in that not only is it complicated and difficult to connect the two using lead wires using a method such as ultrasonic bonding, but also the size of the infrared detector becomes large. Furthermore, when visible light is incident on an infrared detector along with infrared rays, the signal charge reading section senses the visible light, causing the infrared detector to malfunction.

本発明は上記問題を一挙に解決するもので、焦電型赤外
線検出素子アレイ部と信号電荷読み出し部との電気的結
合を容易にし、赤外線検出器の大きさをコンパクトにす
るとともに、信号電荷読み出し部の可視光による影響を
排除するものである。
The present invention solves the above-mentioned problems all at once, and facilitates the electrical connection between the pyroelectric infrared detection element array section and the signal charge readout section, making the size of the infrared detector compact, and the signal charge readout section. This eliminates the influence of visible light in the area.

問題点を解決するための手段 本発明は上記問題点を解決するため、同一半導体基板上
に信号電荷読み出し機能部と基板を貫通する貫通領域を
設けた赤外線検出部とを隣接して形成し、両者の電気的
接続を蒸着膜あるいは導電性接着剤で一括形成し、入射
赤外線が信号電荷読み出し機能部の形成されている半導
体表面と反対側から入射するように構成したことにより
、上記目的を達成するものである。
Means for Solving the Problems In order to solve the above problems, the present invention forms a signal charge readout function section and an infrared detection section having a penetration region that penetrates the substrate adjacently on the same semiconductor substrate, The above objective is achieved by forming the electrical connection between the two at once using a vapor deposited film or conductive adhesive, and by configuring the structure so that the incident infrared rays enter from the side opposite to the semiconductor surface where the signal charge readout function section is formed. It is something to do.

作用 本発明は上記構成により、信号電荷読み出し機能部と赤
外線検出部との電気的接続が一括形成することができる
ため、焦電型赤外線検出素子数が多くなったシ、微細化
した場合、従来のように超音波ボンディング等で個々に
リード線を形成して電気的接続を図ることと比べ、はる
かに容易にその電気的接続が可能となる。さらに、従来
のように信号電荷読み出し機能部と赤外線検出部とを別
々に形成し、同一パッケージ内等にマウントした後両者
の電気的接続を図ることと比べ、本発明は同一半導体基
板内に両者を一括して形成することができるため、全体
の構成をコンパクトにすることができる。また、信号電
荷読み出し機能部の形成されている半導体表面と反対側
から赤外線を入射する構成であるため、信号電荷読み出
し部の可視光による影響を防止することができる。
Effect of the Invention With the above-mentioned configuration, the present invention can form an electrical connection between the signal charge readout function section and the infrared detection section at once. Compared to forming individual lead wires using ultrasonic bonding or the like to establish electrical connections, electrical connections can be made much more easily. Furthermore, compared to the conventional method in which the signal charge readout function section and the infrared detection section are formed separately and electrically connected after mounting them in the same package, the present invention allows both to be formed within the same semiconductor substrate. can be formed all at once, so the overall configuration can be made compact. Furthermore, since the configuration is such that infrared rays are incident from the side opposite to the semiconductor surface where the signal charge readout function section is formed, it is possible to prevent the influence of visible light on the signal charge readout section.

実施例 第1図を用いて本発明の詳細な説明する。第1図は本発
明の焦電型赤外線検出器の一実施例を示す断面図で、a
は焦電型赤外線検出素子を信号電荷読み出し機能部が形
成されている半導体基板表面側と同一面側に形成した場
合の例であり、bは反対側に形成した場合の例である。
EXAMPLE The present invention will be explained in detail using FIG. FIG. 1 is a cross-sectional view showing one embodiment of the pyroelectric infrared detector of the present invention.
b is an example in which the pyroelectric infrared detecting element is formed on the same side as the front surface of the semiconductor substrate on which the signal charge readout function section is formed, and b is an example in which it is formed on the opposite side.

同一箇所は同一番号で示す。2Qは半導体基板、21は
信号電荷読み出し部、22は焦電型赤外線検出素子、2
3.24は電極、26は貫通部、28.27は電気的接
続部、28は導電部、29,30.31は接着剤を示す
。半導体基板2oとしてn型あるいはp型の100面あ
るいは11Q面のSi基板を用いた。Siに異方性化学
エッチを施すとその結晶方位面によって第2図a、bの
ような形にエツチングが行なわれる。即ち、結晶方位面
が1o。
Identical parts are indicated by the same numbers. 2Q is a semiconductor substrate, 21 is a signal charge readout section, 22 is a pyroelectric infrared detection element, 2
3.24 is an electrode, 26 is a penetration portion, 28.27 is an electrical connection portion, 28 is a conductive portion, and 29, 30.31 is an adhesive. An n-type or p-type 100-plane or 11Q-plane Si substrate was used as the semiconductor substrate 2o. When Si is subjected to anisotropic chemical etching, the etching takes place in the shapes shown in FIG. 2, a and b, depending on the crystal orientation plane. That is, the crystal orientation plane is 1o.

のSi基板40を酸化層41をマスクとして異方性化学
エッチを施すと第2図aのような形でθが64〜65°
のエツチングができる。又、結晶方位面が110のSi
基板42を酸化層43をマメクとして異方性化学エッチ
を施すと第2図すのような形でエツチングができる。
When the Si substrate 40 is subjected to anisotropic chemical etching using the oxide layer 41 as a mask, θ is 64 to 65 degrees as shown in Figure 2a.
Can be etched. In addition, Si with a crystal orientation of 110
When the substrate 42 is subjected to anisotropic chemical etching using the oxide layer 43 as a filler, etching can be achieved as shown in FIG.

(実施例1) 厚さ300μmのSi ウェハーを熱酸化法にて全面酸
化被膜を形成し、次に微細加工技術を用いて、Siウェ
ハーの赤外線検出素子が構成される部分の片面の酸化膜
を除去し、エチレンジアミンとビテカロールと水よりな
る異方性化学エッチ液K ヨッテ1.2 jFll X
 6.6 nr、深さ240μmの凹部を形成した。次
に、上記凹部を形成した部分と対向して、Siウェハー
の反対の面の酸化膜を微細加工技術を用いて除去した後
、再び上記異方性エツチング液にて両面からさらに30
μmエツチングを行った。その結果、一方の面の開口部
が1.2m1ll X 6,6 II+、深さ270μ
mの凹部と他方の面の開口部が1,1j11×6.51
11.深さ30μmの凹部がつながってできた第1図に
示すような貫通部26を形成した。″また一般に良く知
られている微細加工技術を用いて上記貫通部に近接して
信号電荷読み出し部21としてシフトレジスター及び導
電部28を形成した。一方、別途厚さ30μmのPbT
工03セラミックスあるいはLiTa0 、結晶1ff
×6.4Inの両面に50μm間隔で各焦電型赤外線検
出素子22の電極23および24としてニクロムを蒸着
形成した。これを第1図aに示すように3i基板の貫通
部26のうち深さ30μmの段差の側に導電性接着剤2
7及び接着剤29を用いて固定した。さらに1メタルマ
スクを用いてアルミニウム蒸着を行い第3図(第1図と
同一箇所は同一番号で示す。)に示すように、シフトレ
ジスター21と焦電型赤外線検出部の電極23との間の
電気的接続(26に相当)をはかって、128個の焦電
型赤外線検出素子アレイからなる焦電型赤外線検出器を
作製した。
(Example 1) An oxide film was formed on the entire surface of a Si wafer with a thickness of 300 μm using a thermal oxidation method, and then an oxide film was formed on one side of the portion of the Si wafer where an infrared detection element was constructed using microfabrication technology. Anisotropic chemical etchant K Yotte 1.2 jFll X
A recess with a thickness of 6.6 nr and a depth of 240 μm was formed. Next, the oxide film on the opposite side of the Si wafer, facing the part where the recesses were formed, was removed using microfabrication technology, and then the anisotropic etching solution was used again to remove the oxide film from both sides for 30 minutes.
μm etching was performed. As a result, the opening on one side is 1.2ml x 6,6 II+, depth 270μ
The recess of m and the opening of the other side are 1,1j11×6.51
11. A penetrating portion 26 as shown in FIG. 1 was formed by connecting concave portions each having a depth of 30 μm. "Also, a shift register and a conductive part 28 were formed as a signal charge readout part 21 in the vicinity of the through part using a generally well-known microfabrication technique. On the other hand, a 30 μm thick PbT
Engineering 03 ceramics or LiTa0, crystal 1ff
Nichrome was vapor-deposited as electrodes 23 and 24 of each pyroelectric infrared detection element 22 on both sides of the x6.4In at intervals of 50 μm. As shown in FIG.
7 and adhesive 29. Furthermore, aluminum is vapor-deposited using a metal mask, and as shown in FIG. 3 (the same parts as in FIG. Electrical connections (corresponding to 26) were made to produce a pyroelectric infrared detector consisting of an array of 128 pyroelectric infrared detection elements.

(実施例2) 第1図すに示すように、シフトレジスター21の形成位
置を半導体基板20において実施例1と反対側に形成し
、貫通部26の30μmの段差側に、50μm間隔でニ
クロム電極23.24を形成した焦電型赤外線検出素子
22を持つ、1fl×e、4xxr ノPbTi0.セ
ラミックスあるいはLiTa0 。
(Example 2) As shown in FIG. 1, the shift register 21 was formed on the opposite side of the semiconductor substrate 20 to that in Example 1, and nichrome electrodes were formed at 50 μm intervals on the 30 μm step side of the through portion 26. 1fl×e, 4xxr PbTi0. Ceramics or LiTa0.

単結晶を接着剤30.31で固定し、さらにメタルマス
クを用いて、アルミニウム蒸着を行い、電気的接続部2
8.27を形成して128個の焦電型赤外線検出素子ア
レイからなる焦電型赤外線検出器を作製した。
The single crystal is fixed with adhesive 30, 31, and then aluminum evaporation is performed using a metal mask to form the electrical connection part 2.
A pyroelectric infrared detector consisting of an array of 128 pyroelectric infrared detection elements was fabricated by forming 8.27.

(実施例3) 第4図を用いて別の実施例を示す。実施例1に示すよう
な方法で異方性エッチを行ってシリコン基板50に貫通
部66を形成した後、一般に良く知られている微細加工
技術を用いて上記貫通部66に近接してシフトレジスタ
ー61及び導電部58を形成した。次に厚さ30μmの
pbTio 3セラミツクスあるいはLiTa0.単結
晶1jFIX:(5,4gの両面に第4図すに示すよう
に端の一部を除いて全面にニクロムを蒸着して電極53
.64を形成した。次に、これを貫通部65のうち深さ
30μmの段差の側に接着剤69.60で半導体基板6
゜に接着固定し、さらに、メタルマスクを用いてアルミ
ニウム蒸着を行って、シフトレジスター61と電極53
との間の電、気的接続66及び電極64と導電部68と
の間の電気的接続67を図った。
(Example 3) Another example will be shown using FIG. After forming the penetration part 66 in the silicon substrate 50 by performing anisotropic etching using the method shown in Example 1, a shift register is formed in the vicinity of the penetration part 66 using a generally well-known microfabrication technique. 61 and conductive portion 58 were formed. Next, 30 μm thick pbTio 3 ceramics or LiTa0. Single crystal 1jFIX: (As shown in Figure 4 on both sides of 5.4g, nichrome is vapor-deposited on the entire surface except for a part of the edge, and electrode 53 is formed.
.. 64 was formed. Next, apply adhesive 69.60 to the semiconductor substrate 6 on the side of the step with a depth of 30 μm in the through part 65.
The shift register 61 and the electrode 53 are fixed by adhesive and fixed to
An electrical connection 66 between the electrode 64 and the conductive portion 68 was made.

その後、ダイシングソーを用いて半導体基板60に接着
固定されたPbTiO3セラミックスあるいはL IT
 a O5単結晶62を半導体基板60ごと深さ36μ
m、ピッチ100μmで切削分離し、64個の焦電型赤
外線検出素子アレイからなる焦電型赤外線検出器を作製
した。
Thereafter, PbTiO3 ceramics or LIT is adhesively fixed to the semiconductor substrate 60 using a dicing saw.
a O5 single crystal 62 with semiconductor substrate 60 to a depth of 36μ
A pyroelectric infrared detector consisting of an array of 64 pyroelectric infrared detection elements was fabricated by cutting and separating at a pitch of 100 μm.

発明の効果 以上のように本発明は、同一半導体基板に貫通部の上に
設けた焦電型赤外線検出素子アレイ部と信号電荷読み出
し部とを形成し、両者の電気的接続を一括形成すること
により両者の電気的結合を容易にし、かつその大きさを
コンパクトにするという効果を生むとともに、信号電荷
読み出し部の形成さnている半導体表面と反対側から赤
外線を入射する構成としたため、信号電荷読み出し邪の
可視光による影響を防止するという効果を生むものであ
る。
Effects of the Invention As described above, the present invention is to form a pyroelectric infrared detecting element array section and a signal charge readout section provided on the through portion on the same semiconductor substrate, and to form an electrical connection between the two at once. This has the effect of facilitating the electrical coupling between the two and making the size compact.In addition, since the infrared rays are incident from the side opposite to the semiconductor surface where the signal charge readout section is formed, the signal charge This produces the effect of preventing the influence of visible light on reading.

なお、上述の説明では信号電荷読み出し部と・してシフ
トレジスターについて説明したが、CCI)を用いても
本発明の効果を失うものではなく、十分にその効果を発
揮する。また、本発明は信号電荷読み出し部と焦電型赤
外線検出部が一次元に並んだ例を示したが、これらを多
数、二次元に配した場合も本発明の効果が失うものでは
ないことは熱論である。
In the above description, a shift register has been described as a signal charge readout section, but even if a CCI is used, the effects of the present invention will not be lost and the effects will be sufficiently exhibited. Further, although the present invention has shown an example in which the signal charge readout section and the pyroelectric infrared detection section are arranged in one dimension, the effects of the present invention will not be lost even if a large number of these are arranged in two dimensions. This is a passionate argument.

【図面の簡単な説明】[Brief explanation of the drawing]

る結晶方位面の違いによる異方性エツチングによる断面
形状図、第3図は本発明の一実施例における赤外線検出
器の平面図、第・4図a、bは各々本素子アレイ部を示
す概略図、第6図は従来の焦電型赤外線検出器の構成図
である。 1・・・・・・焦電素子、2・・・・・・支持板、6・
・・・・・中空、10・・・・・・焦電型赤外線検出素
子アレイ部、11゜61・・・・・・シフトレジスタ一
部、12・・・・・・結合部、20.60・・・・・・
半導体基板、21・・・・・・信号電荷読み出し部、2
2.52・・・・・・焦電型赤外線検出素子、26.2
7.56.57・・・・・・電気的接続部、26゜66
・・・・・・貫通部。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 M、vVfタトHB 第2図 第3図 第4図 第5図 乙      J、? 第6図 /θ
Figure 3 is a plan view of an infrared detector according to an embodiment of the present invention, and Figures 4a and 4b are schematic diagrams showing the element array portion of the present invention. 6 are configuration diagrams of a conventional pyroelectric infrared detector. 1...Pyroelectric element, 2...Support plate, 6.
...Hollow, 10...Pyroelectric infrared detection element array part, 11゜61...Part of shift register, 12...Coupling part, 20.60・・・・・・
Semiconductor substrate, 21...Signal charge reading section, 2
2.52...Pyroelectric infrared detection element, 26.2
7.56.57... Electrical connection, 26°66
・・・・・・Penetration part. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure M, vVf Tato HB Figure 2 Figure 3 Figure 4 Figure 5 Otsu J,? Figure 6/θ

Claims (3)

【特許請求の範囲】[Claims] (1)半導体基板に信号電荷の読み出し部と半導体基板
の表裏を貫通する貫通領域とを具備し、貫通領域を覆っ
て宙吊状態とした複数の焦電型赤外線検出素子がその両
端で半導体基板に固定され、焦電型赤外線検出素子の両
面に薄膜電極が形成され、かつ一方が前記信号電荷読み
出し部と電気的に接続されていることを特徴とする焦電
型赤外線検出器。
(1) A semiconductor substrate is equipped with a signal charge readout section and a penetration region that penetrates the front and back sides of the semiconductor substrate, and a plurality of pyroelectric infrared detection elements suspended in the air covering the penetration region are connected to the semiconductor substrate at both ends. 1. A pyroelectric infrared detector, characterized in that the pyroelectric infrared detector is fixed to a pyroelectric infrared detector, thin film electrodes are formed on both sides of the pyroelectric infrared detector, and one side is electrically connected to the signal charge readout section.
(2)半導体基板の表裏を貫通する貫通領域が異方性エ
ッチにより腐蝕除去されていることを特徴とする特許請
求の範囲第1項記載の焦電型赤外線検出器。
(2) A pyroelectric infrared detector according to claim 1, characterized in that a penetrating region penetrating the front and back surfaces of the semiconductor substrate is etched away by anisotropic etching.
(3)半導体基板の一方の面に信号電荷の読み出し部が
形成され、他方の面に貫通領域を覆って宙吊状態とした
複数の赤外線検出素子が互いに分離されて形成されてい
ることを特徴とする特許請求の範囲第1項記載の焦電型
赤外線検出器。
(3) A signal charge readout section is formed on one side of the semiconductor substrate, and a plurality of infrared detection elements are formed on the other side, covering the penetration area and suspended in the air, separated from each other. A pyroelectric infrared detector according to claim 1.
JP3691185A 1985-02-26 1985-02-26 Pyroelectric type infrared detector Pending JPS61195318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3691185A JPS61195318A (en) 1985-02-26 1985-02-26 Pyroelectric type infrared detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3691185A JPS61195318A (en) 1985-02-26 1985-02-26 Pyroelectric type infrared detector

Publications (1)

Publication Number Publication Date
JPS61195318A true JPS61195318A (en) 1986-08-29

Family

ID=12482953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3691185A Pending JPS61195318A (en) 1985-02-26 1985-02-26 Pyroelectric type infrared detector

Country Status (1)

Country Link
JP (1) JPS61195318A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5293041A (en) * 1991-11-04 1994-03-08 Honeywell Inc. Thin film pyroelectric imaging array
US5558905A (en) * 1994-03-08 1996-09-24 The United States Of America As Represented By The Secretary Of The Army Method of making a pyroelectric film sensing device
USRE36136E (en) * 1986-07-16 1999-03-09 Honeywell Inc. Thermal sensor
USRE36615E (en) * 1985-09-30 2000-03-14 Honeywell Inc. Use of vanadium oxide in microbolometer sensors
USRE36706E (en) * 1988-11-07 2000-05-23 Honeywell Inc. Microstructure design for high IR sensitivity
JP2015129770A (en) * 2015-03-13 2015-07-16 セイコーインスツル株式会社 Optical sensor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57120830A (en) * 1981-01-20 1982-07-28 Matsushita Electric Ind Co Ltd Detecting element for pyroelectric type linear array infrared ray and its preparation
JPS5935119A (en) * 1982-08-24 1984-02-25 Matsushita Electric Ind Co Ltd Pyroelectric type infrared ray detector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57120830A (en) * 1981-01-20 1982-07-28 Matsushita Electric Ind Co Ltd Detecting element for pyroelectric type linear array infrared ray and its preparation
JPS5935119A (en) * 1982-08-24 1984-02-25 Matsushita Electric Ind Co Ltd Pyroelectric type infrared ray detector

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE36615E (en) * 1985-09-30 2000-03-14 Honeywell Inc. Use of vanadium oxide in microbolometer sensors
USRE36136E (en) * 1986-07-16 1999-03-09 Honeywell Inc. Thermal sensor
USRE36706E (en) * 1988-11-07 2000-05-23 Honeywell Inc. Microstructure design for high IR sensitivity
US5293041A (en) * 1991-11-04 1994-03-08 Honeywell Inc. Thin film pyroelectric imaging array
US5558905A (en) * 1994-03-08 1996-09-24 The United States Of America As Represented By The Secretary Of The Army Method of making a pyroelectric film sensing device
JP2015129770A (en) * 2015-03-13 2015-07-16 セイコーインスツル株式会社 Optical sensor device

Similar Documents

Publication Publication Date Title
JP2001201397A (en) Infrared sensor
CN102197291A (en) Infrared sensor
WO2010114001A1 (en) Infrared array sensor
JP2004031452A (en) Rear face incident type imaging device
JP4581215B2 (en) Manufacturing method of semiconductor device having thin film sensing section
JPS61195318A (en) Pyroelectric type infrared detector
JP3186415B2 (en) Manufacturing method of infrared detecting element
JPS6212454B2 (en)
JPH01136035A (en) Pyroelectric detection element and manufacture thereof
JP2568292B2 (en) Thermo-pile type infrared sensor
KR100759013B1 (en) Non-contact ir temperature sensor and method for manufactruing the same
JPH01100426A (en) Array like pyroelectric type infrared detector
JP3809718B2 (en) Infrared detector
JP2663612B2 (en) Infrared sensor
JPH11258055A (en) Thermopile type temperature sensor
JPS6217177B2 (en)
JPH0518816A (en) Pyroelectric array sensor
JPH0129413B2 (en)
JPS61255063A (en) Pyroelectric infrared pickup element
JPS61182536A (en) Pyroelectric type infrared-ray detector
JPH04158584A (en) Infrared-ray detecting element
JPS62119421A (en) Pyroelectric type linear array infrared detection element
JPH08261832A (en) Infrared sensor and its manufacture
JP2616654B2 (en) One-dimensional pyroelectric sensor array
JP3435997B2 (en) Infrared detector