JPH055291B2 - - Google Patents

Info

Publication number
JPH055291B2
JPH055291B2 JP60011223A JP1122385A JPH055291B2 JP H055291 B2 JPH055291 B2 JP H055291B2 JP 60011223 A JP60011223 A JP 60011223A JP 1122385 A JP1122385 A JP 1122385A JP H055291 B2 JPH055291 B2 JP H055291B2
Authority
JP
Japan
Prior art keywords
thin film
pyroelectric
electrode
lead extraction
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60011223A
Other languages
Japanese (ja)
Other versions
JPS61170626A (en
Inventor
Kenji Iijima
Yoshihiro Tomita
Ryoichi Takayama
Ichiro Ueda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60011223A priority Critical patent/JPS61170626A/en
Publication of JPS61170626A publication Critical patent/JPS61170626A/en
Publication of JPH055291B2 publication Critical patent/JPH055291B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N15/00Thermoelectric devices without a junction of dissimilar materials; Thermomagnetic devices, e.g. using the Nernst-Ettingshausen effect
    • H10N15/10Thermoelectric devices using thermal change of the dielectric constant, e.g. working above and below the Curie point

Description

【発明の詳細な説明】 産業上の利用分野 本発明は焦電体薄膜を用いた赤外線リニアアレ
イ素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an infrared linear array element using a pyroelectric thin film.

従来の技術 従来の焦電体薄膜を用いた赤外線センサでは、
第3図に示す様に、基板1上に形成した下地電極
2と焦電体膜3上に形成した、赤外吸収膜を兼ね
た受光電極4を用い、赤外光の照射による焦電体
膜3の表面に発生する電荷をリード引出し電極5
を介して電圧としてとり出す。(例えば、Seto
H.,他Ptoc.2nd Sensor Symposium,1982
PP.49〜53)このとき発生する電荷をQ、電極
2,4間の容量をCとすれば、出力電圧VはV=
Q/Cである。
Conventional technology In the conventional infrared sensor using a pyroelectric thin film,
As shown in FIG. 3, a base electrode 2 formed on a substrate 1 and a light-receiving electrode 4 formed on a pyroelectric film 3, which also serves as an infrared absorbing film, are used to generate a pyroelectric material by irradiation with infrared light. The electric charge generated on the surface of the membrane 3 is transferred to an extraction electrode 5.
It is taken out as a voltage via . (For example, Seto
H., et al. Ptoc.2nd Sensor Symposium, 1982
PP.49~53) If the charge generated at this time is Q, and the capacitance between electrodes 2 and 4 is C, the output voltage V is V=
Q/C.

発明が解決しようとする問題点 この様な素子構成では焦電体膜3を介してリー
ド引き出し電極5と下地電極2とが重なる部分
で、浮遊容量C′が発生し、出力電圧V′=Q/C+C′ となり、出力電圧の低下が生ずる。
Problems to be Solved by the Invention In such an element configuration, a stray capacitance C' is generated at the portion where the lead extraction electrode 5 and the base electrode 2 overlap via the pyroelectric film 3, and the output voltage V'=Q /C+C', and the output voltage decreases.

また、リード引き出し電極5は通常白金あるい
はアルミニウムといつた赤外光を反射する材料で
形成するので原理的にはリード引き出し電極部か
らは出力が出ないが、強い赤外光が照射された場
合、リード引き出し電極の近傍の焦電体で吸収さ
れた熱がまわり込んで、リード引き出し電極部か
らも信号が出力される。これは、2次元の画像に
した場合、画像のボケとなつて表われるので、大
きな欠点である。
In addition, since the lead extraction electrode 5 is usually made of a material that reflects infrared light, such as platinum or aluminum, in principle no output is output from the lead extraction electrode part, but if strong infrared light is irradiated. , the heat absorbed by the pyroelectric body near the lead extraction electrode circulates, and a signal is also output from the lead extraction electrode section. This is a major drawback since it appears as a blur in a two-dimensional image.

問題点を解決するための手段 リード引き出し電極と焦電体薄膜との間に焦電
体薄膜の材料より誘電率の低い材料よりなる薄膜
を介在させる。
Means for Solving the Problems A thin film made of a material having a lower dielectric constant than the material of the pyroelectric thin film is interposed between the lead extraction electrode and the pyroelectric thin film.

作 用 本発明は上記の構成により、リード引き出し電
極と下地電極間に生ずる浮遊容量を減少させ、焦
電体の出力をより大きな電圧でとり出せる。ま
た、焦電体材料とリード引き出し電流が電気的に
絶縁されるので、受光電極部の信号のみにとり出
すことができる。
Effects With the above configuration, the present invention reduces the stray capacitance generated between the lead extraction electrode and the base electrode, and allows the output of the pyroelectric body to be extracted at a larger voltage. Furthermore, since the pyroelectric material and the lead extraction current are electrically insulated, only the signal from the light receiving electrode can be extracted.

