JPH0518816A - Pyroelectric array sensor - Google Patents

Pyroelectric array sensor

Info

Publication number
JPH0518816A
JPH0518816A JP3168486A JP16848691A JPH0518816A JP H0518816 A JPH0518816 A JP H0518816A JP 3168486 A JP3168486 A JP 3168486A JP 16848691 A JP16848691 A JP 16848691A JP H0518816 A JPH0518816 A JP H0518816A
Authority
JP
Japan
Prior art keywords
electrode
pyroelectric
light receiving
heat conduction
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3168486A
Other languages
Japanese (ja)
Inventor
Susumu Kobayashi
晋 小林
Koji Arita
浩二 有田
Nobuyuki Yoshiike
信幸 吉池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3168486A priority Critical patent/JPH0518816A/en
Publication of JPH0518816A publication Critical patent/JPH0518816A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To obtain at low cost an array sensor for a radiation temperature distribution measuring apparatus, of which the space resolution and the sensitivity are high. CONSTITUTION:A pyroelectric array sensor has a construction wherein a plurality of electrode couples each composed of a lightsensing electrode 20 and a compensation electrode 21 are disposed on the surface side of a base 10 and opposite electrodes 30 and 31 are provided at positions opposite to the electrode couples respectively on the rear side of the base 10. The light-sensing electrode 20 is put in a state wherein infrared rays can be applied thereto, while the compensation electrode 21 is put in a state wherein the infrared rays are interrupted therefrom, and heat conduction preventing grooves 13 are provided in the surface of the base.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、赤外線、特に熱線を検
知する焦電アレイセンサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pyroelectric array sensor for detecting infrared rays, especially heat rays.

【0002】[0002]

【従来の技術】従来、赤外線、特に熱線を検知する焦電
センサは焦電効果を有する基材の両面に赤外線受光電極
を設け、赤外線照射により該電極間電位が変化すること
を利用して検知するものが知られている。材料としては
硫酸グリシン系、ポリ弗化ビニリデン系、LiTaO3
PbTiO3などの強誘電体材料が用いられ、また、基材
の形態は硫酸グリシン系、LiTaO3等は結晶体が用い
られ、PbTiO3系は結晶の形成が困難なことから焼結
セラミックもしくは薄膜技術により形成した薄膜を用い
るのが一般的である。
2. Description of the Related Art Conventionally, a pyroelectric sensor for detecting infrared rays, particularly heat rays, is provided by providing infrared receiving electrodes on both sides of a base material having a pyroelectric effect and detecting the potential between the electrodes by infrared irradiation. What is known is. Materials include glycine sulfate type, polyvinylidene fluoride type, LiTaO 3 ,
Ferroelectric materials such as PbTiO 3 are used, glycine sulfate base material is used as the base material, and crystal bodies are used as LiTaO 3 base material, and it is difficult to form crystals in PbTiO 3 base material, so sintered ceramics or thin films It is common to use a thin film formed by a technique.

【0003】[0003]

【発明が解決しようとする課題】一般に薄膜センサは感
度は高いがコストと信頼性の点で問題が有る。
Generally, a thin film sensor has high sensitivity, but has problems in cost and reliability.

【0004】それに比べ結晶体やセラミック体を利用し
たセンサは、生産性および信頼性の点で優れており、感
度が低いという点も、切削・研磨加工により数十ミクロ
ンまで薄板化して利用することで、センサ部の熱容量を
下げて比較的高感度のセンサを製作することが可能であ
る。また、そのような薄板の焦電体を基材として用いる
場合、これをはさむ形でライン状に赤外線受光電極対を
設置するだけでアレイセンサが製作できるという利点が
あり、薄膜センサに比べ生産性の面で非常に有利であ
る。
On the other hand, a sensor using a crystal body or a ceramic body is excellent in productivity and reliability, and has a low sensitivity. Therefore, it is necessary to use a thin plate of several tens of microns by cutting and polishing. Thus, it is possible to manufacture a sensor having a relatively high sensitivity by reducing the heat capacity of the sensor section. Also, when using such a thin plate of pyroelectric material as a base material, there is an advantage that an array sensor can be manufactured simply by installing a pair of infrared light receiving electrode pairs sandwiching the pyroelectric material, which is more productive than a thin film sensor. It is very advantageous in terms of.

【0005】ところで、上述の方法によりアレイセンサ
を製作しようとする場合、空間分解能を上げるためには
受光電極数を多くする必要があり、従って必然的に電極
面積および電極間隔は小さく設計しなければならない。
しかし、特別の考慮なく電極間隔を減少させることは、
空間分解能および感度の低下をもたらす。即ち、ある受
光部が赤外線によって昇温すれば当然それに隣接する受
光部も熱伝導により昇温するので、該隣接受光部から得
られる出力は赤外線照射に由来する本来の出力よりも熱
伝導分だけ大きくなってしまい、空間分解能が低下する
という課題があった。また、焦電体センサにおいては、
素子自体の温度上昇を補償する目的で、各受光部に対し
て補償部を設けることがよく行われるが、該受光部から
該補償部へ熱伝導がおこる場合には補償作用が低下し、
焦電出力は赤外線照射に由来する本来の出力よりも減少
し、感度が低下するという課題を有していた。
By the way, when an array sensor is to be manufactured by the above-mentioned method, it is necessary to increase the number of light receiving electrodes in order to improve the spatial resolution. Therefore, it is inevitable that the electrode area and the electrode interval are designed to be small. I won't.
However, reducing the electrode spacing without special consideration
This leads to a reduction in spatial resolution and sensitivity. That is, if a certain light receiving unit is heated by infrared rays, naturally the light receiving unit adjacent thereto is also heated by heat conduction. Therefore, the output obtained from the adjacent light receiving unit is only a heat conduction component as compared with the original output derived from infrared irradiation. However, there is a problem in that the spatial resolution becomes large and the spatial resolution decreases. In the pyroelectric sensor,
For the purpose of compensating for the temperature rise of the element itself, a compensating section is often provided for each light receiving section, but when heat conduction occurs from the light receiving section to the compensating section, the compensating action decreases,
The pyroelectric output is lower than the original output derived from infrared irradiation, and there is a problem that the sensitivity is lowered.

【0006】本発明は、このような従来の焦電アレイセ
ンサの課題を考慮し、熱伝導を出来るだけ避け、空間分
解能や感度の低下をできるだけ防止する焦電アレイセン
サを提供することを目的とするものである。
In view of the problems of the conventional pyroelectric array sensor, it is an object of the present invention to provide a pyroelectric array sensor which avoids heat conduction as much as possible and prevents deterioration of spatial resolution and sensitivity as much as possible. To do.

【0007】[0007]

【課題を解決するための手段】本発明は、基材が結晶体
もしくはセラミック体であって、その基材に部分的に熱
伝導防止用溝又は孔が設けられている。
According to the present invention, a base material is a crystal body or a ceramic body, and the base material is partially provided with heat conduction preventing grooves or holes.

【0008】[0008]

【作用】本発明では、隣接受光部もしくは隣接補償部へ
の熱伝導を防止され、空間分解能並びに感度が向上す
る。
According to the present invention, heat conduction to the adjacent light receiving portion or the adjacent compensating portion is prevented, and the spatial resolution and sensitivity are improved.

【0009】[0009]

【実施例】以下、本発明の実施例について図面を参照し
て説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0010】図1及び図2は本発明の一実施例を説明す
るための焦電素子の構成の概略を示すものである。図1
(a)は焦電素子の平面図、図1(b)は焦電素子の裏
面図であり、図2は焦電素子見取図である。図1および
図2に示すように、切削・研磨加工により薄板化したP
bTiO3等からなる焦電体基板10の表面に熱伝導防止
溝13を設け、蒸着もしくはスパッター法にもしくはC
VD法より受光電極20と補償電極21を各々設け、該
電極は各々電極接続部22により電気的に接続する構造
とする。さらに、該焦電体基板10の裏面には、蒸着も
しくはスパッター法もしくはCVD法により、受光電極
20と補償電極21とに各々対峙する位置に受光電極用
対極30および補償電極用対極31を設け、各々外部回
路へ接続するための電極引出し部32を形成する。この
とき、該熱伝導防止溝13はダイジングカッターもしく
はレーザーカッターによって形成してもよく、またフォ
トリソグラフィーによってパターン化し、化学エッチン
グ法により形成してもよい。 次に、図3に示すように
該焦電体基板10の受光表面前面には、赤外線選択透過
窓41を有する赤外線選択透過基板40を配置すること
により、受光電極20にのみ赤外線50が照射されるよ
うにし、補償電極21は遮光状態とする。
1 and 2 show the outline of the configuration of a pyroelectric element for explaining one embodiment of the present invention. Figure 1
1A is a plan view of the pyroelectric element, FIG. 1B is a back view of the pyroelectric element, and FIG. 2 is a sketch of the pyroelectric element. As shown in FIGS. 1 and 2, P is thinned by cutting and polishing.
A heat conduction preventing groove 13 is provided on the surface of the pyroelectric substrate 10 made of bTiO 3 or the like, and vapor deposition or sputtering or C
A light receiving electrode 20 and a compensating electrode 21 are provided by the VD method, and the electrodes are electrically connected by an electrode connecting portion 22. Further, on the back surface of the pyroelectric substrate 10, a light-receiving electrode counter electrode 30 and a compensation electrode counter electrode 31 are provided at positions facing the light-receiving electrode 20 and the compensation electrode 21, respectively, by vapor deposition, sputtering, or CVD. Each electrode lead-out portion 32 is formed to connect to an external circuit. At this time, the heat conduction preventing groove 13 may be formed by a dicing cutter or a laser cutter, or may be patterned by photolithography and formed by a chemical etching method. Next, as shown in FIG. 3, by arranging an infrared selective transmission substrate 40 having an infrared selective transmission window 41 on the light receiving surface front surface of the pyroelectric substrate 10, only the light receiving electrode 20 is irradiated with the infrared rays 50. In this way, the compensation electrode 21 is in a light-shielded state.

【0011】図4に、一つの受光部の等価回路の原理図
を示す。ここに、受光部25とは焦電体基板10を介し
て受光電極20と受光電極用対極30とで形成されるも
のであり、補償部26とは焦電体基板10を介して補償
電極21と補償電極用対極31とで形成されるものであ
る。一般に焦電体の表面電荷(焦電出力)は温度により
変動するものであるが、これは受光部25の焦電出力が
気温に依存することを意味する。図4より明らかなよう
に、補償電極部26を設けることにより気温変化による
変動が相殺され、受光部25に赤外線が照射された場合
にのみ、受光部25と補償部26の表面電荷の差分がV
OUTとして検出可能となる。
FIG. 4 shows a principle diagram of an equivalent circuit of one light receiving portion. Here, the light receiving section 25 is formed by the light receiving electrode 20 and the counter electrode 30 for the light receiving electrode via the pyroelectric substrate 10, and the compensating section 26 is the compensating electrode 21 via the pyroelectric substrate 10. And a compensating electrode counter electrode 31. Generally, the surface charge (pyroelectric output) of the pyroelectric body varies depending on the temperature, which means that the pyroelectric output of the light receiving unit 25 depends on the temperature. As is clear from FIG. 4, the provision of the compensation electrode portion 26 cancels the fluctuation due to the temperature change, and only when the light receiving portion 25 is irradiated with infrared rays, the difference in the surface charges between the light receiving portion 25 and the compensating portion 26 becomes small. V
It can be detected as OUT.

【0012】図5には該焦電体基板10と赤外線選択透
過基板40および受光電極20上に赤外線を集光するた
めの赤外線透過レンズ60とチョッパー70との相対位
置を示す。当然のことながら、集光後の赤外線は赤外線
選択透過基板40によって、補償電極21側には照射さ
れず、受光電極20側のみに照射されものである。ま
た、赤外線50はチョッパー70により、断続的に入射
することにより、焦電出力を得る。
FIG. 5 shows the relative positions of the infrared transmission lens 60 and the chopper 70 for focusing infrared rays on the pyroelectric substrate 10, the infrared selective transmission substrate 40 and the light receiving electrode 20. As a matter of course, the infrared rays after focusing are not irradiated to the compensation electrode 21 side by the infrared selective transmission substrate 40, but to the light receiving electrode 20 side only. Further, the infrared rays 50 are intermittently incident by the chopper 70 to obtain a pyroelectric output.

【0013】ここで従来の熱伝導防止溝を持たないセン
サ素子に比較し、図1および図2に示した形状のセンサ
素子の持つ利点を、以下に詳細に説明する。
Here, the advantages of the sensor element having the shape shown in FIGS. 1 and 2 as compared with the conventional sensor element having no heat conduction preventing groove will be described in detail below.

【0014】図6に示すように、赤外線が特定の一つの
受光電極25−1に照射されるよう設けた赤外線選択透
過窓41を持つ赤外線選択透過基板40を用い、図3に
示した機構を用いて焦電出力を得て、図4に示した原理
により該焦電出力を検出する場合を考える。このとき受
光電極25−1に隣接する受光電極25−2には、当然
のことながら赤外線が照射されないが、しかしながら受
光電極25−1の昇温に伴う熱伝導により、本来あるべ
きでない出力が発生してしまう。以下この現象をクロス
トークと呼び、これによる出力をクロストーク出力と呼
ぶ。実際の出力波形を図7に示す。受光部25−1から
得られる焦電出力はAに示す通りであり、これに隣接す
る受光部25−2から得られるクロストーク出力はBに
示す通りである。クロストークの度合は、Aの焦電出力
の最大値(これを便宜的にVOUT.1と呼ぶ)に対するB
の出力の最大値(これを便宜的にVOUT.2と呼ぶ。)VO
UT.2/VOUT.1(これを便宜的にC値と呼ぶ)により判
断される。即ち、この値が小さいほどクロストークの度
合が小さいと言える。(表1)は実際に上述の実験系を
用いて、従来形状のセンサ素子と図1に示した形状のセ
ンサ素子について、クロストークについて比較した場合
の結果である。なお、このときの焦電体基板の厚さは4
0μmであった。
As shown in FIG. 6, an infrared selective transmission substrate 40 having an infrared selective transmission window 41 provided so that infrared rays are irradiated to one specific light receiving electrode 25-1 is used, and the mechanism shown in FIG. 3 is used. Consider a case where a pyroelectric output is obtained by using the same and the pyroelectric output is detected according to the principle shown in FIG. At this time, the light receiving electrode 25-2 adjacent to the light receiving electrode 25-1 is not irradiated with infrared rays as a matter of course. However, due to heat conduction due to the temperature rise of the light receiving electrode 25-1, an output that should not be generated is generated. Resulting in. Hereinafter, this phenomenon is referred to as crosstalk, and the output resulting from this is referred to as crosstalk output. The actual output waveform is shown in FIG. The pyroelectric output obtained from the light receiving unit 25-1 is as shown in A, and the crosstalk output obtained from the light receiving unit 25-2 adjacent thereto is as shown in B. The degree of crosstalk is B with respect to the maximum value of the pyroelectric output of A (this is called VOUT.1 for convenience).
Output maximum value (this is called VOUT.2 for convenience) VO
It is judged by UT.2 / VOUT.1 (this is called C value for convenience). That is, it can be said that the smaller this value, the smaller the degree of crosstalk. Table 1 shows the results of crosstalk comparison between the conventional sensor element and the sensor element having the shape shown in FIG. 1 actually using the above-mentioned experimental system. The thickness of the pyroelectric substrate at this time is 4
It was 0 μm.

【0015】[0015]

【表1】 (表1)から明らかなように、本発明の一実施例におい
ては従来例に比較して、クロストークが大幅に抑えられ
ていることがわかる。また熱伝導防止溝13は、幅につ
いては200μm、深さについては20μm以上であれ
ば充分な効果が得られた。なお、受光部の熱容量を小さ
くすることを目的として焦電体基板厚さを小さく設計し
た場合、感度は向上するもののクロストークの度合も大
きくなる。こうした場合、熱伝導防止溝を設けること
は、高感度で空間分解能の高いセンサを製作するうえで
非常に有効である。
[Table 1] As is clear from (Table 1), in one embodiment of the present invention, crosstalk is significantly suppressed as compared with the conventional example. Further, the heat conduction preventing groove 13 has a sufficient effect when the width is 200 μm and the depth is 20 μm or more. When the pyroelectric substrate thickness is designed to be small for the purpose of reducing the heat capacity of the light receiving portion, the sensitivity is improved but the degree of crosstalk is increased. In such a case, providing the heat conduction preventing groove is very effective in manufacturing a sensor having high sensitivity and high spatial resolution.

【0016】次に、別の実施例に付いて説明する。Next, another embodiment will be described.

【0017】クロストークの防止に加え感度の向上を図
る目的で、図8(a),(b)に示す形状のセンサ素子
を図1の実施例と同様の手法を用いて製作した。図1の
実施例で述べた理由により補償部21の温度は焦電体温
度と一致することが望ましいが、受光部20から補償部
21へ熱伝導が起こる場合には補償部温度が焦電体温度
以上に上昇し、従って気温に対する補償作用が低下し、
焦電出力の低下、つまり感度の低下をもたらす。図8に
おいて、各受光部20と補償部21の間に熱伝導防止溝
14を設けたのは、この現象の防止に伴う感度の向上を
目的としたものである。また、さらに各受光部20の外
側にも熱伝導防止溝15を設けて受光部20を独立させ
たのは、該受光部20から外部への熱伝導を防止するこ
とで、照射された赤外線をできるだけ受光部20の昇温
に寄与させ、感度を上昇させることを目的としたもので
ある。なお、温度補償をより効果的に行うため、受光部
20と補償部21との距離を通常より大きく設計するこ
とがあるが、この場合には熱伝導防止溝14をできるだ
け受光部20に近いところに設け、該受光部20の熱容
量を小さく保ち感度の低下を防ぐ必要がある。実際に、
本実施例に述べた形状のセンサ素子と従来形状のセンサ
素子を、図1の実施例と同様の測定系を用いて性能比較
実験を行ったところ、感度が約15%上昇するという良
好な結果が得られた。
For the purpose of improving the sensitivity in addition to preventing crosstalk, a sensor element having the shape shown in FIGS. 8A and 8B was manufactured by the same method as that of the embodiment shown in FIG. For the reasons described in the embodiment of FIG. 1, it is desirable that the temperature of the compensating section 21 coincides with the pyroelectric body temperature. However, when heat conduction from the light receiving section 20 to the compensating section 21 occurs, the compensating section temperature is the pyroelectric body. Rise above temperature, thus compensating for temperature diminishes,
This causes a decrease in pyroelectric output, that is, a decrease in sensitivity. In FIG. 8, the heat conduction preventing groove 14 is provided between each light receiving portion 20 and the compensating portion 21 for the purpose of improving the sensitivity accompanying the prevention of this phenomenon. Further, the heat conduction preventing groove 15 is provided on the outside of each light receiving portion 20 so that the light receiving portion 20 is independent. The heat conduction from the light receiving portion 20 to the outside is prevented, so that the irradiated infrared rays are prevented. The purpose is to contribute to the temperature rise of the light receiving unit 20 as much as possible and increase the sensitivity. In order to perform temperature compensation more effectively, the distance between the light receiving section 20 and the compensating section 21 may be designed to be larger than usual. In this case, the heat conduction preventing groove 14 should be located as close to the light receiving section 20 as possible. It is necessary to keep the heat capacity of the light receiving section 20 small to prevent the sensitivity from being lowered. actually,
A performance comparison experiment was performed on the sensor element having the shape described in the present embodiment and the sensor element having the conventional shape using the same measurement system as that of the embodiment shown in FIG. 1, and a good result that the sensitivity was increased by about 15% was obtained. was gotten.

【0018】次に別の実施例に付いて説明する。Next, another embodiment will be described.

【0019】図9、図10に示したプロセスにより、焦
電体基板の表面に、図1の実施例と同様の手段を用いて
受光電極、補償電極および電極接続部を各々設け、その
後これら金属部をマスクとして焦電体基板を選択的にエ
ッチングすることにより受光部と補償部を選択的に残し
た。例えば焦電体基板としてPbTiO3を、また電極材
料として金ブラックもしくは白金ブラックを用いた場合
には、CF4/O2(10:1)をエッチングガスとして
スパッタエッチングを行なうと基板露出部のみ選択的に
エッチングされ、受光電極、補償電極および電極接続部
は選択的に残る。なお、この場合エッチングプレッシャ
ーは30〜40Pa、RFパワーは50〜150ワット
程度が望ましい。図1の実施例と同様の手段を用いて、
基板裏面に受光電極対極、補償電極対極および引出し電
極を設け、センサ素子を製作した。この手法によると、
図1の実施例および図2の実施例に記載した手法に比べ
簡単な工程で、空間分解能および感度の良好な焦電セン
サを作製することができた。また、本手法によると多数
の焦電センサを一括して加工できるので、図1、図2の
実施例の手法に比べさらに生産性が向上し低コスト化が
達成できた。
By the process shown in FIGS. 9 and 10, a light receiving electrode, a compensating electrode and an electrode connecting portion are respectively provided on the surface of the pyroelectric substrate by using the same means as in the embodiment of FIG. The light receiving portion and the compensating portion were selectively left by selectively etching the pyroelectric substrate using the portions as a mask. For example, when PbTiO 3 is used as the pyroelectric substrate and gold black or platinum black is used as the electrode material, sputter etching is performed using CF 4 / O 2 (10: 1) as an etching gas to select only the exposed portion of the substrate. Are selectively etched, leaving the light-receiving electrode, the compensation electrode and the electrode connection selectively. In this case, the etching pressure is preferably 30-40 Pa and the RF power is preferably 50-150 watts. Using the same means as the embodiment of FIG.
A light receiving electrode counter electrode, a compensation electrode counter electrode and a lead electrode were provided on the back surface of the substrate to fabricate a sensor element. According to this method,
A pyroelectric sensor having good spatial resolution and sensitivity could be manufactured by a simpler process than the method described in the embodiment of FIG. 1 and the embodiment of FIG. Further, according to this method, a large number of pyroelectric sensors can be processed at once, so that productivity can be further improved and cost reduction can be achieved as compared with the method of the embodiment shown in FIGS.

【0020】なお、熱の伝導を防止する溝の代わり、或
はそれとともに孔を設けるようにしてもよい。
A hole may be provided instead of the groove for preventing heat conduction or in addition to the groove.

【0021】[0021]

【発明の効果】以上の説明より明らかなように、本発明
は上述の熱伝導防止溝又は孔を設けることにより、各受
光部および各補償部間における熱的な干渉を防止し、焦
電アレイセンサの空間分解能および感度を向上させるこ
とが出来る。
As is apparent from the above description, the present invention prevents the thermal interference between the light receiving portions and the compensating portions by providing the above-mentioned heat conduction preventing groove or hole, and the pyroelectric array. The spatial resolution and sensitivity of the sensor can be improved.

【0022】本発明は、各受光部および補償部を小さ
く、かつ各受光部間隔および受光部と補償部の間隔を狭
く設計した場合に特に有効である。
The present invention is particularly effective when the light receiving portions and the compensating portion are designed to be small and the light receiving portion spacing and the light receiving portion-compensating portion spacing are designed to be narrow.

【0023】また、電極をマスクとして焦電体を選択的
にエッチングするという手法を用いることにより、低コ
ストで精度良く空間分解能および感度の優れた温度分布
測定装置を提供することが可能となる。
Further, by using the technique of selectively etching the pyroelectric material using the electrodes as a mask, it is possible to provide a temperature distribution measuring device which is low in cost, accurate in spatial resolution and excellent in sensitivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例にかかる焦電アレイセンサの
概略平面図である。
FIG. 1 is a schematic plan view of a pyroelectric array sensor according to an embodiment of the present invention.

【図2】本発明の一実施例にかかる焦電アレイセンサの
概略見取図である。
FIG. 2 is a schematic diagram of a pyroelectric array sensor according to an embodiment of the present invention.

【図3】本発明の一実施例にかかる焦電アレイセンサと
赤外線選択透過基板との相対位置関係図である。
FIG. 3 is a relative positional relationship diagram between a pyroelectric array sensor and an infrared selective transmission substrate according to an embodiment of the present invention.

【図4】本発明の一実施例にかかる焦電出力検出原理図
である。
FIG. 4 is a principle diagram of a pyroelectric output detection according to an embodiment of the present invention.

【図5】本発明の一実施例にかかる焦電アレイセンサ、
赤外線選択透過基板、赤外線透過レンズおよびチョッパ
ーの相対位置関係図である。
FIG. 5 is a pyroelectric array sensor according to an embodiment of the present invention,
It is a relative positional relationship diagram of an infrared selective transmission substrate, an infrared transmission lens, and a chopper.

【図6】本発明の焦電出力検出における、クロストーク
現象説明図である。
FIG. 6 is an explanatory diagram of a crosstalk phenomenon in the pyroelectric output detection of the present invention.

【図7】本発明の焦電出力検出における、クロストーク
現象説明図である。
FIG. 7 is an explanatory diagram of a crosstalk phenomenon in the pyroelectric output detection of the present invention.

【図8】本発明のより改良された形状の焦電体部の概略
平面図である。
FIG. 8 is a schematic plan view of a more improved shape of the pyroelectric body portion of the present invention.

【図9】本発明における焦電体部製造法のプロセス図で
ある。
FIG. 9 is a process diagram of a method for manufacturing a pyroelectric body according to the present invention.

【図10】本発明における焦電体部製造法のプロセス図
である。
FIG. 10 is a process diagram of a method for manufacturing a pyroelectric body according to the present invention.

【符号の説明】[Explanation of symbols]

10 焦電体基板 11 焦電体基板表面 12 焦電体基板裏面 13 熱伝導防止溝 14 熱伝導防止溝 15 熱伝導防止溝 20 受光電極 21 補償電極 22 電極接続部 25 受光部 26 補償部 30 受光電極用対極 31 補償電極用対極 32 電極引出し部 40 赤外線選択透過基板 41 赤外線選択透過窓 50 赤外線 60 赤外線透過レンズ 70 チョッパー 10 Pyroelectric substrate 11 Pyroelectric substrate surface 12 Back side of pyroelectric substrate 13 Heat conduction prevention groove 14 Heat conduction prevention groove 15 Heat conduction prevention groove 20 Light receiving electrode 21 Compensation electrode 22 Electrode connection part 25 Light receiving part 26 Compensation Department 30 Counter electrode for light receiving electrode 31 Counter electrode for compensation electrode 32 Electrode extraction part 40 Infrared selective transmission substrate 41 Infrared selective transmission window 50 infrared 60 infrared transparent lens 70 Chopper

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 焦電効果を有する基材の両面に電極を設
けてなる赤外線検知用焦電センサにおいて、前記基材が
結晶体もしくはセラミック体であって、その基材に部分
的に熱伝導防止用溝又は孔が設けられていることを特徴
とする焦電アレイセンサ。
1. A pyroelectric sensor for infrared detection, comprising electrodes on both sides of a base material having a pyroelectric effect, wherein the base material is a crystal body or a ceramic body, and heat conduction is partially conducted to the base material. A pyroelectric array sensor having a groove or hole for prevention.
【請求項2】 基材表面に複数の受光電極を有し、その
受光電極同士の間に前記熱伝導防止溝又は孔をが設けら
れていることを特徴とする請求項1記載の焦電アレイセ
ンサ。
2. The pyroelectric array according to claim 1, wherein a plurality of light receiving electrodes are provided on the surface of the base material, and the heat conduction preventing groove or hole is provided between the light receiving electrodes. Sensor.
【請求項3】 基材表面に受光電極と補償電極とを有
し、その受光電極と補償電極の間に前記熱伝導防止溝又
は孔が設けられていることを特徴とする請求項1記載の
焦電アレイセンサ
3. The heat conduction preventing groove or hole is provided between the light receiving electrode and the compensating electrode, and the light receiving electrode and the compensating electrode are provided on the surface of the base material. Pyroelectric array sensor
【請求項4】 電極をマスクとして前記基材をエッチン
グすることにより前記熱伝導防止溝又は孔を形成するこ
とを特徴とする請求項1記載の焦電体アレイセンサ。
4. The pyroelectric array sensor according to claim 1, wherein the heat conduction preventing groove or hole is formed by etching the base material using the electrode as a mask.
JP3168486A 1991-07-09 1991-07-09 Pyroelectric array sensor Pending JPH0518816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3168486A JPH0518816A (en) 1991-07-09 1991-07-09 Pyroelectric array sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3168486A JPH0518816A (en) 1991-07-09 1991-07-09 Pyroelectric array sensor

Publications (1)

Publication Number Publication Date
JPH0518816A true JPH0518816A (en) 1993-01-26

Family

ID=15868986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3168486A Pending JPH0518816A (en) 1991-07-09 1991-07-09 Pyroelectric array sensor

Country Status (1)

Country Link
JP (1) JPH0518816A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8754373B2 (en) 2011-02-24 2014-06-17 Ngk Insulators, Ltd. Pyroelectric element and method for manufacturing the same
WO2014112392A1 (en) * 2013-01-21 2014-07-24 パナソニック株式会社 Infrared detection element, infrared detector, and infrared type gas sensor
JP2014142236A (en) * 2013-01-23 2014-08-07 Panasonic Corp Infrared receiving unit and infrared gas sensor
JP2015075384A (en) * 2013-10-08 2015-04-20 パナソニックIpマネジメント株式会社 Infrared detection element, infrared detector and infrared gas sensor
JP2015108545A (en) * 2013-12-04 2015-06-11 ソニー株式会社 Infrared ray detector and detection method thereof, and electronic apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8754373B2 (en) 2011-02-24 2014-06-17 Ngk Insulators, Ltd. Pyroelectric element and method for manufacturing the same
JP5730327B2 (en) * 2011-02-24 2015-06-10 日本碍子株式会社 Pyroelectric element and manufacturing method thereof
WO2014112392A1 (en) * 2013-01-21 2014-07-24 パナソニック株式会社 Infrared detection element, infrared detector, and infrared type gas sensor
US9528879B2 (en) 2013-01-21 2016-12-27 Panasonic Intellectual Property Management Co., Ltd. Infrared detection element, infrared detector, and infrared type gas sensor
JP2014142236A (en) * 2013-01-23 2014-08-07 Panasonic Corp Infrared receiving unit and infrared gas sensor
JP2015075384A (en) * 2013-10-08 2015-04-20 パナソニックIpマネジメント株式会社 Infrared detection element, infrared detector and infrared gas sensor
JP2015108545A (en) * 2013-12-04 2015-06-11 ソニー株式会社 Infrared ray detector and detection method thereof, and electronic apparatus

Similar Documents

Publication Publication Date Title
US6635495B2 (en) Infrared detecting element, infrared two-dimensional image sensor, and method of manufacturing the same
US5457318A (en) Thermal detector apparatus and method using reduced thermal capacity
US4691104A (en) One-dimensional pyroelectric sensor array
JPH06317475A (en) Infrared sensor and fabrication thereof
US5574282A (en) Thermal isolation for hybrid thermal detectors
US5559332A (en) Thermal detector and method
US3932753A (en) Pyroelectric device with coplanar electrodes
JPH0518816A (en) Pyroelectric array sensor
JPH075036A (en) Human-body sensing sensor and preparation thereof
EP0919794B1 (en) Thermal type infrared sensing device, fabrication method and infrared imaging apparatus
JPS637611B2 (en)
JPH04320934A (en) Thermal photodetector and preparation of support stand thereof
US5708269A (en) Thermal detector and method
JP3114235B2 (en) Pyroelectric array sensor
JPS61195318A (en) Pyroelectric type infrared detector
JPH055291B2 (en)
JP3175321B2 (en) Pyroelectric array sensor
JPH0510817A (en) Pyroelectric array sensor
JPS6138427A (en) Infrared detection element
JP3147856B2 (en) Linear infrared detector
JPH08178748A (en) Pyroelectric array sensor
JPS6145862B2 (en)
JPH06260671A (en) Semiconductor radiation detector and manufacture thereof
JPS6217177B2 (en)
EP1380821B1 (en) Matrix-type pyroelectric sensor, method for its fabrication and device for characterizing laser beams comprising said sensor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees