JPS6217177B2 - - Google Patents

Info

Publication number
JPS6217177B2
JPS6217177B2 JP56007739A JP773981A JPS6217177B2 JP S6217177 B2 JPS6217177 B2 JP S6217177B2 JP 56007739 A JP56007739 A JP 56007739A JP 773981 A JP773981 A JP 773981A JP S6217177 B2 JPS6217177 B2 JP S6217177B2
Authority
JP
Japan
Prior art keywords
pyroelectric
linear array
plate
photosensitive
support substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56007739A
Other languages
Japanese (ja)
Other versions
JPS57120830A (en
Inventor
Kunio Nakamura
Eizo Yamaga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP56007739A priority Critical patent/JPS57120830A/en
Publication of JPS57120830A publication Critical patent/JPS57120830A/en
Publication of JPS6217177B2 publication Critical patent/JPS6217177B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/34Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using capacitors, e.g. pyroelectric capacitors

Description

【発明の詳細な説明】 本発明は多数の焦電型赤外線検出素子を線状に
配列した焦電型リニアアレイ赤外線検出素子およ
びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a pyroelectric linear array infrared detecting element in which a large number of pyroelectric infrared detecting elements are arranged in a line, and a method for manufacturing the same.

焦電型光検出素子は、熱型の光検出素子で、そ
の感度の光波長依存性が少ないことと、常温動作
の赤外線検出素子としては比較的応答速度がはや
く、高感度であるという特徴を有し、単一素子と
して使用されると同様に、複数の素子群がリニア
アレイ状にならんだ状態の焦電型リニアアレイ赤
外線検出素子が考案されている。
A pyroelectric photodetector is a thermal photodetector with the characteristics that its sensitivity is less dependent on light wavelength, and that it has a relatively fast response speed and high sensitivity for an infrared detector that operates at room temperature. A pyroelectric linear array infrared detecting element has been devised in which a plurality of element groups are arranged in a linear array, as well as when used as a single element.

リニアアレイ赤外線検出素子の場合、光学系と
の関係で空間分解能をよくするためになるべく微
細な配列にすることが望ましい。
In the case of a linear array infrared detection element, it is desirable to make the arrangement as fine as possible in order to improve the spatial resolution in relation to the optical system.

しかし、微細な配列にすると相隣る素子間の主
として熱拡散によるクロストークが問題になる。
However, when a fine array is used, crosstalk between adjacent elements mainly due to thermal diffusion becomes a problem.

従来のリニアアレイ素子は、第1図a,bに示
すように微細な素子11を1個ずつ支持板12の
上に並べた状態のもの、第2図a,bのように長
細い焦電単一板21をそのまゝ用いて、一方の面
にアース電極23を形成し、他方の面に信号取出
し電極22のみをリニアアレイ状に配置したも
の、第3図に示すようにその焦電単一板21をリ
ニアアレイ状に厚さの一部を残して分離したも
の、又は第4図a,bに示すように両面に電極4
2,43を形成した焦電単一板41を支持板44
に固定した後焦電極41を機械的にリニアアレイ
状に完全分離したものなどが一般的である。
Conventional linear array elements include those in which minute elements 11 are arranged one by one on a support plate 12, as shown in Figures 1a and b, and long and narrow pyroelectric elements as shown in Figures 2a and b. As shown in FIG. 3, a single plate 21 is used as it is, with a ground electrode 23 formed on one surface and only signal extraction electrodes 22 arranged in a linear array on the other surface. A single plate 21 separated into a linear array with a part of its thickness left, or electrodes 4 on both sides as shown in FIGS. 4a and 4b.
The pyroelectric single plate 41 formed with 2 and 43 is attached to the support plate 44.
It is common that the post-focal electrodes 41 are fixed and completely separated mechanically into a linear array.

第1図の分離型素子は、素子製作上から、微細
配列が困難であり、通常要求される微細度0.1mm
程度のピツチで、100素子程度ならべることは、
非常に困難である。
The separation type element shown in Figure 1 is difficult to finely arrange due to element manufacturing, and the normally required fineness is 0.1 mm.
It is possible to arrange about 100 elements at a certain pitch.
Very difficult.

一方第2図のような単一板構成は比較的簡単に
微細配列を構成できるが焦電材料が単一板である
ため相隣る素子間のクロストークが大きい。この
クロストークはほとんど焦電素子板21内の熱拡
散が原因になつている。
On the other hand, a single plate structure as shown in FIG. 2 allows a fine array to be formed relatively easily, but since the pyroelectric material is a single plate, crosstalk between adjacent elements is large. This crosstalk is mostly caused by thermal diffusion within the pyroelectric element plate 21.

そこで、第3図に示すように素子の分離のため
に、焦電素子板21を厚さ方向に関して一部を残
して分離する構成が工夫されているが、これも焦
電素子21が完全には分離されていないので、ク
ロストークが根本的には解消されない。そこで、
第4図のように熱伝導度の小さい支持板44で支
持をして焦電素子板41を完全分離するような工
夫もされているが、支持板44を通しての熱拡散
によるクロストークが防げない。
Therefore, as shown in FIG. 3, in order to separate the elements, a configuration has been devised in which the pyroelectric element plate 21 is separated leaving a part in the thickness direction. are not separated, so crosstalk cannot be fundamentally eliminated. Therefore,
As shown in Fig. 4, an attempt has been made to completely separate the pyroelectric element plate 41 by supporting it with a support plate 44 with low thermal conductivity, but this does not prevent crosstalk due to heat diffusion through the support plate 44. .

本発明はこのような欠点を解消するためになさ
れたもので、熱拡散によるクロストークを低減
し、かつ感度の向上をはかることを目的としてい
る。本発明は各素子の感光部が空間的に分離され
た構造で、かつ感度向上と一層の熱絶縁向上もね
らつて、感光部が宙吊りになり、微細配列が比較
的容易な構成の焦電型リニアアレイ素子及びその
製造法を提供する。以下実施例をもとに本発明を
詳細に説明する。
The present invention has been made to eliminate these drawbacks, and aims to reduce crosstalk caused by thermal diffusion and improve sensitivity. The present invention is a pyroelectric type in which the photosensitive parts of each element are spatially separated, and with the aim of improving sensitivity and further improving thermal insulation, the photosensitive parts are suspended in the air, making fine arrangement relatively easy. A linear array element and a method for manufacturing the same are provided. The present invention will be explained in detail below based on Examples.

実施例 1 第5図は本発明の一実施例における焦電型リニ
アアレイ赤外線検出素子の構造を示す。支持基板
54の中央部には、焦電素子感光部57が宙吊り
になるよう窓56が打抜かれており、焦電材料5
1は、中央の感光部のみ分離されている。
Embodiment 1 FIG. 5 shows the structure of a pyroelectric linear array infrared detection element in an embodiment of the present invention. A window 56 is punched out in the center of the support substrate 54 so that the pyroelectric element photosensitive section 57 is suspended in the air, and the pyroelectric material 5
1, only the central photosensitive area is separated.

出力信号電極52は各々素子毎に分離されてお
り、各素子のアース電極53は支持基板54の中
央部50の周辺で連結されて共通になつている。
The output signal electrodes 52 are separated for each element, and the ground electrodes 53 of each element are connected around the central portion 50 of the support substrate 54 to be common.

出力信号電極52のうち窓56に対向する部分
は感光部となり窓56に対向しない部分はリード
線接続部分となり通常アルミニウム蒸着されて、
超音波ボンデイング法またはその他の方法で、微
細金線又は微細アルミニウム線が接続され、駆動
回路系につながつて信号が時間順次で読み出され
るようになる。
The part of the output signal electrode 52 facing the window 56 becomes a photosensitive part, and the part not facing the window 56 becomes a lead wire connection part, which is usually vapor-deposited with aluminum.
Fine gold wires or fine aluminum wires are connected by ultrasonic bonding or other methods and connected to a driving circuit system so that the signals can be read out in a time-sequential manner.

支持板54には、焦電素子51の端部が導電性
接着剤55で接着固定されており、これで感光部
57が宙吊り状態に保持されているわけである。
The end of the pyroelectric element 51 is adhesively fixed to the support plate 54 with a conductive adhesive 55, and the photosensitive section 57 is held in a suspended state.

このように感光部が分離されかつ宙吊りになつ
ていると、第1図、第4図に示すような分離型又
は支持板付切込単一板型と比較して、感光部にお
いては本発明による素子は支持板との接触がない
ので、赤外入力による素子温度上昇は熱の拡散が
少ないだけ大きく、従つて感度が高い、この場
合、感光部からリニアアレイ方向と直角方向への
熱伝導は小さくなるよう支持端までの距離を素子
厚およびピツチ巾にくらべて大きくするよう配慮
するとその効果は更に大となる。また放射による
熱の拡散は伝導拡散にくらべて通常無視しうるほ
ど小さいので、支持板への熱拡散がないことの効
果は著しいわけである。
When the photosensitive area is separated and suspended in this way, the photosensitive area according to the present invention is different from the separated type shown in FIGS. 1 and 4 or the notched single plate type with a support plate. Since the element has no contact with the support plate, the temperature rise of the element due to infrared input is large enough to minimize the diffusion of heat, resulting in high sensitivity. In this case, heat conduction from the photosensitive area in the direction perpendicular to the linear array direction is If consideration is given to making the distance to the support end larger than the element thickness and pitch width, the effect will be even greater. Furthermore, since the diffusion of heat by radiation is usually negligible compared to the diffusion by conduction, the effect of no heat diffusion to the support plate is significant.

第6図は第5図のような焦電型リニアアレイ赤
外検出素子61と駆動部60とを組合せた動作回
路図である。62はシフトレジスタで、その各出
力段はスイツチFET63のゲート電極に接続さ
れる。FET63のドレイン電極は焦電型リニア
アレイ赤外検出素子61の各素子に接続される。
FET63のソース電極は共通接続されビデオ信
号出力ライン66に接続される。焦電型リニアア
レイ赤外検出素子61からの出力はシフトレジス
タ62により次々に開かれるスイツチFET63
によりビデオ信号出力ライン66よりとり出され
る。
FIG. 6 is an operational circuit diagram of a combination of the pyroelectric linear array infrared detection element 61 and the drive section 60 as shown in FIG. 62 is a shift register, each output stage of which is connected to the gate electrode of a switch FET 63. A drain electrode of the FET 63 is connected to each element of the pyroelectric linear array infrared detection element 61.
Source electrodes of the FETs 63 are commonly connected and connected to a video signal output line 66. The output from the pyroelectric linear array infrared detection element 61 is transferred to a switch FET 63 which is successively opened by a shift register 62.
The video signal is taken out from the video signal output line 66.

第6図の駆動回路において、信号読み出しの速
度は、焦電素子61に照射する赤外線の変調周波
数に対応していなければならない。この変調周波
数は前記の赤外線検出感度を決める一つのパラメ
ータになつている。
In the drive circuit shown in FIG. 6, the signal readout speed must correspond to the modulation frequency of the infrared rays irradiated to the pyroelectric element 61. This modulation frequency is one parameter that determines the above-mentioned infrared detection sensitivity.

第7図は焦電型リニアアレイ赤外線検出素子の
電圧感度の周波数特性を示す。図において、曲線
Aは本発明による感光部が空間に宙吊りに浮いた
分離型素子、曲線Bは第4図のように焦電素子を
支持板に接着した従来の分離型素子の特性であ
る。また、縦軸は電圧感度RV(V/W)、横軸は
赤外線変調周波数(Hz)をそれぞれ対数で示
す。
FIG. 7 shows the frequency characteristics of the voltage sensitivity of the pyroelectric linear array infrared detection element. In the figure, curve A is the characteristic of a separate type element according to the present invention in which the photosensitive part is suspended in space, and curve B is the characteristic of a conventional separate type element in which a pyroelectric element is bonded to a support plate as shown in FIG. Further, the vertical axis shows the voltage sensitivity R V (V/W), and the horizontal axis shows the infrared modulation frequency (Hz) in logarithms.

第7図からわかるように、(=1/2πτ
)より低周波数で入力赤外線を変調した場合、
宙吊りの素子Aの電圧感度RVが支持板接着の素
子Bより優れている。すなわち、電圧感度RV
赤外線変調周波数が低いほど、宙吊りの素子A
の方が大きい。これは、各素子間の熱拡散が少い
ことによる。
As can be seen from Figure 7, 1 (=1/2πτ
1 ) If the input infrared rays are modulated at a lower frequency,
The voltage sensitivity R V of element A suspended in the air is superior to element B attached to a support plate. In other words, the lower the infrared modulation frequency, the lower the voltage sensitivity R V of the suspended element A.
is larger. This is because there is little heat diffusion between each element.

第7図のτ,τはそれぞれ支持板のある素
子Bの熱時定数τと宙吊りの素子Aの熱時定数
τであり、τ<τである。これは、熱拡散
の少い素子Aほど熱平衛状態に到達する時間が長
い即ち熱時定数が大きいという事実に基づいてい
る。
τ 1 and τ 2 in FIG. 7 are the thermal time constant τ 1 of the element B with the support plate and the thermal time constant τ 2 of the suspended element A, respectively, and τ 12 . This is based on the fact that the element A with less thermal diffusion takes longer to reach a thermal state, that is, has a larger thermal time constant.

なお、焦電素子の材質、素子面積、厚さ、素子
間隔が同じであれば、雑音はほゞ同じであるか
ら、宙吊り素子の赤外検出能は、電圧感度比で評
価してよいことになる。
Note that if the material, element area, thickness, and element spacing of the pyroelectric elements are the same, the noise will be almost the same, so the infrared detection ability of the suspended element can be evaluated by the voltage sensitivity ratio. Become.

クロストークについては、第2図の単一板型と
比較すれば明らかに改善されており、100μmピ
ツチで、素子間隔20μmの場合、単一板型のクロ
ストークの1/10から数十分の1に低減されてい
る。
Regarding crosstalk, it is clearly improved when compared to the single-plate type shown in Figure 2, and when the pitch is 100 μm and the element spacing is 20 μm, the crosstalk is 1/10 to several tens of minutes of the single-plate type. It has been reduced to 1.

また、第1図、第3図、第4図の素子とくらべ
ても、支持板12,44又は残存する焦電層21
を通じてのクロストークが解消されている分だ
け、本発明の素子構造の方が優れている。
Also, compared to the elements shown in FIGS. 1, 3, and 4, the supporting plates 12, 44 or the remaining pyroelectric layer 21
The element structure of the present invention is superior to the extent that crosstalk is eliminated.

次に第5図に示した本発明による焦電素子リニ
アアレイの製造方法を工程順に説明する。
Next, a method for manufacturing the pyroelectric element linear array according to the present invention shown in FIG. 5 will be explained in order of steps.

予め分極処理された焦電素子板51を薄くラツ
ピングし、両面に信号電極52及びアース電極5
3を蒸着する。信号電極52は、通常ニクロム蒸
着、ニツケル蒸着などをシート抵抗が数100Ω/
口になるような厚さに蒸着し赤外線吸収率を大き
くするよう配慮しておく。電極材料はカーボン塗
料、金属黒電極などでもよい。要するに、赤外線
吸収率が良く、信号取り出しのための導電性を有
していればよい。信号電極52のリード線取出し
部は、別にアルミニウム蒸着をほどこして、超音
波ボンデイング法などにより、微細金線又はアル
ミニウム線が接続できるようにするのが普通であ
るが、かならずしも必要としない。例えば導電性
接着剤を使用する場合、リード線取り出し部は、
受光部と同一の電極でもよい。この信号電極52
は、少くともリード線取り出し部は素子間隔以上
に分離されていなければならない。第5図に示す
ように各素子の両側端を利用して、一つおきに、
たがいちがいに一方の端部まで延在せしめてリー
ド線取り出し部を設けるとその間隔を十分大きく
とれる。
A pyroelectric element plate 51 that has been polarized in advance is wrapped thinly, and a signal electrode 52 and a ground electrode 5 are placed on both sides.
3 is deposited. The signal electrode 52 is usually made of nichrome vapor deposited, nickel vapor deposited, etc. with a sheet resistance of several hundred ohms/
Care must be taken to ensure that the infrared absorption rate is increased by depositing the film to a thickness that allows for smooth coating. The electrode material may be carbon paint, metal black electrode, etc. In short, it only needs to have good infrared absorption and conductivity for signal extraction. The lead wire extraction portion of the signal electrode 52 is usually separately deposited with aluminum so that a fine gold wire or aluminum wire can be connected by ultrasonic bonding, but this is not always necessary. For example, when using conductive adhesive, the lead wire take-out part should be
The same electrode as the light receiving part may be used. This signal electrode 52
In this case, at least the lead wire extraction portions must be separated by a distance greater than the element spacing. As shown in Figure 5, using both ends of each element, every other element is
If the lead wire take-out portions are provided so that they each extend to one end, the gap between them can be made sufficiently large.

アース電極53は、焦電素子板51の裏面全面
をアルミニウム又はニクロム蒸着して形成する。
The ground electrode 53 is formed by depositing aluminum or nichrome on the entire back surface of the pyroelectric element plate 51.

これを、あらかじめ中央部に窓56を打ち抜い
た支持板54に導電性接着剤55で固定する。
This is fixed with a conductive adhesive 55 to a support plate 54 in which a window 56 has been previously punched out in the center.

アースはアース電極53からこの導電性接着剤
55を経由して取り出すことができるし、又はあ
らかじめ支持板54の一部にプリント配線をほど
こし、焦電素子51のアース電極53と接触する
ようにしておいて、そのプリント配線から取るこ
ともできる。
The ground can be taken out from the ground electrode 53 via this conductive adhesive 55, or printed wiring can be placed on a part of the support plate 54 in advance so that it comes into contact with the ground electrode 53 of the pyroelectric element 51. It can also be taken from its printed wiring.

次に焦電素子板51の感光部を信号電極52の
ピツチにあわせて、切り込み分離しなければなら
ない。
Next, the photosensitive portion of the pyroelectric element plate 51 must be cut and separated in accordance with the pitch of the signal electrode 52.

例えばYAG又は炭酸ガスレーザ加工機にて切
り込みを入れる方法がある。この場合、除去され
た焦電材料が再付着しないよう、送風器で吹きと
ばしながら加工することが大切である。また、ア
ース電極53は支持板54の中空部50周辺にお
いて共通接続されるように切り込み分離を調整す
る。
For example, there is a method of making cuts using a YAG or carbon dioxide laser processing machine. In this case, it is important to blow away the removed pyroelectric material with an air blower during processing to prevent it from re-attaching. Further, the cut separation is adjusted so that the ground electrodes 53 are commonly connected around the hollow portion 50 of the support plate 54.

他の方法として、化学エツチングによる方法、
あるいは微動式円板カツタによる方法もある。
Other methods include chemical etching;
Alternatively, there is also a method using a finely moving disc cutter.

なお、この加工手順は、支持板54に固定され
る前に行なつてもよい。このようにして第5図に
示した感光部分離型リニアアレイ焦電素子を製作
することができる。
Note that this processing procedure may be performed before being fixed to the support plate 54. In this way, the photosensitive portion-separated linear array pyroelectric element shown in FIG. 5 can be manufactured.

実施例 2 また上記の加工法において、信号リード線取り
出し部の固定端部については、アース側まで切り
込みを入れず、信号電極の分離を目的として浅く
切れ目を入れてもよい。
Embodiment 2 In the above processing method, the fixed end of the signal lead wire extraction portion may not be cut all the way to the ground side, but a shallow cut may be made for the purpose of separating the signal electrodes.

この場合、中央感光部と切り込みの深さが異り
段差をつくらねばならないので、YAGレーザ又
は炭酸ガスレーザ加工機のパワーを調節して上記
の目的を達成することになる。更に化学エツチン
法を用いる場合は、二度にわけてエツチングする
ことによりこの目的を達成できる。
In this case, since the central photosensitive area and the depth of the cut are different and a step must be created, the power of the YAG laser or carbon dioxide laser processing machine is adjusted to achieve the above purpose. Furthermore, when using a chemical etching method, this purpose can be achieved by etching in two parts.

実施例 3 また上記の加工法において、第8図に示すよう
に支持板84は特に中空打ち抜き加工はせず、焦
電素子81を感光部87のアース側に凹部ができ
るように薄板化加工しておき、これを両面、全面
電極蒸着後、直線列状に切り込み分離する方法を
とることもできる。
Embodiment 3 In the above processing method, as shown in FIG. 8, the support plate 84 was not particularly hollow punched, but the pyroelectric element 81 was thinned so that a recess was formed on the ground side of the photosensitive section 87. It is also possible to use a method in which electrodes are deposited on both sides and the entire surface, and then cut in a linear row to separate the electrodes.

この場合、あらかじめ焦電素子81を、化学的
エツチング法又はイオンミーリング法で、アース
側を凹面状にケガキ落しておき、中央感光部87
のみ極薄板状にしておく。
In this case, the ground side of the pyroelectric element 81 is first etched into a concave shape using a chemical etching method or an ion milling method, and then the central photosensitive portion 87 is removed.
Cut it into an extremely thin plate.

この状態で、両面に電極82,83を付け、支
持板84に導電性接着剤85で固定し、焦電素子
感光部87を切り込み分離する。この場合、電極
83は中央感光部87周辺で共通接続しており、
導電性接着剤85と連続して支持板84部よりア
ースとしてとり出せるように構成する。焦電素子
の周辺は、厚板状態なので、中央感光部87が完
全に分離して宙吊りになつてもこの周辺部で支持
することができる。
In this state, electrodes 82 and 83 are attached to both surfaces and fixed to a support plate 84 with a conductive adhesive 85, and the pyroelectric element photosensitive portion 87 is cut and separated. In this case, the electrodes 83 are commonly connected around the central photosensitive section 87,
It is configured so that it can be taken out as a ground from the support plate 84 portion continuously with the conductive adhesive 85. Since the periphery of the pyroelectric element is in the form of a thick plate, even if the central photosensitive portion 87 is completely separated and suspended in the air, it can be supported by this periphery.

また焦電素子は感度をよくするため厚さをかな
り薄くしなければならない。たとえば30〜10μm
が適当とされているが、このような薄い素子を保
持板に貼り付けること自体かなり難しい。その点
実施例3の場合、焦電素子の周辺部が厚いので、
有利であるが、それでも取扱いは相当注意を要す
る。
Furthermore, the thickness of the pyroelectric element must be made considerably thinner in order to improve its sensitivity. For example 30~10μm
However, it is quite difficult to attach such a thin element to the holding plate. In this respect, in the case of Example 3, since the peripheral part of the pyroelectric element is thick,
Although advantageous, it still requires considerable care in handling.

そこである程度厚い焦電素子のアース面に電極
を付けておき、その面を保持板に接着し、保持板
に接着したまま焦電素子をラツピング薄板加工す
る方法が考えられる。この方法によれば、薄板を
単独で取扱う必要がなくなるので、作業がきわめ
て容易になる。
Therefore, a method can be considered in which an electrode is attached to the ground surface of a somewhat thick pyroelectric element, that surface is adhered to a holding plate, and the pyroelectric element is wrapped into a thin plate while being adhered to the holding plate. According to this method, there is no need to handle the thin plates individually, making the work extremely easy.

第9図にこの場合の素子の構造を示す。支持板
94は中央部90が打ち抜かれた状態になつてい
るが、これは焦電素子91が薄板化してから、エ
ツチング法などで中央感光部に対応する部分だけ
を除去するような工程順とする。又アース電極9
3をとるために実施例1又は2のような分離加工
法をとることもできるが、第9図に示すように焦
電素子は完全に分離した状態に切り離す構造をと
る場合は、支持板94を金属又は半導体又はその
他の導電材質にしてアースをとるようにする。
FIG. 9 shows the structure of the element in this case. The support plate 94 has a central portion 90 punched out, but this is due to the process order in which the pyroelectric element 91 is made thin and then only the portion corresponding to the central photosensitive area is removed using an etching method or the like. do. Also, earth electrode 9
3, it is possible to use a separation processing method as in Embodiment 1 or 2, but if a structure is adopted in which the pyroelectric element is completely separated as shown in FIG. 9, the support plate 94 Ground the terminal using metal, semiconductor, or other conductive material.

この支持板94は、あらかじめ中央部90を凹
面状にケズリ落した状態に加工しておいた方が、
後で中央部を完全に除去する時に有利である。
It is better to process the support plate 94 so that the central portion 90 is cut into a concave shape in advance.
This is advantageous when the central part is to be completely removed later.

加工手順を示すと次のようになる。 The processing procedure is as follows.

(1) 素子91は厚い(約150μ以上)状態でアー
ス側のみ全面電極93を付けておく。
(1) The element 91 is thick (approximately 150μ or more) and the electrode 93 is attached to the entire surface only on the ground side.

(2) 支持板94は、後に焦電素子感光部と接触す
る部分を反対側から削り落して薄くしておく。
これは、化学エツチング又は金属であれば機械
加工によつてもよい。
(2) The support plate 94 is thinned by scraping off the portion that will later contact the photosensitive portion of the pyroelectric element from the opposite side.
This may be by chemical etching or, if metal, by machining.

(3) 素子アース側と支持板94平坦側を導電性接
着剤95にて固定する。
(3) Fix the element ground side and the flat side of the support plate 94 with conductive adhesive 95.

(4) 焦電素子91をラツピングし薄板化する。(4) Wrapping the pyroelectric element 91 to make it a thin plate.

(5) 支持板エツチングにより、焦電素子感光部に
接している部分を除去する。
(5) Remove the part that is in contact with the photosensitive area of the pyroelectric element by etching the support plate.

(6) 信号電極92を焦電素子91の全面に蒸着す
る。
(6) A signal electrode 92 is deposited on the entire surface of the pyroelectric element 91.

(7) 焦電素子91を分離切込加工する。(7) Separate and cut the pyroelectric element 91.

なお上記工程を1→2→3→4→6→7→5の
順にしてもよいが、5のエツチング時に信号側電
極が損傷しないよう防護膜をほどこす等の処置が
必要になる。
Note that the above steps may be performed in the order of 1→2→3→4→6→7→5, but it is necessary to take measures such as applying a protective film to prevent damage to the signal side electrode during etching in step 5.

以上のように本発明の焦電型リニアアレイ赤外
線検出素子は、感光部が宙吊り状態で、お互に完
全に分離され、各素子の端部でのみ支持され、つ
ながつていることを特徴とし、その構造ゆえに感
度が高く、クロストークが少なく、すぐれた特性
が得られる。またこの素子の製法は、単一板を利
用して、それを比較的容易な加工法で分離し感光
部を宙吊り状態にすることができ、量産が実現し
やすい加工法である。
As described above, the pyroelectric linear array infrared detection element of the present invention is characterized in that the photosensitive parts are suspended in the air, completely separated from each other, and supported and connected only at the ends of each element, Because of its structure, it has high sensitivity, low crosstalk, and excellent characteristics. In addition, this method of manufacturing the device utilizes a single plate, which can be separated by a relatively easy processing method, and the photosensitive portion can be suspended in the air, making it easy to realize mass production.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図aは従来の焦電型リニアア
レイ赤外線検出素子の構造を示す平面図、同bは
同断面図、第3図は同断面図、第4図aは同平面
図、同bは同断面図、第5図aは本発明による焦
電型リニアアレイ赤外線検出素子の構造の一例を
示す平面図、同bはそのX―X′線断面図、第6
図は本発明による焦電型リニアアレイ赤外線検出
素子と駆動部とを組合せた動作回路図、第7図は
焦電型リニアアレイ赤外線検出素子の電圧感度の
周波数特性を示す図、第8図は本発明によるリニ
アアレイ素子の他の実施例における構造を示す断
面図、第9図aは他の実施例の平面図、同bはそ
のX―X′線断面図である。 11,21,41,51,81,91……焦電
素子、12,44,54,84,94……支持
板、22,42,52,82,92……信号電
極、23,43,53,83,93……アース電
極、55,85,95……導電性接着剤、60…
…駆動部、61……焦電型リニアアレイ赤外線検
出素子、62……シフトレジスタ、63……
FET。
1 and 2 a are plan views showing the structure of a conventional pyroelectric linear array infrared detection element, FIG. 2 b is a sectional view, FIG. 3 is a sectional view, and FIG. 4 a is a plan view, FIG. 5b is a sectional view of the same, FIG.
The figure is an operational circuit diagram of a combination of the pyroelectric linear array infrared detecting element and the drive unit according to the present invention, FIG. 7 is a diagram showing the frequency characteristics of voltage sensitivity of the pyroelectric linear array infrared detecting element, and FIG. 9A is a sectional view showing the structure of another embodiment of the linear array element according to the present invention. FIG. 9A is a plan view of the other embodiment, and FIG. 11, 21, 41, 51, 81, 91...Pyroelectric element, 12, 44, 54, 84, 94...Support plate, 22, 42, 52, 82, 92...Signal electrode, 23, 43, 53 , 83, 93... Earth electrode, 55, 85, 95... Conductive adhesive, 60...
...Drive unit, 61...Pyroelectric linear array infrared detection element, 62...Shift register, 63...
FET.

Claims (1)

【特許請求の範囲】 1 各素子の感光部が空間的に分離され、両面に
薄膜電極が形成されて直線列状に配列された焦電
型赤外線検出素子群と、中央部が中空の支持基板
とを備え、前記焦電型赤外線検出素子の感光部が
宙吊状態となるように前記焦電型赤外線検出素子
の両端を前記支持基板に固定したことを特徴とす
る焦電型リニアアレイ赤外線検出素子。 2 薄膜電極の一方が支持基板上で共通接続され
ている特許請求の範囲第1項記載の焦電型リニア
アレイ赤外線検出素子。 3 中央部が肉厚である感光素子板の肉薄部に直
線状に赤外線検出素子群を形成し、この素子群と
支持基板とを分離した特許請求の範囲第1項記載
の焦電型リニアアレイ赤外線検出素子。 4 支持基板が導電性を有する材質又は半導体で
構成され、焦電素子はその支持基板に電気的に導
通のある状態で接触固定されている特許請求の範
囲第1項記載の焦電型リニアアレイ赤外線検出素
子。 5 焦電素子板の一方の面に信号取出電極、他方
の面にアース電極を形成する工程、上記焦電素子
板を支持基板上に固定する工程、上記焦電素子板
の感光部を微小焦電素子のリニアアレイ配列とな
るよう分離する工程、上記焦電素子板の感光部と
支持基板とを非接触とする工程とを少くとも有す
ることを特徴とする焦電型リニアアレイ赤外線検
出素子の製造方法。 6 あらかじめ薄板化された焦電素子板に信号取
出電極をリニアアレイ状に配置蒸着し、アース電
極をその対向面全面に蒸着し、しかる後に、この
焦電素子板を中央部をあらかじめ中空に加工して
ある支持基板に固定し、しかる後に焦電素子板の
感光部のみを信号取出電極のパターンに対応して
分離加工する特許請求の範囲第5項記載の焦電型
リニアアレイ赤外線検出素子の製造方法。 7 あらかじめ薄板化された焦電素子板の両面全
面に信号取出電極及びアース電極を蒸着して、中
央部をあらかじめ中空に加工してある支持基板に
固定し、しかる後に焦電素子板の感光部をリニア
アレイ状に分離しかつ固定部はアース電極を分離
しないように信号電極だけを直線列状に分離すべ
く加工する特許請求の範囲第5項記載の焦電型リ
ニアアレイ赤外線検出素子の製造方法。 8 あらかじめ焦電素子板の感光部のみが薄板化
され、少くともアース電極側感光部は周辺固定部
より凹んでいる状態に加工し、両面全面に信号電
極及びアース電極を蒸着し、これを支持基板に固
定して、しかる後リニアアレイ状に感光部が完全
分離されかつ周辺固定部は一部分離されずに残る
よう加工してなる特許請求の範囲第5項記載の焦
電型リニアアレイ赤外線検出素子の製造方法。 9 あらかじめ焦電素子感光部と接する中央部の
片側が凹んだ状態に加工された支持板の平坦面側
に、片面にアース電極を全面蒸着した焦電素子板
をアース電極面側で固定し、かつ支持板とは周辺
部において電気的導通がとれているようにし、し
かるのち焦電素子板を薄板化し、この焦電素子板
上に信号電極を蒸着後焦電素子をリニアアレイ状
に分離する工程と支持板中央部に残された薄い支
持板をエツチングで除去する工程を行う特許請求
の範囲第5項記載の焦電型リニアアレイ赤外線検
出素子の製造方法。
[Scope of Claims] 1. A group of pyroelectric infrared detection elements arranged in a straight line with the photosensitive parts of each element separated spatially and thin film electrodes formed on both sides, and a support substrate with a hollow center. pyroelectric linear array infrared detection, characterized in that both ends of the pyroelectric infrared detection element are fixed to the support substrate so that the photosensitive part of the pyroelectric infrared detection element is suspended in the air. element. 2. The pyroelectric linear array infrared detection element according to claim 1, wherein one of the thin film electrodes is commonly connected on a support substrate. 3. A pyroelectric linear array according to claim 1, wherein a group of infrared detecting elements is formed linearly in a thin part of a photosensitive element plate having a thick center part, and this element group is separated from a support substrate. Infrared detection element. 4. The pyroelectric linear array according to claim 1, wherein the support substrate is made of a conductive material or a semiconductor, and the pyroelectric element is fixed in contact with the support substrate in an electrically conductive state. Infrared detection element. 5 Step of forming a signal extraction electrode on one side of the pyroelectric element plate and a ground electrode on the other side, a step of fixing the pyroelectric element plate on a support substrate, and a step of microfocusing the photosensitive part of the pyroelectric element plate. A pyroelectric linear array infrared detection element comprising at least the steps of separating the electronic elements into a linear array arrangement, and making the photosensitive portion of the pyroelectric element plate and the support substrate non-contact. Production method. 6 Signal extraction electrodes are arranged and deposited in a linear array on a pyroelectric element plate that has been thinned in advance, and a ground electrode is deposited on the entire surface facing the plate, and then this pyroelectric element plate is processed to be hollow in the center in advance. The pyroelectric linear array infrared detecting element according to claim 5, wherein the pyroelectric linear array infrared detecting element is fixed to a support substrate which has been provided with a pyroelectric element plate, and then only the photosensitive part of the pyroelectric element plate is separated in accordance with the pattern of the signal extraction electrode. Production method. 7. A signal extraction electrode and a ground electrode are vapor-deposited on both surfaces of the pyroelectric element plate, which has been thinned in advance, and fixed to a support substrate whose central part has been made hollow, and then the photosensitive part of the pyroelectric element plate is attached. manufacturing a pyroelectric linear array infrared detecting element according to claim 5, wherein the fixing part is processed to separate only the signal electrodes into a linear array without separating the ground electrode. Method. 8 In advance, only the photosensitive part of the pyroelectric element plate is thinned, and at least the photosensitive part on the ground electrode side is processed to be recessed from the peripheral fixing part, and the signal electrode and the ground electrode are deposited on the entire surface of both sides, and this is supported. The pyroelectric linear array infrared detecting element according to claim 5, which is fixed to a substrate and then processed so that the photosensitive parts are completely separated in the form of a linear array, and the peripheral fixed parts remain partially unseparated. manufacturing method. 9. A pyroelectric element plate, on which a ground electrode is completely vapor-deposited on one side, is fixed on the flat side of the support plate, which has been processed in advance so that one side of the central part in contact with the pyroelectric element photosensitive area is recessed, on the ground electrode side. In addition, electrical continuity is established with the support plate at the peripheral portion, and then the pyroelectric element plate is made thin, a signal electrode is deposited on the pyroelectric element plate, and the pyroelectric elements are separated into a linear array. 6. The method of manufacturing a pyroelectric linear array infrared detecting element according to claim 5, further comprising a step of removing the thin support plate left at the center of the support plate by etching.
JP56007739A 1981-01-20 1981-01-20 Detecting element for pyroelectric type linear array infrared ray and its preparation Granted JPS57120830A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56007739A JPS57120830A (en) 1981-01-20 1981-01-20 Detecting element for pyroelectric type linear array infrared ray and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56007739A JPS57120830A (en) 1981-01-20 1981-01-20 Detecting element for pyroelectric type linear array infrared ray and its preparation

Publications (2)

Publication Number Publication Date
JPS57120830A JPS57120830A (en) 1982-07-28
JPS6217177B2 true JPS6217177B2 (en) 1987-04-16

Family

ID=11674064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56007739A Granted JPS57120830A (en) 1981-01-20 1981-01-20 Detecting element for pyroelectric type linear array infrared ray and its preparation

Country Status (1)

Country Link
JP (1) JPS57120830A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH073362B2 (en) * 1984-06-14 1995-01-18 株式会社村田製作所 One-dimensional pyroelectric sensor array
JPS6136967A (en) * 1984-07-30 1986-02-21 Matsushita Electric Ind Co Ltd Infrared ray linear array element and manufacture thereof
JPS6166128A (en) * 1984-09-07 1986-04-04 Murata Mfg Co Ltd Two-dimensional pyroelectric type image sensor
JPS61195318A (en) * 1985-02-26 1986-08-29 Matsushita Electric Ind Co Ltd Pyroelectric type infrared detector
JPH0676917B2 (en) * 1985-11-13 1994-09-28 松下電器産業株式会社 Pyroelectric infrared array sensor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5035676A (en) * 1973-06-15 1975-04-04
JPS54108679A (en) * 1978-02-14 1979-08-25 Murata Manufacturing Co Method of making pyroelectric infrared ray detector
JPS55107273A (en) * 1979-02-08 1980-08-16 Sanyo Electric Co Ltd Manufacturing method of pyro-electric type infrared detecting element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5035676A (en) * 1973-06-15 1975-04-04
JPS54108679A (en) * 1978-02-14 1979-08-25 Murata Manufacturing Co Method of making pyroelectric infrared ray detector
JPS55107273A (en) * 1979-02-08 1980-08-16 Sanyo Electric Co Ltd Manufacturing method of pyro-electric type infrared detecting element

Also Published As

Publication number Publication date
JPS57120830A (en) 1982-07-28

Similar Documents

Publication Publication Date Title
JPH08264843A (en) Optoelectronic converter
US4009516A (en) Pyroelectric detector fabrication
US4593456A (en) Pyroelectric thermal detector array
JPH073362B2 (en) One-dimensional pyroelectric sensor array
JPS6217177B2 (en)
JPS60119426A (en) Thin film type pyroelectric sensor array
US4906849A (en) Laser radiation detector using polyvinylidene fluoride film
US5712499A (en) Large photodetector array
JPH0828551B2 (en) Array laser
JPH0525290B2 (en)
US4148052A (en) Radiant energy sensor
JPS61195318A (en) Pyroelectric type infrared detector
GB2061616A (en) Pyroelectric detector
JPS61170626A (en) Infrared linear array element
JP3521268B2 (en) Method for manufacturing photovoltaic device
EP0405637A2 (en) Thermal-radiation detection device manufacture
JPH0518816A (en) Pyroelectric array sensor
JP2694711B2 (en) Pyroelectric element and manufacturing method thereof
JPH05187917A (en) Infrared sensor
EP0638180B1 (en) Production of 2d-arrays
JP2000307145A (en) Radioactive detector
JP3177550B2 (en) Semiconductor detector array
JP2994810B2 (en) Photovoltaic device and manufacturing method thereof
JPH0590553A (en) Infrared ray detector and manufacturing method thereof
JPH0626247B2 (en) Method of manufacturing image sensor