JPS6197539A - Infrared linear array element - Google Patents

Infrared linear array element

Info

Publication number
JPS6197539A
JPS6197539A JP59219555A JP21955584A JPS6197539A JP S6197539 A JPS6197539 A JP S6197539A JP 59219555 A JP59219555 A JP 59219555A JP 21955584 A JP21955584 A JP 21955584A JP S6197539 A JPS6197539 A JP S6197539A
Authority
JP
Japan
Prior art keywords
thin film
electrode
array element
linear array
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59219555A
Other languages
Japanese (ja)
Inventor
Kenji Iijima
賢二 飯島
Ryoichi Takayama
良一 高山
Ichiro Ueda
一朗 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59219555A priority Critical patent/JPS6197539A/en
Publication of JPS6197539A publication Critical patent/JPS6197539A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/34Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using capacitors, e.g. pyroelectric capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer
    • H01L27/14669Infrared imagers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To obtain a high sensitivity, by removing a part of a base of an infrared linear array element facing a light receiving section, leaving only a meshy support bridge to eliminate the escape of heat to the base while yielding a high mechanical strength. CONSTITUTION:An electrode 2 about 0.2mum thick is formed on a MgO base 1 about 400mum thick which mirror-ground with a cleavage of (100) and a pyroelectric film 3 about 4mum thick is made by sputtering. After the evaporation of a light receiving electrode 4 and a fetch electrode 5, the MgO base 1 is etched using heated concentrated phosphoric acid to form an opening 6. In this process, the whole part of the MgO base 1 corresponding to the opening 6 is not removed completely but a part of the MgO base 1 is left meshy as a support bridge 7 so that a thin film electrode 2 facing the opening 6 will be supported to hold the thin film electrode 2. Thus, the element can have a sufficient mechanical strength along with a sufficient infrared sensitivity.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は赤外線撮像装置、非接触温度計などに用いるこ
とのできる赤外線検出用のりニアアレイ素子に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a linear array element for infrared detection that can be used in infrared imaging devices, non-contact thermometers, and the like.

従来例の構成とその問題点 物体は常温近傍において、10μmの波長付近にピーク
をもつ赤外線を輻射しており、この輻射エネルギーの波
長特性が物体の温度によって異なるので、物体から輻射
される赤外線のエネルギーを測定することによって物体
の温度を非接触で測定できる。また表示デバイスを用い
れば物体の熱像を短時間に目で見ることができる。
Conventional configuration and its problems At room temperature, objects radiate infrared rays with a peak around a wavelength of 10 μm.The wavelength characteristics of this radiant energy vary depending on the temperature of the object, so the infrared rays radiated from the object By measuring energy, the temperature of an object can be measured without contact. Furthermore, if a display device is used, a thermal image of an object can be visually viewed in a short period of time.

これらに使用される赤外線検出器としては、大別して量
子形と熱形がある。量子形は応答速度が速く感度も高い
という特長をもっているが、液体窒素などによる冷却が
必要であり、感度の波長依存性が大きいという欠点を有
する。それに比べて熱形検出器は、感度は低いが、常温
で動作し、感度の波長依存性がないという長所をもって
いる。
Infrared detectors used for these can be roughly divided into quantum type and thermal type. The quantum type has the advantage of fast response speed and high sensitivity, but has the disadvantage that it requires cooling with liquid nitrogen or the like, and its sensitivity is highly dependent on wavelength. In comparison, thermal detectors have lower sensitivity, but have the advantage of operating at room temperature and having no wavelength dependence of sensitivity.

熱形には、サーミスタ形と焦電形があるが、焦電形は比
較的感度もよく、バイアス電源を必要とせず、取扱いが
簡便である。このようなことから、赤外線検出器として
、特性のよい焦電形の検出器が望まれている。
There are two types of thermal type: thermistor type and pyroelectric type. Pyroelectric type has relatively good sensitivity, does not require a bias power source, and is easy to handle. For this reason, a pyroelectric detector with good characteristics is desired as an infrared detector.

焦電材料としては、単結晶、磁器、薄膜が考えられる。Possible pyroelectric materials include single crystals, porcelain, and thin films.

薄膜は、高密度のアレイセンサを構成するのに有利であ
り、比検出能D*を大きくできるという点でも有利であ
る。焦電体薄膜は通常酸化物やSi等を基板に用い、高
周波スパッタリング法あるいは、蒸着法などで作成され
る。焦電形の検出素子は赤外線の吸収による温度上昇を
利用するので、赤外線を十分に吸収させること、基板へ
の熱の逃げがない様にすること″が必要である。これは
基板をとり除くことで解決できるが、十分な機械的強度
が得られない。
A thin film is advantageous in configuring a high-density array sensor, and is also advantageous in that the specific detectability D* can be increased. A pyroelectric thin film is usually created using an oxide, Si, or the like as a substrate by high-frequency sputtering, vapor deposition, or the like. Pyroelectric detection elements utilize the temperature rise caused by absorption of infrared rays, so it is necessary to absorb sufficient infrared rays and to prevent heat from escaping to the substrate.This can be done by removing the substrate. However, sufficient mechanical strength cannot be obtained.

発明の目的 本発明は基板への熱の逃げをなくし、しかも機械的強度
が高く高感度の赤外線リニアアレイ素子を提供すること
を目的とする。
OBJECTS OF THE INVENTION An object of the present invention is to provide an infrared linear array element that eliminates heat escape to a substrate, has high mechanical strength, and has high sensitivity.

発明の構成 本発明は、基板上に設けた焦電体薄膜を用いて赤外線を
検出するように構成された赤外線リニアアレイ素子にお
いて、受光部に対向する前記基板を一部分除去し、網目
状の支持、桟′のみを残す様に構成したことを特徴とす
る。
Structure of the Invention The present invention provides an infrared linear array element configured to detect infrared rays using a pyroelectric thin film provided on a substrate, in which a portion of the substrate facing the light receiving section is removed and a mesh support is provided. , is characterized in that it is configured so that only the crosspiece ′ remains.

実施例の説明 第1図および第2図は各々本発明にょる焦電形赤外線リ
ニアアレイ素子の平面図と断面図である。
DESCRIPTION OF THE EMBODIMENTS FIGS. 1 and 2 are a plan view and a sectional view, respectively, of a pyroelectric infrared linear array element according to the present invention.

(100)でへき関し鏡面研摩を施した厚さ約400μ
mのMqo基板1上に厚さ約0.2μmの電極2を形成
した後、厚さ約4μmの焦電体膜3をスパツタリングに
より作成した。受光電極4及びとり出し電極5を蒸着し
た後、熱源リン酸を用いMgO基板1をエツチングし開
口部6を形成した。
Approximately 400μ thick with mirror polishing (100)
After forming an electrode 2 with a thickness of about 0.2 μm on an Mqo substrate 1 of 100 m in thickness, a pyroelectric film 3 with a thickness of about 4 μm was formed by sputtering. After the light receiving electrode 4 and the extraction electrode 5 were deposited, the MgO substrate 1 was etched using a heat source of phosphoric acid to form an opening 6.

この時、MgO基板1の開口部6に対応する部分を全て
とり除くのではなく、この開口部6に臨む薄膜電極2を
支持する様に、第3図に示す様にMgO基板1の一部を
支持桟°7として網目状に残し、薄膜電極2を保持した
。この時、網目のピッチaは300μm、残した基板の
巾6は70μmである。また厚みCは4oμmである。
At this time, instead of removing the entire portion of the MgO substrate 1 corresponding to the opening 6, a part of the MgO substrate 1 is removed as shown in FIG. 3 so as to support the thin film electrode 2 facing the opening 6. The support bars 7 were left in the form of a mesh to hold the thin film electrode 2. At this time, the mesh pitch a is 300 μm, and the width 6 of the remaining substrate is 70 μm. Further, the thickness C is 4 0 μm.

また受光電極4のピッチは100μm、ギャップは30
μmである。
The pitch of the light receiving electrodes 4 is 100 μm, and the gap is 30 μm.
It is μm.

温度5ooxの黒体炉を光源に用い、上記の素子の赤外
特性を測定した。焦電体膜3としてPbTiO2を用い
、電極2として白金を用いた場合に、MgO基′&1の
影響を調べた。Mho基板を網目状の支持夙゛7のみ残
して除去した試料では、全面に厚さ20μmのMgOが
残っている場合に比べ15倍の出力が得られ、MgO基
板1 を全て、とり除いた場合に比べ出力は2O4程度
しか減少しておらず、機械的強度も十分であった0チョ
ッピング周波数10Hzにおいて、電圧感度Rvは、焦
電体膜3がPbTiO2の場合1300V/W。
The infrared characteristics of the above device were measured using a blackbody furnace at a temperature of 50ox as a light source. The influence of MgO groups '&1 was investigated when PbTiO2 was used as the pyroelectric film 3 and platinum was used as the electrode 2. In the sample where the Mho substrate was removed leaving only the mesh-like support layer 7, 15 times the output was obtained compared to the case where MgO with a thickness of 20 μm remained on the entire surface, and when the entire MgO substrate 1 was removed. At a zero chopping frequency of 10 Hz, where the output was reduced by only about 2O4 and the mechanical strength was sufficient, the voltage sensitivity Rv was 1300 V/W when the pyroelectric film 3 was made of PbTiO2.

Pb     La     Ti O,950,05。、9803の場合1600v//V
/、Pbo、86Lao、1oTiO3の場合800V
/WP bo 、75 L a o 、 1 ? T 
I Osは80ov/w、Pbo、7゜L ao 、 
20 T 1030:)場合680V/Wが得られた。
PbLaTiO,950,05. , 1600v//V for 9803
/, Pbo, 86Lao, 800V for 1oTiO3
/WP bo, 75 L a o, 1? T
IOs is 80ov/w, Pbo, 7°Lao,
20 T 1030:) 680 V/W was obtained.

電極3がptの場合とAu  の場合で差は認められな
かった。又、赤外光をGeレンズでアレイ素子の1つに
集光し、この素子の出力■。と隣の素子の出力VNを同
時に測定し、これらの割合からクロストークを算出した
ところ、いずれの薄膜においてもvN/v0=0.1 
であった。これより本発明によるアレイ素子が高感で解
像度も良いことがわかる。
No difference was observed between when electrode 3 was made of PT and when it was made of Au. In addition, the infrared light is focused on one of the array elements using a Ge lens, and the output of this element is ■. and the output VN of the adjacent element were measured at the same time, and the crosstalk was calculated from these ratios, and it was found that vN/v0 = 0.1 for both thin films.
Met. This shows that the array element according to the present invention has high sensitivity and good resolution.

発明の効果 本発明による赤外線IJ ニアアレイ素子は、基板を全
て除去することなく網目状に残すことで十分な機械的強
度を持たせることができ、また基板への熱の逃げが少な
いので十分な赤外線感度が得られる。
Effects of the Invention The infrared IJ near array element according to the present invention can have sufficient mechanical strength by leaving the substrate in the form of a mesh without removing it completely, and also has sufficient infrared rays because less heat escapes to the substrate. Sensitivity can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は各々本発明の実施例における焦電形
赤外線IJ ニアアレイ素子の平面図及び断面図、第3
図は同実施例の要部である網目状の支持#℃部分の拡大
斜視図である。 1・・・・・・MgO基板、2・・・・・・薄膜電極、
3・・・・・・焦電体膜、4・・・・・・受光電極、5
・・山・とり出し電極、6・・・・・・開口部、7・・
・・・・支持片っ代理人の氏名 弁理士 中 尾 敏 
男 ほか1名第1図
FIGS. 1 and 2 are a plan view and a sectional view of a pyroelectric infrared IJ near array element in an embodiment of the present invention, respectively, and FIG.
The figure is an enlarged perspective view of the mesh-like support #°C part, which is the main part of the same embodiment. 1...MgO substrate, 2...Thin film electrode,
3... Pyroelectric film, 4... Light receiving electrode, 5
...Mountain/takeout electrode, 6...Opening, 7...
...Name of supporting agent Satoshi Nakao, patent attorney
Figure 1: Male and 1 other person

Claims (5)

【特許請求の範囲】[Claims] (1)基板と、その基板上に形成された薄膜電極と、そ
の薄膜電極上に作られた焦電体薄膜と、前記焦電体薄膜
上に形成された受光電極とを有し、前記薄膜電極又は前
記受光電極が2個以上に互いに分離独立して形成されて
いるとともに、前記受光電極の反対側の前記基板の一部
を前記薄膜電極及び焦電体薄膜を支持する様に網目状構
造の支持桟として残して除去したことを特徴とする赤外
線リニアアレイ素子。
(1) A substrate, a thin film electrode formed on the substrate, a pyroelectric thin film formed on the thin film electrode, and a light receiving electrode formed on the pyroelectric thin film, and the thin film Two or more electrodes or the light-receiving electrode are formed separately and independently from each other, and a part of the substrate on the opposite side of the light-receiving electrode has a mesh structure so as to support the thin film electrode and the pyroelectric thin film. An infrared linear array element characterized in that the infrared linear array element is removed while remaining as a supporting crosspiece.
(2)焦電体薄膜が化学式Pb_xLa_yTi_zO
_3で表わされ、0.70≦x≦1、0.90≦x+y
≦1、0.95≦z≦1の組成範囲の薄膜であることを
特徴とする特許請求の範囲第1項記載の赤外線リニアア
レイ素子。
(2) The pyroelectric thin film has the chemical formula Pb_xLa_yTi_zO
Represented by _3, 0.70≦x≦1, 0.90≦x+y
The infrared linear array element according to claim 1, wherein the infrared linear array element is a thin film having a composition in the range of ≦1 and 0.95≦z≦1.
(3)基板上に形成した電極が、Pt、Auのいずれか
であることを特徴とする特許請求の範囲第1項記載の赤
外線リニアアレイ素子。
(3) The infrared linear array element according to claim 1, wherein the electrode formed on the substrate is made of either Pt or Au.
(4)受光電極としてNiCr合金薄膜を用いたことを
特徴とする特許請求の範囲第1項記載の赤外線リニアア
レイ素子。
(4) The infrared linear array element according to claim 1, characterized in that a NiCr alloy thin film is used as the light-receiving electrode.
(5)基板としてMgOを用いたことを特徴とする特許
請求の範囲第1項記載の赤外線リニアアレイ素子。
(5) The infrared linear array element according to claim 1, characterized in that MgO is used as the substrate.
JP59219555A 1984-10-19 1984-10-19 Infrared linear array element Pending JPS6197539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59219555A JPS6197539A (en) 1984-10-19 1984-10-19 Infrared linear array element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59219555A JPS6197539A (en) 1984-10-19 1984-10-19 Infrared linear array element

Publications (1)

Publication Number Publication Date
JPS6197539A true JPS6197539A (en) 1986-05-16

Family

ID=16737337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59219555A Pending JPS6197539A (en) 1984-10-19 1984-10-19 Infrared linear array element

Country Status (1)

Country Link
JP (1) JPS6197539A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000062028A3 (en) * 1999-04-09 2002-05-10 Spectraprobe Ltd Improvements in, or relating to, infra-red detection
US6579740B2 (en) 2000-10-13 2003-06-17 Denso Corporation Method of making a thin film sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000062028A3 (en) * 1999-04-09 2002-05-10 Spectraprobe Ltd Improvements in, or relating to, infra-red detection
US6818892B1 (en) 1999-04-09 2004-11-16 Spectraprobe Limited System and method for infra-red detection
US6579740B2 (en) 2000-10-13 2003-06-17 Denso Corporation Method of making a thin film sensor

Similar Documents

Publication Publication Date Title
EP0354369B1 (en) Infrared detector
US5021663A (en) Infrared detector
US5288649A (en) Method for forming uncooled infrared detector
JP3399399B2 (en) Infrared sensor and method of manufacturing the same
EP0534768B1 (en) Uncooled infrared detector and method for forming the same
JPS6122676A (en) Thermoelectric sensor
US4224520A (en) Room temperature two color infrared detector
US11499871B2 (en) Detector of electromagnetic radiation
EP0827216B1 (en) Improvements in or relating to thermal imaging systems
US4029521A (en) Thermoelectric detector
JPS6197539A (en) Infrared linear array element
KR20050034489A (en) Uncooled infrared sensor with two-layer structure
US6437331B1 (en) Bolometer type infrared sensor with material having hysterisis
JP2000298061A (en) Infrared ray sensor
JPS61170626A (en) Infrared linear array element
JPH0989655A (en) Infrared detection apparatus
JP2531231B2 (en) Thermal infrared sensor
JP2856753B2 (en) Infrared sensor
JPS60171425A (en) Pyroelectric type heat detection element
RU2811537C1 (en) Quartz thermal radiation receiver
JPS6126828A (en) Infrared detecting element
JPS6177727A (en) Thermocouple type infrared detecting element
JPS6035016B2 (en) Thermistor bolometer
JPS6136967A (en) Infrared ray linear array element and manufacture thereof
JPH021379B2 (en)