KR20050034489A - Uncooled infrared sensor with two-layer structure - Google Patents

Uncooled infrared sensor with two-layer structure Download PDF

Info

Publication number
KR20050034489A
KR20050034489A KR1020030070410A KR20030070410A KR20050034489A KR 20050034489 A KR20050034489 A KR 20050034489A KR 1020030070410 A KR1020030070410 A KR 1020030070410A KR 20030070410 A KR20030070410 A KR 20030070410A KR 20050034489 A KR20050034489 A KR 20050034489A
Authority
KR
South Korea
Prior art keywords
layer
infrared sensor
uncooled infrared
layer structure
buffer
Prior art date
Application number
KR1020030070410A
Other languages
Korean (ko)
Other versions
KR100539395B1 (en
Inventor
이홍기
임용근
Original Assignee
이홍기
주식회사 오카스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이홍기, 주식회사 오카스 filed Critical 이홍기
Priority to KR10-2003-0070410A priority Critical patent/KR100539395B1/en
Priority to JP2006532070A priority patent/JP2007509315A/en
Priority to US10/574,935 priority patent/US7554085B2/en
Priority to CNB2004800293609A priority patent/CN100552982C/en
Priority to PCT/KR2004/002294 priority patent/WO2005034248A1/en
Priority to EP04774553A priority patent/EP1671375A4/en
Publication of KR20050034489A publication Critical patent/KR20050034489A/en
Application granted granted Critical
Publication of KR100539395B1 publication Critical patent/KR100539395B1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0853Optical arrangements having infrared absorbers other than the usual absorber layers deposited on infrared detectors like bolometers, wherein the heat propagation between the absorber and the detecting element occurs within a solid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/52Radiation pyrometry, e.g. infrared or optical thermometry using comparison with reference sources, e.g. disappearing-filament pyrometer
    • G01J5/53Reference sources, e.g. standard lamps; Black bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer
    • H01L27/14669Infrared imagers
    • H01L27/1467Infrared imagers of the hybrid type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/20Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using resistors, thermistors or semiconductors sensitive to radiation, e.g. photoconductive devices
    • G01J2005/202Arrays

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

본 발명은 티타늄 볼로미터를 이용한 2층 구조의 고흡수율 비냉각형 적외선 센서에 관한 것이다.The present invention relates to a high absorption rate uncooled infrared sensor having a two-layer structure using a titanium bolometer.

본 발명의 2층 구조의 비냉각형 적외선 센서는 버퍼층과 반사금속층이 증착되어 있는 Si 웨이퍼로 이루어진 하부층과, 상기 하부층 상부에 형성된 적어도 한 쌍 이상의 앵커(anchor), 상기 앵커에 의해 지지되는 제 1 절연막층; 상기 제 1 절연막층 위에 형성된 버퍼층; 상기 버퍼층 위에 형성된 열선; 상기 열선위에 형성된 제 2 절연막층; 및 상기 제 2 절연막층 위에 형성된 금속흡수층을 포함하는 상부층으로 이루어짐에 기술적 특징이 있다.An uncooled infrared sensor having a two-layer structure according to the present invention includes a lower layer consisting of a Si wafer on which a buffer layer and a reflective metal layer are deposited, at least one pair of anchors formed on the lower layer, and a first insulating film supported by the anchor. layer; A buffer layer formed on the first insulating layer; A heating wire formed on the buffer layer; A second insulating layer formed on the hot wire; And an upper layer including a metal absorption layer formed on the second insulating layer.

따라서, 본 발명의 2층 구조의 비냉각형 적외선 센서는 티타늄 볼로미터를 사용하여 입사된 적외선이 에어 갭에서 공명 흡수되도록 하는 단순한 2층 구조의 적외선 센서를 제공함으로써 별도의 집광렌즈 없이도 적외선 흡수율이 좋은 고감도의 적외선 센서를 제공한다.Accordingly, the two-layer uncooled infrared sensor of the present invention provides a simple two-layer infrared sensor that allows the incident infrared rays to be absorbed resonantly in the air gap using a titanium bolometer, thereby providing high sensitivity for infrared absorption without a separate condenser lens. Provides an infrared sensor.

Description

2층 구조의 비냉각형 적외선 센서{Uncooled infrared sensor with two-layer structure} Uncooled infrared sensor with two-layer structure}

본 발명은 2층 구조의 비냉각형 적외선 센서에 관한 것으로, 보다 자세하게는 웨이퍼를 포함하는 하부층과 티타늄 볼로미터층을 포함하는 상부층 및 상기 하부층과 상부층 사이의 에어갭층으로 이루어진 고흡수율의 비냉각형 적외선 센서에 관한 것이다.The present invention relates to a two-layer uncooled infrared sensor, and more particularly, to a high absorption rate uncooled infrared sensor comprising a lower layer including a wafer and an upper layer including a titanium bolometer layer and an air gap layer between the lower layer and the upper layer. It is about.

적외선 센서는 작동 원리에 따라 크게 양자형(photon)과 열형(thermal)으로 나눌 수 있는데, 양자형은 주로 반도체 재료로서 특성은 좋으나 액체 질소 온도(-196℃)에서 작용한다는 단점이 있는 반면에, 열형 재료들은 반도체에 비해 성능은 다소 떨어지지만 상온에서 동작한다는 장점이 있다. 따라서 냉각이 필요한 양자형 재료들은 주로 군수용의 목적으로 연구되고 있으며, 비냉각형인 열형 재료들은 민수용으로 주로 사용되고 있다. Infrared sensors can be divided into photon and thermal according to the principle of operation, which is mainly a semiconductor material, which has good characteristics but has the disadvantage of operating at liquid nitrogen temperature (-196 ℃), Thermal materials have slightly lower performance than semiconductors, but have the advantage of operating at room temperature. Therefore, quantum materials that require cooling are mainly studied for military purposes, and non-cooled thermal materials are mainly used for civil water.

그리고 이 열형 적외선 센서는 일반적으로 볼로미터(Bolometer), 열전쌍(Thermocouple), 초전기(Pyroelectric)형의 3가지 형태로 나눌 수 있다. 초전기 센서는 검출력은 좋지만 생산량이 제한적이고, 볼로미터와 열전쌍은 초전기형보다는 검출력이 낮지만 검출기 회로와 함께 실리콘 웨이퍼 상에 모노리딕으로 제조되므로 생산성이 좋기 때문에 민수용으로 널리 개발되고 있다. 이 중에서 볼로미터형 적외선 센서는 물체에서 방사되는 적외선을 흡수하여 열에너지로 바뀔 때 그로 인한 온도상승으로 전기저항이 변화하는 것을 측정한다. 종래의 볼로미터는 미국특허 제5,300,915호에 도시된 것과 같이 통상적으로 부상된 검출레벨과 이를 지지하는 지지레벨 및 하부레벨로 이루어져 있다. 그러나 검출레벨에 지지역할을 하는 지지레벨이 함께 형성되어 있어서 적외선을 흡수하는 전체면적이 줄어들게 되므로 최대의 흡수면적(fill factor)을 얻을 수 없었다.The thermal infrared sensor is generally divided into three types: a bolometer, a thermocouple, and a pyroelectric type. Pyroelectric sensors have good detection power but limited production, while bolometers and thermocouples have lower detection power than pyroelectrics, but are manufactured in monolithic on silicon wafers with detector circuitry, which is widely developed for civilian use because of their high productivity. Among them, the bolometer-type infrared sensor measures the change in electrical resistance due to the temperature rise caused by absorbing infrared rays emitted from an object and converting it into thermal energy. Conventional bolometers typically consist of a raised level of detection as shown in US Pat. No. 5,300,915, a support level and a lower level to support it. However, since the support level to support the detection level is formed together, the total area absorbing infrared rays is reduced, so that the maximum absorption factor (fill factor) could not be obtained.

이에 따라 한국공개특허 제2000-0007216호, 한국공개특허 제2000-0046517호, 한국등록특허 제10-0299642호 및 미국특허 제6,448,557호에서는 적외선 반사층이 존재하는 3층 구조의 볼로미터형 적외선 센서를 개시하였고, 미국특허 제5,367,167호에서는 큰 도전 통로를 가지는 셀 어레이를 기술하였으며, 미국특허 제6,441,374호에서는 열 분리 구조를 가지며 흡수율이 높은 적외선 센서에 대해 개시하는 등 적외선 센서의 감도 및 흡수면적을 높이기 위한 연구가 계속 진행되고 있다.Accordingly, Korean Patent Publication No. 2000-0007216, Korean Patent Publication No. 2000-0046517, Korean Patent Registration No. 10-0299642 and US Patent No. 6,448,557 disclose a three-layer bolometer-type infrared sensor having an infrared reflecting layer. U.S. Patent No. 5,367,167 describes a cell array having a large conductive path, and U.S. Patent No. 6,441,374 discloses an infrared sensor having a thermal separation structure and high absorption rate to increase the sensitivity and absorption area of an infrared sensor. Research is ongoing.

그러나, 상기와 같은 종래의 연구들은 전기적 성질 및 열적 성질에 의존하는 적외선 센서를 제공하는 것이며 3층의 구조 또는 열 분리 구조를 가지므로 제조 공정이 까다롭다는 문제점이 있다.However, the conventional studies as described above provide an infrared sensor that depends on electrical and thermal properties, and have a three-layer structure or a thermal separation structure, which makes the manufacturing process difficult.

따라서, 본 발명은 상기와 같은 종래 기술의 제반 단점과 문제점을 해결하기 위한 것으로, 금속 흡수층과 볼로미터 센서층을 포함하여 이루어진 상부층과 반사금속층과 웨이퍼를 포함하는 하부층 및 상기 상부층과 하부층 사이에서 반사된 적외선을 공명흡수하는 에어갭층으로 이루어진 단순한 2층 구조의 적외선 센서 단위 픽셀을 설계하여 고흡수율을 가지는 비냉각형 적외선 센서를 제공함에 본 발명의 목적이 있다. Accordingly, the present invention is to solve the above-mentioned disadvantages and problems of the prior art, the upper layer comprising the metal absorbing layer and the bolometer sensor layer and the lower layer including the reflective metal layer and the wafer and reflected between the upper layer and the lower layer An object of the present invention is to provide an uncooled infrared sensor having a high absorption rate by designing a simple two-layer infrared sensor unit pixel composed of an air gap layer that resonates infrared rays.

본 발명의 상기 목적은 Si 웨이퍼 상의 제 1 버퍼층; 상기 제 1 버퍼층 위에 형성된 반사금속층과 적어도 한 쌍 이상의 앵커; 상기 앵커에 의해 지지되는 제 1 절연막층; 상기 제 1 절연막층 위에 형성된 제 2 버퍼층; 상기 제 2 버퍼층 위에 형성된 열선; 상기 열선 위에 형성된 제 2 절연막층; 및 상기 제 2 절연막층 위에 형성된 금속흡수층을 포함하여 구성되는 단위 픽셀로 이루어진 2층 구조의 비냉각형 적외선 센서에 의해 달성된다.The object of the invention is a first buffer layer on a Si wafer; At least one pair of anchors and a reflective metal layer formed on the first buffer layer; A first insulating layer supported by the anchor; A second buffer layer formed on the first insulating layer; A heating wire formed on the second buffer layer; A second insulating layer formed on the hot wire; And an uncooled infrared sensor having a two-layer structure consisting of unit pixels including a metal absorption layer formed on the second insulating layer.

본 발명의 상기 목적과 기술적 구성 및 그에 따른 작용효과에 관한 자세한 사항은 본 발명의 명세서에 첨부된 도면을 참조한 이하 상세한 설명에 의해 보다 명확하게 이해될 것이다.Details of the above object and technical configuration of the present invention and the effects thereof according to the present invention will be more clearly understood by the following detailed description with reference to the accompanying drawings.

먼저, 도 1은 본 발명에 의한 적외선 센서의 단위 픽셀을 나타낸 개념도이다.First, FIG. 1 is a conceptual diagram illustrating a unit pixel of an infrared sensor according to the present invention.

본 발명에 의한 적외선 센서는 8×8의 어레이를 가지는 볼로미터형의 비냉각형 적외선 센서로서, 그 단위픽셀은 도 1에 나타낸 바와 같이 하부층(100)과 상부층(200) 및 상기 하부층과 상부층 사이에 형성되는 에어갭(300)으로 이루어진다.Infrared sensor according to the present invention is a bolometer-type uncooled infrared sensor having an array of 8 × 8, the unit pixel is formed between the lower layer 100 and the upper layer 200 and the lower layer and the upper layer as shown in FIG. It is made of an air gap 300.

하부층은 Si 웨이퍼(11)와 상기 웨이퍼 상부에 응력 완화를 위해 Si3N4를 포함하는 질화물로 증착하는 제 1 버퍼층(12) 및 반사금속층(13)이 형성되어 이루어지며, 이 하부층 위에는 적어도 한 쌍 이상의 앵커(anchor)(14)가 형성된다. 여기에서 앵커는 SiO2를 포함하는 재질로 이루어지며 상부층을 지지하는 역할을 한다. 그리고, 상기의 반사금속층은 알루미늄을 포함하는 금속 또는 합금 재질로서 30nm 이상의 두께로 앵커부와 소정 간격 이격되도록 형성된다. 또는, 절연컷(iso-cut)을 형성(미도시)하여 앵커부와 반사금속층이 열절연되도록 한다. 절연컷은 앵커부 주변을 식각하여 파 줌으로써 제 1 버퍼층 상부에 형성되는 앵커부와 반사금속층이 절연될 수 있도록 형성한다.The lower layer is formed by forming a Si wafer 11 and a first buffer layer 12 and a reflective metal layer 13 deposited on the wafer with a nitride including Si 3 N 4 for stress relaxation. Pair or more anchors 14 are formed. Here, the anchor is made of a material containing SiO 2 and serves to support the upper layer. In addition, the reflective metal layer is a metal or alloy material including aluminum and is formed to be spaced apart from the anchor portion at a thickness of 30 nm or more. Alternatively, an isolating cut is formed (not shown) so that the anchor portion and the reflective metal layer are thermally insulated. The insulating cut is formed so that the anchor portion formed on the first buffer layer and the reflective metal layer may be insulated by etching and digging around the anchor portion.

상기 앵커에 의해 지지되는 상부층의 제일 밑면에는 SiO2로 이루어진 제 1 절연막층(21)과 제 1 절연막층 상부에 Si3N4를 포함하는 질화물로 이루어진 제 2 버퍼층(22)이 형성된다. 이 때의 제 1 절연막층과 제 2 버퍼층은 CVD(Chemical Vapor Deposition)법에 의해 증착되며, 절연막층은 SiO2가 0.65±0.1㎛의 두께로, 제 2 버퍼층은 Si3N4가 0.2±0.05㎛의 두께로 증착된다.The first insulating layer 21 made of SiO 2 and the second buffer layer 22 made of nitride including Si 3 N 4 are formed on the bottom of the upper layer supported by the anchor. At this time, the first insulating film layer and the second buffer layer are deposited by CVD (Chemical Vapor Deposition) method, the insulating film layer has a thickness of 0.65 ± 0.1㎛ SiO 2 , 0.2 ± 0.05 for the Si 3 N 4 buffer layer It is deposited to a thickness of 탆.

상기 버퍼층 상부에는 티타늄(Ti) 또는 티타늄산화물인 TiOx(x=1 내지 3)을 포함하는 재질로 이루어진 열선(23)이 유효 두께로 증착되어 볼로미터 센서층이 된다. 바람직하게는 티타늄 열선의 경우에는 300 내지 1500Å, 티타늄산화물의 경우 500 내지 5000Å 두께로 형성되며, 이 열선은 도 1과 같이 흡수된 적외선을 공명 흡수할 수 있도록 가운데 부분이 오픈되도록 패터닝 한다.The heating wire 23 made of a material including titanium (Ti) or titanium oxide TiO x (x = 1 to 3) is deposited to an effective thickness on the buffer layer to form a bolometer sensor layer. Preferably, the titanium hot wire is formed to have a thickness of 300 to 1500 kW, and the titanium oxide is 500 to 5000 kW, and the hot wire is patterned so as to open the center portion so as to resonancely absorb the absorbed infrared rays as shown in FIG. 1.

그리고 상기 티타늄 열선의 비저항은 바람직하게는 7×10-5 내지 9×10-5Ωㆍ㎝, TiOx 열선의 면저항은 100Ω/sqr 내지 10kΩ/sqr인 재질로 이루어지며, 모두 티타늄을 타겟으로 하는 스퍼터링 공정으로 형성된다. 또한 티타늄과 티타늄 산화물의 저항온도계수(TCR : temperature coefficient of resistivity)는 각각 0.3±0.2%, 2±1%이다. 상기의 열선은 제 1 절연막층과 제 2 버퍼층의 상부에 형성되는데, 열선이 형성되기 전에 상기의 SiO2 절연막과 Si3N4이 응력 완화를 위해 한층 더 반복되어 형성될 수도 있다.The specific resistance of the titanium heating wire is preferably 7 × 10 −5 to 9 × 10 −5 Ω · cm, and the sheet resistance of the TiO x heating wire is made of a material of 100Ω / sqr to 10kΩ / sqr, all of which target titanium. It is formed by a sputtering process. In addition, the temperature coefficient of resistivity (TCR) of titanium and titanium oxide is 0.3 ± 0.2% and 2 ± 1%, respectively. The heating wire is formed on the first insulating film layer and the second buffer layer, and the SiO 2 insulating film and Si 3 N 4 may be further formed to relieve stress before the heating wire is formed.

그 다음으로 상기 열선 위에는 SiO2로 이루어진 제 2 절연막층(24)이 형성되며, 상기 제 2 절연막층 위에 티타늄 금속흡수층(25)이 60±10Å의 두께로 형성되어 상부층을 형성한다.Next, a second insulating film layer 24 made of SiO 2 is formed on the hot wire, and a titanium metal absorbing layer 25 is formed on the second insulating film layer to a thickness of 60 ± 10 μs, thereby forming an upper layer.

상기에서 설명한 상부층과 하부층 사이에는 에어갭(300)이 형성되어 볼로미터 센서층을 통해 흡수된 적외선이 반사금속층에서 반사되고 그 다음 흡수층에서 재흡수가 일어나게 된다.An air gap 300 is formed between the upper layer and the lower layer described above so that infrared rays absorbed through the bolometer sensor layer are reflected by the reflective metal layer and then reabsorbed by the absorbing layer.

상기에서 설명된 본 발명의 적외선 센서는 최상부에 형성된 금속흡수층과 에어갭층 아래의 반사금속층간의 거리가 λ/4(λ:적외선의 파장)가 되도록 한다. 이 때 λ/4는 티타늄을 포함하는 금속흡수층과 반사금속층간의 광로를 의미하며 굴절률×박막의 두께를 의미한다.The infrared sensor of the present invention described above allows the distance between the metal absorption layer formed at the top and the reflective metal layer below the air gap layer to be λ / 4 (λ: wavelength of infrared rays). In this case, [lambda] / 4 means an optical path between the metal absorbing layer and the reflecting metal layer containing titanium, and means the refractive index x thickness of the thin film.

다음, 도 2는 본 발명에 의한 적외선 센서 단위 픽셀의 다른 실시예를 나타낸 개념도로서, 상기 도 1에 나타낸 열선 패턴이 변형된 경우를 나타낸 것이다. 크게 상부층과 하부층 및 에어갭으로 형성된 구조와 각 층의 구성물질과 형성두께는 동일하며, 볼로미터 센서층을 이루는 열선의 패턴이 변형된 것으로, 역시 적외선의 공명 흡수를 위해 가운데 부분이 오픈된 구조로 패터닝된다.Next, FIG. 2 is a conceptual view illustrating another embodiment of the infrared sensor unit pixel according to the present invention, and illustrates a case in which the hot wire pattern illustrated in FIG. 1 is modified. The structure formed by the upper layer, the lower layer, and the air gap is large, and the material and the forming thickness of each layer are the same, and the pattern of the heating wire constituting the bolometer sensor layer is modified, and the center part is opened to absorb infrared resonance. Is patterned.

상세히 설명된 본 발명에 의하여 본 발명의 특징부를 포함하는 변화들 및 변형들이 당해 기술 분야에서 숙련된 보통의 사람들에게 명백히 쉬워질 것임이 자명하다. 본 발명의 그러한 변형들의 범위는 본 발명의 특징부를 포함하는 당해 기술 분야에 숙련된 통상의 지식을 가진 자들의 범위 내에 있으며, 그러한 변형들은 본 발명의 청구항의 범위 내에 있는 것으로 간주된다.It will be apparent that changes and modifications incorporating features of the invention will be readily apparent to those skilled in the art by the invention described in detail. It is intended that the scope of such modifications of the invention be within the scope of those of ordinary skill in the art including the features of the invention, and such modifications are considered to be within the scope of the claims of the invention.

따라서, 본 발명의 2층 구조의 비냉각형 적외선 센서 및 그 제조방법은 비정질 실리콘을 포함하는 재질로 이루어진 볼로미터형 2층 구조의 적외선 센서를 제공함으로써 적외선 중심 파장에서의 흡수율이 95% 이상이 되도록 하는 적외선 센서를 비교적 간단한 공정을 통해 제조할 수 있다는 장점이 있고, 산업용 검사 장비 뿐만 아니라 온도 분해능이 작은 정밀 측정 장비로도 활용할 수 있는 효과가 있다.Accordingly, the two-layer uncooled infrared sensor and its manufacturing method of the present invention provide a bolometer-type two-layer infrared sensor made of a material containing amorphous silicon so that the absorption at infrared center wavelength is 95% or more. Infrared sensors can be manufactured in a relatively simple process, and can be used not only for industrial inspection equipment but also as precision measuring equipment with low temperature resolution.

도 1은 본 발명에 의한 적외선 센서의 단위 픽셀을 나타낸 개념도.1 is a conceptual diagram showing a unit pixel of the infrared sensor according to the present invention.

도 2는 본 발명에 의한 적외선 센서 단위 픽셀의 다른 실시예를 나타낸 개념도.2 is a conceptual diagram illustrating another embodiment of an infrared sensor unit pixel according to the present invention;

((도면의 주요부분에 대한 부호의 설명))((Explanation of symbols for main parts of drawing))

100 : 하부층 200 : 상부층100: lower layer 200: upper layer

11 : Si 웨이퍼 12 : 제 1 버퍼층11 Si wafer 12 first buffer layer

13 : 반사금속층 14 : 앵커(anchor)13 reflective metal layer 14 anchor

21 : 제 1 절연막층 22 : 제 2 버퍼층21: first insulating film layer 22: second buffer layer

23 : 열선 24 : 제 2 절연막층23: heating wire 24: second insulating film layer

25 : 금속흡수층 300 : 에어갭25: metal absorption layer 300: air gap

Claims (13)

Si 웨이퍼 상의 제 1 버퍼층;A first buffer layer on the Si wafer; 상기 제 1 버퍼층 위에 형성된 반사금속층과 적어도 한 쌍 이상의 앵커;At least one pair of anchors and a reflective metal layer formed on the first buffer layer; 상기 앵커에 의해 지지되는 제 1 절연막층;A first insulating layer supported by the anchor; 상기 제 1 절연막층 위에 형성된 제 2 버퍼층;A second buffer layer formed on the first insulating layer; 상기 제 2 버퍼층 위에 형성된 열선;A heating wire formed on the second buffer layer; 상기 열선 위에 형성된 제 2 절연막층; 및A second insulating layer formed on the hot wire; And 상기 제 2 절연막층 위에 형성된 금속흡수층A metal absorption layer formed on the second insulating layer 을 포함하여 구성되는 단위 픽셀로 이루어짐을 특징으로 하는 2층 구조의 비냉각형 적외선 센서.An uncooled infrared sensor having a two-layer structure, characterized in that the unit pixel is configured to include. 제 1항에 있어서,The method of claim 1, 상기 앵커는 SiO2로 이루어짐을 특징으로 하는 2층 구조의 비냉각형 적외선 센서.The anchor is an uncooled infrared sensor having a two-layer structure, characterized in that consisting of SiO 2 . 제 1항에 있어서,The method of claim 1, 상기 반사금속층과 제 1 절연막층 사이에는 에어갭이 형성됨을 특징으로 하는 2층 구조의 비냉각형 적외선 센서.An uncooled infrared sensor having a two-layer structure, wherein an air gap is formed between the reflective metal layer and the first insulating layer. 제 1항에 있어서,The method of claim 1, 상기 반사금속층은 Al을 포함하는 금속 또는 합금임을 특징으로 하는 2층 구조의 비냉각형 적외선 센서.The reflective metal layer is an uncooled infrared sensor having a two-layer structure, characterized in that the metal or alloy containing Al. 제 1항에 있어서,The method of claim 1, 상기 절연막층은 SiO2로 이루어짐을 특징으로 하는 2층 구조의 비냉각형 적외선 센서.The insulating layer is an uncooled infrared sensor having a two-layer structure, characterized in that made of SiO 2 . 제 1항에 있어서,The method of claim 1, 상기 제 1 버퍼층과 제 2 버퍼층은 Si3N4로 이루어짐을 특징으로 하는 2층 구조의 비냉각형 적외선 센서.And the first buffer layer and the second buffer layer are formed of Si 3 N 4 . 제 1항에 있어서,The method of claim 1, 상기 열선은 Ti 또는 TiOx(x=1 내지 3) 중의 어느 하나의 물질로 이루어짐을 특징으로 하는 2층 구조의 비냉각형 적외선 센서.The hot wire is an uncooled infrared sensor having a two-layer structure, characterized in that made of any one of Ti or TiO x (x = 1 to 3). 제 7항에 있어서,The method of claim 7, wherein 상기 Ti로 이루어진 열선의 비저항은 7×10-5 내지 9×10-5Ωㆍ㎝임을 특징으로 하는 2층 구조의 비냉각형 적외선 센서.The specific resistance of the heating wire made of Ti is 7 × 10 -5 to 9 × 10 -5 Ω · cm two-layer uncooled infrared sensor. 제 7항에 있어서,The method of claim 7, wherein 상기 TiOx로 이루어진 열선의 면저항은 100Ω/sqr 내지 10kΩ/sqr임을 특징으로 하는 2층 구조의 비냉각형 적외선 센서.The sheet resistance of the heating wire made of TiO x is an uncooled infrared sensor having a two-layer structure, characterized in that 100Ω / sqr to 10kΩ / sqr. 제 1항에 있어서,The method of claim 1, 상기 금속흡수층은 Ti로 이루어짐을 특징으로 하는 2층 구조의 비냉각형 적외선 센서.The metal absorption layer is an uncooled infrared sensor having a two-layer structure, characterized in that made of Ti. 제 1항에 있어서,The method of claim 1, 상기 금속흡수층의 두께는 50 내지 70Å으로 형성됨을 특징으로 하는 2층 구조의 비냉각형 적외선 센서.The thickness of the metal absorption layer is a non-cooling infrared sensor having a two-layer structure, characterized in that formed in 50 to 70Å. 제 1항에 있어서,The method of claim 1, 상기 제 1절연막층 위에 형성된 제 2 버퍼층 상부에 절연막층과 버퍼층이 한번 더 반복되어 형성됨을 특징으로 하는 2층 구조의 비냉각형 적외선 센서.The uncooled infrared sensor of claim 2, wherein the insulating layer and the buffer layer are formed on the second buffer layer on the first insulating layer. 제 1항에 있어서,The method of claim 1, 상기 금속흡수층과 반사금속층 사이의 거리는 λ/4(λ:적외선의 파장)임을 특징으로 하는 2층 구조의 비냉각형 적외선 센서.And a distance between the metal absorption layer and the reflective metal layer is λ / 4 (λ: wavelength of infrared rays).
KR10-2003-0070410A 2003-10-09 2003-10-09 Uncooled infrared sensor with two-layer structure KR100539395B1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR10-2003-0070410A KR100539395B1 (en) 2003-10-09 2003-10-09 Uncooled infrared sensor with two-layer structure
JP2006532070A JP2007509315A (en) 2003-10-09 2004-09-09 Two-layer bolometer-type infrared sensor and method for manufacturing the same
US10/574,935 US7554085B2 (en) 2003-10-09 2004-09-09 Bolometric infrared sensor having two-layer structure and method for manufacturing the same
CNB2004800293609A CN100552982C (en) 2003-10-09 2004-09-09 Bolometric infrared sensors and manufacture method thereof with double-layer structure
PCT/KR2004/002294 WO2005034248A1 (en) 2003-10-09 2004-09-09 Bolometric infrared sensor having two layer structure and method for manufacturing the same
EP04774553A EP1671375A4 (en) 2003-10-09 2004-09-09 Bolometric infrared sensor having two layer structure and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2003-0070410A KR100539395B1 (en) 2003-10-09 2003-10-09 Uncooled infrared sensor with two-layer structure

Publications (2)

Publication Number Publication Date
KR20050034489A true KR20050034489A (en) 2005-04-14
KR100539395B1 KR100539395B1 (en) 2005-12-27

Family

ID=37238353

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2003-0070410A KR100539395B1 (en) 2003-10-09 2003-10-09 Uncooled infrared sensor with two-layer structure

Country Status (2)

Country Link
KR (1) KR100539395B1 (en)
CN (1) CN100552982C (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100785738B1 (en) * 2006-06-19 2007-12-18 한국과학기술원 Bolometer
KR100869548B1 (en) * 2008-05-20 2008-11-19 아이쓰리시스템 주식회사 Bolometric infrared sensor improved signal to noise ratio(snr) and thereof

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101183690B (en) * 2007-12-13 2012-10-10 上海集成电路研发中心有限公司 Infrared detector and method of producing the same
CN102479879A (en) * 2010-11-29 2012-05-30 比亚迪股份有限公司 Preparation methods of amorphous silicon thermosensitive film and uncooled amorphous silicon microbolometer
CN103569946B (en) * 2012-07-31 2015-10-07 昆山光微电子有限公司 Non-brake method light reads infrared imaging focus plane array detector preparation method
DE102012220207A1 (en) * 2012-11-07 2014-05-08 Robert Bosch Gmbh An image pixel device for detecting electromagnetic radiation, a sensor array for detecting electromagnetic radiation and a method for detecting electromagnetic radiation by means of an image pixel device
CN106206830B (en) * 2016-07-19 2018-07-06 中国科学院重庆绿色智能技术研究院 A kind of infrared detector based on graphene interlayers formula infrared absorption layer
CN110164994B (en) * 2018-03-16 2021-04-09 北京纳米能源与系统研究所 InGaN/GaN multi-quantum well solar cell
CN109596225A (en) * 2018-12-20 2019-04-09 西安工业大学 A kind of infrared detector and preparation method thereof with high-effect resonant cavity
CN113432724B (en) * 2021-06-25 2023-03-24 北京北方高业科技有限公司 Uncooled tuned infrared detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100785738B1 (en) * 2006-06-19 2007-12-18 한국과학기술원 Bolometer
KR100869548B1 (en) * 2008-05-20 2008-11-19 아이쓰리시스템 주식회사 Bolometric infrared sensor improved signal to noise ratio(snr) and thereof

Also Published As

Publication number Publication date
CN100552982C (en) 2009-10-21
KR100539395B1 (en) 2005-12-27
CN1864274A (en) 2006-11-15

Similar Documents

Publication Publication Date Title
KR100265472B1 (en) Uncooled infrared detector and method for forming the same
KR100386484B1 (en) Thermal infrared detector provided with shield for high fill factor
JP3514681B2 (en) Infrared detector
US6690014B1 (en) Microbolometer and method for forming
EP1045232B1 (en) Infrared sensor and method of manufacturing the same
EP0534768B1 (en) Uncooled infrared detector and method for forming the same
JP3097591B2 (en) Thermal infrared detector
EP0354369A2 (en) Infrared detector
US9784623B2 (en) Bolometric detector with MIM structures of different dimensions
EP3522217B1 (en) Method to prepare pixel for uncooled infrared focal plane detector
KR100539395B1 (en) Uncooled infrared sensor with two-layer structure
JP3604130B2 (en) Thermal infrared detecting element, method of manufacturing the same, and thermal infrared detecting element array
US9199838B2 (en) Thermally shorted bolometer
KR100853202B1 (en) Bolometer and method of manufacturing the same
US20120138799A1 (en) Infrared detection element and infrared imaging device
JP2000186958A (en) Thermal infrared ray detecting element
JP2811709B2 (en) Infrared sensor
CN106800271B (en) A kind of non-refrigerated infrared focal plane probe dot structure and preparation method thereof
KR100509443B1 (en) Bolometric infrared sensor having two-layer structure and method for manufacturing the same
JPH06137943A (en) Thermal infrared sensor
KR101180647B1 (en) Design of pixel for more higher fill factor wherein microbolometer
US10840399B1 (en) Germanium tin oxide thin films for uncooled infrared detection
CN207556682U (en) Thermopile IR detector
KR100715112B1 (en) Uncooled infrared sensor with two-layer structure and its manufacturing method
KR100502577B1 (en) Bolometric infrared sensor having two-layer structure

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20100322

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee