JPS6126828A - Infrared detecting element - Google Patents

Infrared detecting element

Info

Publication number
JPS6126828A
JPS6126828A JP14693984A JP14693984A JPS6126828A JP S6126828 A JPS6126828 A JP S6126828A JP 14693984 A JP14693984 A JP 14693984A JP 14693984 A JP14693984 A JP 14693984A JP S6126828 A JPS6126828 A JP S6126828A
Authority
JP
Japan
Prior art keywords
thin film
substrate
epoxy resin
mechanical strength
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14693984A
Other languages
Japanese (ja)
Inventor
Kenji Iijima
賢二 飯島
Ichiro Ueda
一朗 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14693984A priority Critical patent/JPS6126828A/en
Publication of JPS6126828A publication Critical patent/JPS6126828A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N15/00Thermoelectric devices without a junction of dissimilar materials; Thermomagnetic devices, e.g. using the Nernst-Ettingshausen effect
    • H10N15/10Thermoelectric devices using thermal change of the dielectric constant, e.g. working above and below the Curie point

Abstract

PURPOSE:To maintain the mechanical strength of a thin film and prevent heat radiation by leaving part of a substrate in a linear or lattice shape. CONSTITUTION:A platinum thin-film electrode 2 is formed on a magnesium oxide substrate 1, a lead titanate thin film 2 is grown, and an NiCr electrode 4 is vapor-deposite thereupon. A groove is formed on the reverse side of the substrate 1 and epoxy resin 5 is pressed in the groove. An opening part 6 is formed of phosphoric acid after the epoxy resin cakes to expose the part 7 formed of only a thin film, manufacturing the infrared detecting element withoug breaking the thin film part. At this time, the width and thickness of a stripe part 8 consisting of part of the substrate 1 are specified to obtain a large output while maintaining the mechanical strength of the thin film 3.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、赤外線検出素子に関するものである。[Detailed description of the invention] (Industrial application field) The present invention relates to an infrared detection element.

(従来例の構成とその問題点) 物体は、常温近傍において、10μmの波長付近にピー
クをもつ赤外線を輻射しておシ、この輻射エネルギーの
波長特性が物体の温度によって異なるので、物体から輻
射される赤外線のエネルギーを測定することによって物
体の温度を非接触で測定できる。
(Conventional configuration and its problems) At room temperature, objects radiate infrared rays that have a peak around a wavelength of 10 μm.The wavelength characteristics of this radiant energy vary depending on the temperature of the object, so it is difficult to radiate from objects. By measuring the infrared energy emitted, the temperature of an object can be measured without contact.

この温度測定に使用される赤外線検出器としては、大別
して量子形と熱形がある。量子形は応答速度が速く、感
度も高いという特長をもっているが、液体窒素などによ
る律動が必要であり、感度の波長依存性が太きいという
欠点を有する。それに比べて熱形検出器は、感度は低い
が常温で動作し、感度の波長依存性がないという長所を
もっている。熱形には、サーミスタ形と焦電形があるが
、焦電形は比較的感度もよく、バイアス電源を必要とせ
ず、取扱いが簡便である。このようなことから、赤外線
検出器として、特性のよい焦電形検出器が要望されてい
る。
Infrared detectors used for this temperature measurement are broadly classified into quantum type and thermal type. Quantum type has the advantage of fast response speed and high sensitivity, but has the drawback that it requires rhythm using liquid nitrogen or the like and has a strong wavelength dependence of sensitivity. In comparison, thermal detectors have lower sensitivity, but have the advantage of operating at room temperature and having no wavelength dependence on sensitivity. There are two types of thermal type: thermistor type and pyroelectric type. Pyroelectric type has relatively good sensitivity, does not require a bias power source, and is easy to handle. For this reason, a pyroelectric detector with good characteristics is desired as an infrared detector.

焦電形素子の形態としては、単結晶、磁器、薄膜が考え
られる。薄膜は、高密度のアレイセンサを構成するのに
有利であり、比検出能D*を大きくできるという点でも
有利である。焦電体薄膜は、通常、酸化物やSiなどを
基板に用い、高周波スパッタリング法あるいは、蒸着法
などで形成される。
Possible forms of the pyroelectric element include single crystal, porcelain, and thin film. A thin film is advantageous in configuring a high-density array sensor, and is also advantageous in that the specific detectability D* can be increased. A pyroelectric thin film is usually formed using an oxide, Si, or the like as a substrate by high-frequency sputtering, vapor deposition, or the like.

焦電形赤外検出器は、赤外線の吸収による温度上昇を利
用するので、赤外線を十分吸収させること、基板へ熱か
にげないようにすることが必要である。
Since a pyroelectric infrared detector utilizes temperature rise due to absorption of infrared rays, it is necessary to sufficiently absorb infrared rays and to prevent heat from radiating to the substrate.

熱の放散を防止するには、基板をエツチング々とで除去
すればよい。しかし薄膜は通常数μmの厚みで形成され
るので非常にこわれ易く、また膜の内部歪のために基板
を除去する際に破損してしまう。また薄くても全体に基
板が残っていることは素子として大きな欠点になる。
To prevent heat dissipation, the substrate can be removed by etching. However, since the thin film is usually formed with a thickness of several micrometers, it is very fragile, and due to the internal strain of the film, it is damaged when the substrate is removed. Furthermore, even if the device is thin, the fact that the substrate remains throughout the device is a major drawback.

(発明の目的) 本発明は、製造が容易な高感度赤外線検出素子を提供す
ることを目的とする。
(Objective of the Invention) An object of the present invention is to provide a highly sensitive infrared detection element that is easy to manufacture.

(発明の構成) 本発明による赤外線検出素子は、基板の一部を縞状若し
くは格子状に残すことで薄膜の機械的強度を保持し、か
つ熱放散を極力防止するようにしたものである。
(Structure of the Invention) The infrared detection element according to the present invention maintains the mechanical strength of the thin film and prevents heat dissipation as much as possible by leaving a part of the substrate in a striped or grid pattern.

以下、図面によシ実流側を詳細に説明する。The actual flow side will be explained in detail below with reference to the drawings.

(実施例の説明) 第1図は、本発明の一実施例を示したもので、マス、厚
さ300μmの酸化マグネシウム基板1上にスパッタ法
によシ厚さ約0.2μmの白金薄膜電極2を形成し、次
いで厚さ約2μmのチタン酸鉛薄膜3を成長させ、その
上にNi Cr電極4を蒸着した。次に、基板の裏側か
らイオンビームエッチによシ1羽ピッチで溝を形成した
後、この溝にエポキシ樹脂5を圧入した。エポキシ樹脂
固化後、燐酸により開口部6を形成して薄膜のみからな
る部分7を出現させ、薄膜部分を破損することなく赤外
線検出素子を作製した。
(Description of an embodiment) Fig. 1 shows an embodiment of the present invention, in which a platinum thin film electrode with a thickness of about 0.2 μm is formed on a magnesium oxide substrate 1 with a thickness of 300 μm by sputtering. 2 was formed, then a lead titanate thin film 3 having a thickness of about 2 μm was grown, and a Ni Cr electrode 4 was deposited thereon. Next, grooves were formed at a pitch of one blade by ion beam etching from the back side of the substrate, and then epoxy resin 5 was press-fitted into the grooves. After solidifying the epoxy resin, an opening 6 was formed with phosphoric acid to expose a portion 7 consisting only of a thin film, thereby producing an infrared detecting element without damaging the thin film portion.

基板の一部よりなる縞状部分8の幅及び厚みを変化させ
、温度500にの黒体炉から照射した赤外光に対する素
子の出力変化を調べた。縞状部分8の厚さを10μm一
定とし、幅を変化させた時の出力の変化を第2図に、ま
た、幅を100μm一定にし、厚さを変化させたときの
出力の変化を第3図にそれぞれ示す。これらの図から明
らかなように、縞状部分により薄膜を保持することで薄
膜の機械的強度を保ちつつ、太きい出力が得られること
がわかる。
The width and thickness of the striped portion 8, which is a part of the substrate, was varied, and changes in the output of the device in response to infrared light irradiated from a blackbody furnace at a temperature of 500 °C were investigated. Figure 2 shows the change in output when the width of the striped portion 8 is constant at 10 μm and the width is changed, and Figure 3 shows the change in output when the width is constant at 100 μm and the thickness is changed. Each is shown in the figure. As is clear from these figures, by holding the thin film with the striped portions, a large output can be obtained while maintaining the mechanical strength of the thin film.

なお、基板の残す形状を格子状にしてもよい。Note that the remaining shape of the substrate may be a lattice shape.

(発明の効果) 以上説明したように、本発8Aによれば、工業的に生産
が容易で、かつ高感度の優れた特性を有する赤外線検出
素子を提供することができる。
(Effects of the Invention) As described above, according to the present invention 8A, it is possible to provide an infrared detection element that is industrially easy to produce and has excellent characteristics of high sensitivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)は、本発明の一実施例の断面図、第1図(
b)は、同底面図、 第2図は、第1図の縞状部分8の幅に対する赤外検出素
子の出力の変化を示す図(ただし出力は幅1000/1
mの時の値を1とした相対出力)、第3図は、第1図の
縞状部分8の厚さに対する赤外検出素子の出力の変化を
示す図(ただし出力は厚さ100μmの時の値を1とし
た相対出力)である。 1・・・酸化マグネシウム基板、2・・・白金薄膜電極
、3・・チタン酸鉛薄膜、4・・・Ni Cr電極、5
・・エポキシ樹脂、6・・開口部、7・薄膜のみからな
る部分、8・−・縞状部分。 特許出願人 松下電器産業株式会社 7−pHl[+1     人     月シ    
  甲子      6ゴ      司自i第1図 (b)
FIG. 1(a) is a sectional view of one embodiment of the present invention, FIG.
b) is a bottom view of the same, and FIG. 2 is a diagram showing changes in the output of the infrared detection element with respect to the width of the striped portion 8 in FIG.
Fig. 3 is a diagram showing the change in the output of the infrared detection element with respect to the thickness of the striped portion 8 in Fig. 1 (the output is relative when the thickness is 100 μm). (relative output with the value of 1 being 1). DESCRIPTION OF SYMBOLS 1... Magnesium oxide substrate, 2... Platinum thin film electrode, 3... Lead titanate thin film, 4... Ni Cr electrode, 5
... Epoxy resin, 6. Opening, 7. Part consisting only of thin film, 8. -- Striped part. Patent applicant: Matsushita Electric Industrial Co., Ltd.
Koshi 6 Go Tsukaji Figure 1 (b)

Claims (1)

【特許請求の範囲】[Claims] 薄膜赤外線検出素子において、受光部分の下部の基板の
一部を縞状若しくは格子状に残して他の部分を除去して
なり、素子の薄膜をその残した基板の一部で支持するこ
とを特徴とする薄膜赤外線検出素子。
A thin film infrared detection element is characterized in that a part of the substrate below the light-receiving part is left in a striped or grid pattern and the other part is removed, and the thin film of the element is supported by the remaining part of the substrate. Thin film infrared detection element.
JP14693984A 1984-07-17 1984-07-17 Infrared detecting element Pending JPS6126828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14693984A JPS6126828A (en) 1984-07-17 1984-07-17 Infrared detecting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14693984A JPS6126828A (en) 1984-07-17 1984-07-17 Infrared detecting element

Publications (1)

Publication Number Publication Date
JPS6126828A true JPS6126828A (en) 1986-02-06

Family

ID=15418987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14693984A Pending JPS6126828A (en) 1984-07-17 1984-07-17 Infrared detecting element

Country Status (1)

Country Link
JP (1) JPS6126828A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02137740A (en) * 1988-11-16 1990-05-28 Canon Inc Molding of optical element
US6579740B2 (en) 2000-10-13 2003-06-17 Denso Corporation Method of making a thin film sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02137740A (en) * 1988-11-16 1990-05-28 Canon Inc Molding of optical element
US6579740B2 (en) 2000-10-13 2003-06-17 Denso Corporation Method of making a thin film sensor

Similar Documents

Publication Publication Date Title
CN106352989B (en) A kind of production method and structure of non-refrigerated infrared focal plane probe microbridge
JP6316955B2 (en) Laser power and energy sensors using anisotropic thermoelectric materials
JP4511676B2 (en) Thermopile type infrared sensor and manufacturing method thereof
JP2015537191A (en) Laser power and energy sensors using anisotropic thermoelectric materials
US11499871B2 (en) Detector of electromagnetic radiation
JPH11258038A (en) Infrared ray sensor
JP2009025306A (en) Electromagnetic radiation detector, and manufacturing method for the detector
JPS6126828A (en) Infrared detecting element
US11067434B2 (en) Fast detector of electromagnetic radiation
JP2811709B2 (en) Infrared sensor
JPS6138427A (en) Infrared detection element
CN210071148U (en) Etching-enhanced uncooled infrared film detector
JPS6215416A (en) Laser beam energy distribution measuring instrument
JPS61259580A (en) Thermopile
JPS6197539A (en) Infrared linear array element
JPH11258040A (en) Thermopile type infrared ray sensor
JPH0476235B2 (en)
JP2564939Y2 (en) Thermopile infrared detector
SU1008686A1 (en) Method of producing pyranometer radial thermopile
JPH02206733A (en) Infrared ray sensor
RU2075044C1 (en) Radiometer
JP3246131B2 (en) Manufacturing method of infrared detecting element
JPH08178741A (en) Infrared sensor and manufacture thereof
RU1266420C (en) Method of manufacturing bolometer
JPS6136967A (en) Infrared ray linear array element and manufacture thereof