実施例 第1図及び第2図は本発明の実施例において作
製された赤外線リニアアレイ素子の断面及び平面
図である。100でへき開し鏡面研摩を施した
MgO単結晶からなる基板7(10×10×0.3mm3)上
に高周波マグネトロンスパツタ装置を用い厚さ約
0.2μmの白金下地電極8を形成した。次に、高純
度PbTiO3粉末に20mol%のPbO粉末を加えたも
のをターゲツトに用い、高周波マグネトロンスパ
ツタ装置で厚さ約4μmのPbTiO3からなる焦電体
薄膜9を成長させた。焦電体薄膜9上に受光部分
を残し、Al金属をターゲツトに用い、Al2O3誘電
体薄膜(厚さ約1.5μm)10をスパツタリングに
より形成した。次いで、NiCr受光電極11(0.1
×0.1mm2)をリニアアレイ状に蒸着し、白金リー
ド引き出し電極12をスパツタリングにより作成
した。比較のために、第2図に示す誘電体薄膜を
持たない構成の素子を同様の手順で作製した。い
ずれの素子も受光部分の下の基板7をエツチング
によりとり除いてある。
Embodiment FIGS. 1 and 2 are a cross-sectional and plan view of an infrared linear array element manufactured in an embodiment of the present invention. Cleaved with 100 and mirror polished
Using a high frequency magnetron sputtering device, a substrate 7 (10 x 10 x 0.3 mm 3 ) made of MgO single crystal was coated with a thickness of approx.
A 0.2 μm platinum base electrode 8 was formed. Next, a pyroelectric thin film 9 made of PbTiO 3 with a thickness of about 4 μm was grown using a high-frequency magnetron sputtering device using a mixture of high-purity PbTiO 3 powder and 20 mol % PbO powder as a target. A light-receiving portion was left on the pyroelectric thin film 9, and an Al 2 O 3 dielectric thin film (about 1.5 μm thick) 10 was formed by sputtering using Al metal as a target. Next, a NiCr light-receiving electrode 11 (0.1
×0.1 mm 2 ) was deposited in a linear array, and platinum lead extraction electrodes 12 were created by sputtering. For comparison, an element having a structure without a dielectric thin film shown in FIG. 2 was fabricated using the same procedure. In each element, the substrate 7 below the light-receiving portion is removed by etching.

この素子に温度500Kの黒体炉からの赤外光を
10Hzの周波数でチヨツプし照射した。出力は高入
力インピーダンスの増巾系(60dB)を通し、ス
ペクトラムアナライザで測定した。その結果、誘
電体層10を持たない素子では出力は、500mV
であつたのに対し、本発明による誘電体層10を
リード引出電極12の下に設けた息子では、800
mVの出力が得られ1.6倍の出力の増加が見られ
た。
Infrared light from a blackbody furnace at a temperature of 500K is applied to this element.
Irradiation was performed by chopping at a frequency of 10Hz. The output was passed through a high input impedance amplification system (60 dB) and measured with a spectrum analyzer. As a result, the output of the device without the dielectric layer 10 is 500 mV.
On the other hand, in the son in which the dielectric layer 10 according to the present invention was provided under the lead extraction electrode 12, the temperature was 800.
An output of mV was obtained, and an increase in output of 1.6 times was observed.

同様の構成で、誘電層にSiO2(厚さ約1.5μm)
を用いたものでは、850mVの出力が得られ、こ
の場合にも、誘電体層が有効に作用していること
がわかつた。
Similar configuration with SiO 2 (approximately 1.5 μm thick) in the dielectric layer.
An output of 850 mV was obtained using the dielectric layer, indicating that the dielectric layer was effective in this case as well.

次いで、リニアセンサを用いた赤外線の二次元
画像装置を試作し、空間分解能の比較を行なつ
た。温度200℃に加熱した表面に黒色塗装を施し
た銅パイプ(φ10mm)を被写体にし、従来例によ
るセンサと本発明によるセンサの比較を行なつ
た。本発明によるリニアアレイセンサを用いた場
合、実際の被写体に対応する画像が得られたのに
対し、従来例のものでは、輪かくが実際の3倍程
度に広がつてしまい十分な空間分解能が得られな
かつた。
Next, we prototyped an infrared two-dimensional imaging device using a linear sensor and compared its spatial resolution. A conventional sensor and a sensor according to the present invention were compared using a copper pipe (φ10 mm) whose surface was heated to 200°C and painted black as the subject. When using the linear array sensor according to the present invention, an image corresponding to the actual subject was obtained, whereas with the conventional example, the ring spread out to about three times the actual size and did not have sufficient spatial resolution. I couldn't get it.

発明の効果 以上述べて来た様に、本発明によれば、極めて
簡易な構成で、安定に高感度、高分解能の赤外線
リニアアレイ素子を提供でき、実用的に極めて有
用である。
Effects of the Invention As described above, according to the present invention, it is possible to provide an infrared linear array element that stably has high sensitivity and high resolution with an extremely simple configuration, and is extremely useful in practice.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における赤外線リニ
アアレイ素子の断面図、第2図は同赤外線リニア
アレイ素子の平面図、第3図は従来例を示す焦電
形赤外線検出素子の断面図である。 7……基板、8……下地電極、9……焦電体薄
膜、10……誘電体薄膜、11……受光電極、1
2……リード引き出し電極。
Fig. 1 is a cross-sectional view of an infrared linear array element according to an embodiment of the present invention, Fig. 2 is a plan view of the same infrared linear array element, and Fig. 3 is a cross-sectional view of a pyroelectric infrared detecting element showing a conventional example. be. 7... Substrate, 8... Base electrode, 9... Pyroelectric thin film, 10... Dielectric thin film, 11... Light receiving electrode, 1
2...Lead extraction electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 基板上に形成した薄膜下地電極と、この薄膜
下地電極上に形成した焦電体薄膜と、この焦電体
薄膜上に形成された受光電極と、前記受光電極か
らのリード引き出し電極とを備え、前記リード引
き出し電極と焦電体材料との間に前記焦電体薄膜
の材料より誘電率の低い誘電体薄膜を介在させた
事を特徴とする赤外線リニアアレイ素子。
1. A thin film base electrode formed on a substrate, a pyroelectric thin film formed on this thin film base electrode, a light receiving electrode formed on this pyroelectric thin film, and a lead extraction electrode from the light receiving electrode. . An infrared linear array element, characterized in that a dielectric thin film having a dielectric constant lower than that of the material of the pyroelectric thin film is interposed between the lead extraction electrode and the pyroelectric material.
JP60011223A 1985-01-24 1985-01-24 Infrared linear array element Granted JPS61170626A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60011223A JPS61170626A (en) 1985-01-24 1985-01-24 Infrared linear array element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60011223A JPS61170626A (en) 1985-01-24 1985-01-24 Infrared linear array element

Publications (2)

Publication Number Publication Date
JPS61170626A JPS61170626A (en) 1986-08-01
JPH055291B2 true JPH055291B2 (en) 1993-01-22

Family

ID=11771959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60011223A Granted JPS61170626A (en) 1985-01-24 1985-01-24 Infrared linear array element

Country Status (1)

Country Link
JP (1) JPS61170626A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5450053A (en) * 1985-09-30 1995-09-12 Honeywell Inc. Use of vanadium oxide in microbolometer sensors
US5300915A (en) * 1986-07-16 1994-04-05 Honeywell Inc. Thermal sensor
US5286976A (en) * 1988-11-07 1994-02-15 Honeywell Inc. Microstructure design for high IR sensitivity
JP2753905B2 (en) * 1991-09-24 1998-05-20 能美防災株式会社 Pyroelectric element
US5420426A (en) * 1991-09-24 1995-05-30 Nohmi Boasai Ltd. Pyroelectric device
EP0611443B1 (en) * 1991-11-04 1996-05-29 Honeywell Inc. Thin film pyroelectric imaging array

Also Published As

Publication number Publication date
JPS61170626A (en) 1986-08-01

Similar Documents

Publication Publication Date Title
KR0135119B1 (en) Infrared detector
US5021663A (en) Infrared detector
US4110616A (en) Pyroelectric detectors
US4384207A (en) Differential pyroelectric detector
US4614938A (en) Dual channel pyroelectric intrusion detector
US2516873A (en) Bolometer
US3816750A (en) Pyroelectric detector
JPH055291B2 (en)
US4367408A (en) Pyroelectric type infrared radiation detecting device
Choi et al. Epitaxially grown pyroelectric infrared sensor array for human body detection
JPS637611B2 (en)
EP0414831B1 (en) A dielectric bolometer
Watton et al. Uncooled IR imaging: hybrid and integrated bolometer arrays
US5032713A (en) Photosensing device and photosensing apparatus using a probe electrode
JP3114235B2 (en) Pyroelectric array sensor
RU2811537C1 (en) Quartz thermal radiation receiver
JPS6197539A (en) Infrared linear array element
US2966612A (en) Radiation detection
JPH0518816A (en) Pyroelectric array sensor
SU939961A1 (en) Radiation receiver
SU496845A1 (en) Piezoelectric radiation measuring device
Cheneau et al. Mixed oxide provides an efficient solution to near infrared detection
Engelhardt et al. Ferroelectric field effect of a thin NaNO2-layer on a Si-substrate
Hofmann et al. Construction, properties and application of pyroelectric single-element detectors and 128-element CCD linear arrays
Hashimoto et al. Development of one-dimensional pyroelectric infrared array detector with high sensitivity

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees