JPH0989655A - Infrared detection apparatus - Google Patents

Infrared detection apparatus

Info

Publication number
JPH0989655A
JPH0989655A JP7248102A JP24810295A JPH0989655A JP H0989655 A JPH0989655 A JP H0989655A JP 7248102 A JP7248102 A JP 7248102A JP 24810295 A JP24810295 A JP 24810295A JP H0989655 A JPH0989655 A JP H0989655A
Authority
JP
Japan
Prior art keywords
thin film
thermopile
infrared
metal
infrared rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7248102A
Other languages
Japanese (ja)
Other versions
JP3101190B2 (en
Inventor
Kazunori Kidera
和憲 木寺
Hironori Kami
浩則 上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP07248102A priority Critical patent/JP3101190B2/en
Publication of JPH0989655A publication Critical patent/JPH0989655A/en
Application granted granted Critical
Publication of JP3101190B2 publication Critical patent/JP3101190B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an infrared detection apparatus in which an offset voltage is reduced and which uses a thermopile. SOLUTION: A thin film 8 is formed on the surface of a semiconductor substrate 7. In addition, a first recessed part 9 and a second recessed part 9b are formed so as to be passed through the semiconductor substrate 7, and a first thin-film part 8a and a second thin-film part 8b constitute ceiling parts of the first and second recessed parts 9a, 9b. In addition, a first metal 1 and a second metal 2, in a plurality of pieces, which are provided with the Seebeck effect are formed on the thin film 8. At this time, one end of the first metal 1 is bonded to the second metal 2 at a hot junction 3 on the first thin-film part 8a, and the other end is bonded to the second metal 2 at a cold junction 4 on the second thin-film part 8b. Then, the first and second metals 1, 2 in the plurality of pieces are connected alternately in series so as to be meandered in an S-shape, and a thermopile 10 is formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、サーモパイルを用
いた赤外線検出装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an infrared detector using a thermopile.

【0002】[0002]

【従来の技術】従来より、図6に示すような構造の、サ
ーモパイルを用いた赤外線検出装置が知られている。こ
のような赤外線検出装置は、半導体基板7と、半導体基
板7の上面に形成された薄膜8と、半導体基板7を貫通
して設けられた凹部9と、薄膜8上に形成されたゼーベ
ック効果を有する第1及び第2の金属1,2と、凹部9
の外側の薄膜8の上面に設けられた温度補償用のダイオ
ード15とから構成されている。
2. Description of the Related Art Conventionally, an infrared detecting device using a thermopile having a structure as shown in FIG. 6 has been known. Such an infrared detector has a semiconductor substrate 7, a thin film 8 formed on the upper surface of the semiconductor substrate 7, a recess 9 provided through the semiconductor substrate 7, and a Seebeck effect formed on the thin film 8. First and second metals 1 and 2 having, and recess 9
And a diode 15 for temperature compensation provided on the upper surface of the thin film 8 on the outside.

【0003】ここで、第1の金属1の一端は、凹部9上
方の薄膜8上に形成された温接点3で、第1の金属1と
平行に形成された第2の金属2に接続され、その他端
は、凹部9の外側の薄膜8上に形成された冷接点4で、
同じく第1の金属1と平行に形成された別の第2の金属
2に接続されている。而して、複数個の第1及び第2の
金属1,2は、S字状に蛇行するように、互い違いに直
列に接続され、サーモパイルが形成されている。また、
直列に接続された複数個の第1及び第2の金属1,2の
両端は、配線5を介して端子6に接続されている。
Here, one end of the first metal 1 is connected to a second metal 2 formed in parallel with the first metal 1 by a hot junction 3 formed on the thin film 8 above the recess 9. , The other end is a cold junction 4 formed on the thin film 8 outside the recess 9,
It is connected to another second metal 2 which is also formed parallel to the first metal 1. Thus, the plurality of first and second metals 1 and 2 are alternately connected in series so as to meander in an S shape, and a thermopile is formed. Also,
Both ends of the plurality of first and second metals 1 and 2 connected in series are connected to the terminal 6 via the wiring 5.

【0004】この時、薄膜8が被測定物から赤外線を受
光すると、受光した赤外線量に比例して凹部9上方の薄
膜8上に形成された温接点3の温度が上昇する。一方、
熱的に安定な凹部9以外の薄膜8上に形成された冷接点
4の温度は変動しないので、温接点3と冷接点4との間
に温度差が発生し、複数個の第1及び第2の金属1,2
間に、この温度差に比例した熱起電力が発生する。而し
て、この熱起電力の総和がサーモパイルの出力電圧とし
て出力される。
At this time, when the thin film 8 receives infrared light from the object to be measured, the temperature of the hot junction 3 formed on the thin film 8 above the recess 9 rises in proportion to the amount of infrared light received. on the other hand,
Since the temperature of the cold junction 4 formed on the thin film 8 other than the thermally stable concave portion 9 does not fluctuate, a temperature difference occurs between the hot junction 3 and the cold junction 4, and a plurality of first and second cold junctions are formed. 2 metal 1,2
In the meantime, a thermoelectromotive force proportional to this temperature difference is generated. Thus, the sum of this thermoelectromotive force is output as the output voltage of the thermopile.

【0005】ところで、薄膜8が被測定物から受光した
赤外線量は、被測定物の絶対温度と薄膜8の絶対温度と
の4乗の差に比例するので、被測定物の赤外線放射量を
検出するためには、基準温度となる凹部9以外の薄膜8
の温度を検出する必要がある。従って、サーモパイルの
出力電圧と、ダイオード15の順方向電圧の温度特性か
ら検出した凹部9以外の薄膜8の温度とから、被測定物
の赤外線放射量を計測していた。
Since the amount of infrared rays received by the thin film 8 from the object to be measured is proportional to the difference between the absolute temperature of the object to be measured and the absolute temperature of the thin film 8 to the fourth power, the infrared radiation amount of the object to be measured is detected. In order to achieve this, the thin film 8 other than the concave portion 9 which becomes the reference temperature
It is necessary to detect the temperature of. Therefore, the infrared radiation amount of the object to be measured is measured from the output voltage of the thermopile and the temperature of the thin film 8 other than the recess 9 detected from the temperature characteristic of the forward voltage of the diode 15.

【0006】[0006]

【発明が解決しようとする課題】上記構成の赤外線検出
装置では、薄膜上に形成された複数個の第1及び第2の
金属からなるサーモパイルが、被測定物から赤外線を受
光していない場合でも、被測定物以外から受光する赤外
線によって、凹部上方の薄膜の温度が上昇し、凹部上方
の薄膜と凹部以外の薄膜との間に僅かな温度差が発生
し、この温度差によってサーモパイルにオフセット電圧
が発生するという問題点があった。
In the infrared detecting device having the above structure, even if the thermopile formed of the plurality of first and second metals on the thin film does not receive infrared rays from the object to be measured. The temperature of the thin film above the recess rises due to infrared rays received from other than the object to be measured, and a slight temperature difference occurs between the thin film above the recess and the thin film other than the recess.This temperature difference causes an offset voltage to the thermopile. There was a problem that occurs.

【0007】本発明は上記問題点に鑑みて為されたもの
であり、サーモパイルのオフセット電圧を低減させた赤
外線検出装置を提供することを目的とするものである。
The present invention has been made in view of the above problems, and it is an object of the present invention to provide an infrared detecting device in which the offset voltage of the thermopile is reduced.

【0008】[0008]

【課題を解決するための手段】本発明では、上記目的を
達成するために、請求項1の発明は、半導体基板の上面
に形成された薄膜と、薄膜の一部を構成し互いに熱的に
絶縁された第1及び第2の薄膜部と、薄膜上に熱電対が
アレイ状に直列に形成されたサーモパイルと、第1の薄
膜部上に形成されたサーモパイルの温接点と、第2の薄
膜部上に形成されたサーモパイルの冷接点とを備えてお
り、サーモパイルの温接点と冷接点が共に熱容量の等し
い薄膜部上に形成されているので、被測定物から赤外線
を受光していない場合、温接点と冷接点の温度は同じ温
度になり、熱起電力が発生せず、オフセット電圧が出力
されない。
In order to achieve the above object, the present invention provides a thin film formed on the upper surface of a semiconductor substrate, and a thin film which constitutes a part of the thin film and is thermally coupled to each other. Insulated first and second thin film portions, a thermopile in which thermocouples are formed in series in an array on the thin film, a thermopile hot junction formed on the first thin film portion, and a second thin film It has a thermopile cold junction formed on the part, and since the thermopile hot junction and cold junction are both formed on the thin film portion having the same heat capacity, if infrared rays are not received from the DUT, The hot junction and cold junction have the same temperature, no thermoelectromotive force is generated, and no offset voltage is output.

【0009】請求項2の発明は、半導体基板の上面に形
成された薄膜と、薄膜の一部を構成し互いに熱的に絶縁
された第1及び第2の薄膜部と、薄膜上に夫々熱電対が
アレイ状に直列に形成され互いに逆極性に接続された第
1及び第2のサーモパイルと、第1の薄膜部上に形成さ
れた第1のサーモパイルの冷接点と、第2の薄膜部上に
形成された第2のサーモパイルの温接点と、第1及び第
2の薄膜部以外の薄膜上に形成された第1のサーモパイ
ルの温接点及び第2のサーモパイルの冷接点とを備えて
おり、薄膜部が被測定物から赤外線を受光していない場
合、第1及び第2のサーモパイルが逆極性で接続されて
いるので、第1及び第2のサーモパイルに発生する熱起
電力は相殺され、オフセット電圧が出力されない。
According to a second aspect of the invention, the thin film formed on the upper surface of the semiconductor substrate, the first and second thin film portions forming a part of the thin film and thermally insulated from each other, and the thermoelectric film on the thin film, respectively. First and second thermopiles in which pairs are formed in series in an array and connected in opposite polarities, cold junctions of the first thermopile formed on the first thin film portion, and on the second thin film portion A hot junction of the second thermopile formed in, and a hot junction of the first thermopile and a cold junction of the second thermopile formed on a thin film other than the first and second thin film portions, When the thin film portion does not receive infrared rays from the object to be measured, since the first and second thermopiles are connected with opposite polarities, the thermoelectromotive forces generated in the first and second thermopiles are offset and offset. No voltage is output.

【0010】請求項3の発明は、請求項1又は2の発明
に於いて、第1及び第2の薄膜部が被測定物から受光す
る赤外線を交互に周期的に遮断する遮光手段を備えてい
るので、サーモパイルの出力信号は交流信号となり、フ
ィルタ等を用いて、サーモパイルの出力信号に含まれる
ノイズ成分やオフセット電圧を容易に除去できる。請求
項4の発明は、請求項1又は2の発明において、第1及
び第2の薄膜部が夫々異なる第1及び第2の被測定物か
ら赤外線を受光するための光学系レンズ等の集光手段を
備えているので、サーモパイルの出力信号から第1及び
第2の被測定物の赤外線量の差を非接触で検出できる。
ここで、集光手段が第1及び第2の薄膜部に夫々異なる
第1及び第2の被測定物から赤外線を受光させるとは、
集光手段が第1の被測定物からの赤外線を第1の薄膜部
にのみ受光させ、第2の被測定物からの赤外線を第2の
薄膜部にのみ受光させている状態をいう。
According to a third aspect of the present invention, in the first or second aspect of the present invention, the first and second thin film portions are provided with light shielding means for alternately and periodically blocking infrared rays received from the object to be measured. Therefore, the output signal of the thermopile becomes an AC signal, and the noise component and offset voltage included in the output signal of the thermopile can be easily removed by using a filter or the like. According to a fourth aspect of the present invention, in the first or second aspect of the invention, the first and second thin film portions are different from each other in that the first and second DUTs are different from each other. Since the means is provided, the difference between the infrared ray amounts of the first and second DUTs can be detected from the output signal of the thermopile without contact.
Here, that the light collecting means causes the first and second thin film portions to receive infrared rays from different first and second DUTs, respectively.
The state in which the condensing means causes the infrared rays from the first object to be measured to be received only by the first thin film portion and the infrared rays from the second object to be measured be received only by the second thin film portion.

【0011】[0011]

【発明の実施の形態】本発明の実施の形態を図面を参照
して説明する。 (実施形態1)本実施形態の赤外線検出装置の構造を図
1に示す。このような赤外線検出装置は、半導体基板7
と、半導体基板7上に形成された薄膜8と、半導体基板
7を貫通して設けられた第1及び第2の凹部9a,9b
と、薄膜8の一部を構成し夫々第1及び第2の凹部9
a,9bの天井部をなす第1及び第2の薄膜部8a,8
bと、薄膜8上に形成されたゼーベック効果を有する第
1及び第2の金属1,2とから構成されている。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described with reference to the drawings. (Embodiment 1) FIG. 1 shows the structure of an infrared detector according to this embodiment. Such an infrared detection device has a semiconductor substrate 7
A thin film 8 formed on the semiconductor substrate 7, and first and second recesses 9a and 9b provided through the semiconductor substrate 7.
And a part of the thin film 8 to form the first and second recesses 9 respectively.
First and second thin film portions 8a, 8 forming a ceiling portion of a, 9b
b, and the first and second metals 1 and 2 having the Seebeck effect formed on the thin film 8.

【0012】ここで、第1の金属1の一端は、第1の薄
膜部8a上の温接点3で、第1の金属1と平行に形成さ
れた第2の金属2に接続され、その他端は、第2の薄膜
部8b上の冷接点4で、同様に第1の金属1と平行に形
成された別の第2の金属2に接続されている。而して、
複数個の第1及び第2の金属1,2は、S字状に蛇行す
るように、互い違いに直列に接続されており、サーモパ
イル10が形成されている。また、複数個の直列接続さ
れた第1及び第2の金属1,2の両端は、配線5を介し
て、端子6に接続されている。
Here, one end of the first metal 1 is connected to the second metal 2 formed in parallel with the first metal 1 at the hot junction 3 on the first thin film portion 8a, and the other end thereof. Is a cold junction 4 on the second thin film portion 8b, which is also connected to another second metal 2 formed in parallel with the first metal 1. Thus,
The plurality of first and second metals 1 and 2 are alternately connected in series so as to meander in an S shape, and a thermopile 10 is formed. Further, both ends of the plurality of first and second metals 1 and 2 connected in series are connected to the terminal 6 via the wiring 5.

【0013】この時、第1及び第2の薄膜部8a,8b
が赤外線を受光すると、第1及び第2の薄膜部8a,8
bの温度は受光した赤外線量に比例して上昇する。従っ
て、複数個の第1及び第2の金属1,2の各接合では、
ゼーベック効果により第1の薄膜部8aと第2の薄膜部
8bとの温度差に比例した熱起電力が発生し、その熱起
電力の総和がサーモパイル10の出力電圧となる。ここ
で、第1及び第2の薄膜部8a,8bの熱容量は等しい
ので、両者の温度差は受光した赤外線量の差に比例す
る。よって、サーモパイル10の出力電圧から、第1及
び第2の薄膜部8a,8bが受光した赤外線量の差を検
出できる。
At this time, the first and second thin film portions 8a, 8b
When the infrared ray is received, the first and second thin film portions 8a, 8
The temperature of b rises in proportion to the amount of received infrared rays. Therefore, in each of the plurality of first and second metals 1 and 2,
Due to the Seebeck effect, a thermoelectromotive force proportional to the temperature difference between the first thin film portion 8a and the second thin film portion 8b is generated, and the sum of the thermoelectromotive force becomes the output voltage of the thermopile 10. Here, since the heat capacities of the first and second thin film portions 8a and 8b are equal, the temperature difference between the two is proportional to the difference in the amount of infrared rays received. Therefore, the difference in the amount of infrared rays received by the first and second thin film portions 8a and 8b can be detected from the output voltage of the thermopile 10.

【0014】一方、第1の薄膜部8aと第2の薄膜部8
bが被測定物から赤外線を受光していない場合、第1及
び第2の薄膜部8a,8bの熱容量は等しいので、第1
及び第2の薄膜部8a,8bの温度は等しくなる。従っ
て、第1の薄膜部8a上に設けられた温接点3と第2の
薄膜部8b上に設けられた冷接点4の温度差が発生しな
いので、第1及び第2の金属1,2の各接合では熱起電
力が発生せず、サーモパイル10のオフセット電圧は発
生しない。
On the other hand, the first thin film portion 8a and the second thin film portion 8
When b does not receive infrared rays from the object to be measured, the heat capacities of the first and second thin film portions 8a and 8b are equal to each other.
And the temperatures of the second thin film portions 8a and 8b become equal. Therefore, since there is no difference in temperature between the hot junction 3 provided on the first thin film portion 8a and the cold junction 4 provided on the second thin film portion 8b, the first and second metals 1 and 2 are not separated. No thermoelectromotive force is generated at each junction, and no offset voltage of the thermopile 10 is generated.

【0015】尚、本実施形態では、薄膜8上にゼーベッ
ク効果を有する2種の金属の接合を形成しているが、複
数個のPN接合を直列に形成してもよい。 (実施形態2)本実施形態の赤外線検出装置の構成を図
2に示す。この赤外線検出装置は、半導体基板7と、半
導体基板7上に形成された薄膜8と、半導体基板7を貫
通して設けられた第1及び第2の凹部9a,9bと、薄
膜8の一部を構成して夫々第1及び第2の凹部9a,9
bの天井部をなす第1及び第2の薄膜部8a,8bと、
第1及び第2の薄膜部8a,8b上に夫々形成されたゼ
ーベック効果を有する第1及び第2の金属1,2からな
る第1及び第2のサーモパイル10a,10bとから構
成されている。
In this embodiment, the junction of two kinds of metals having the Seebeck effect is formed on the thin film 8, but a plurality of PN junctions may be formed in series. (Embodiment 2) FIG. 2 shows the configuration of the infrared detector of this embodiment. This infrared detection device includes a semiconductor substrate 7, a thin film 8 formed on the semiconductor substrate 7, first and second recesses 9a and 9b provided through the semiconductor substrate 7, and a part of the thin film 8. To form the first and second recesses 9a and 9a, respectively.
first and second thin film portions 8a and 8b forming a ceiling portion of b,
It is composed of first and second thermopiles 10a and 10b made of the first and second metals 1 and 2 having the Seebeck effect, which are formed on the first and second thin film portions 8a and 8b, respectively.

【0016】ここで、第1の薄膜部8a上に形成された
第1の金属1の一端は、第1の薄膜部8a上に形成され
た第1の温接点3aで第2の金属2に接続されており、
その他端は、第1及び第2の薄膜部8a,8b以外の薄
膜8上に形成された第1の冷接点4aで別の第2の金属
2に接続されている。而して、n個の第1及び第2の金
属1,2が、S字状に蛇行するように、互い違いに直列
に接続され、第1のサーモパイル10aが形成されてい
る。同様にして、第2の薄膜部8b上に形成された第1
の金属1の一端は、第1及び第2の薄膜部8a,8b以
外の薄膜8上に形成された第2の温接点3bで第2の金
属2に接続されており、その他端は、第2の薄膜部8b
上に形成された第2の冷接点4bで別の第2の金属2と
接続されている。而して、n個の第1及び第2の金属
1,2が、S字状に蛇行するように、互い違いに直列に
接続されており、第2のサーモパイル10bが形成され
ている。
Here, one end of the first metal 1 formed on the first thin film portion 8a is connected to the second metal 2 at the first hot junction 3a formed on the first thin film portion 8a. Connected,
The other end is connected to another second metal 2 by a first cold junction 4a formed on the thin film 8 other than the first and second thin film portions 8a and 8b. Thus, the n first and second metals 1 and 2 are alternately connected in series so as to meander in an S shape, and the first thermopile 10a is formed. Similarly, the first thin film portion 8b formed on the second thin film portion 8b
One end of the metal 1 is connected to the second metal 2 by the second hot junction 3b formed on the thin film 8 other than the first and second thin film portions 8a and 8b, and the other end is 2 thin film portion 8b
It is connected to another second metal 2 by the second cold junction 4b formed above. Thus, the n first and second metals 1 and 2 are alternately connected in series so as to meander in an S shape, and the second thermopile 10b is formed.

【0017】この時、第1及び第2のサーモパイル10
a,10bは、それぞれ、n個の第1及び第2の金属
1,2から形成されており、第1のサーモパイル10a
の一端に位置する第1の金属1と、第2のサーモパイル
10bの一端に位置する第2の金属2とが接続されてい
る。而して、第1及び第2のサーモパイル10a,10
bは互いに極性が逆となるように接続されている。
At this time, the first and second thermopile 10
a and 10b are formed from n first and second metals 1 and 2, respectively, and are the first thermopile 10a.
The first metal 1 located at one end of the second thermopile 10b is connected to the second metal 2 located at one end of the second thermopile 10b. Thus, the first and second thermopiles 10a, 10
b are connected so that their polarities are opposite to each other.

【0018】さて、第1及び第2の薄膜部8a,8bが
受光する赤外線の赤外線量に差がある場合、第1及び第
2のサーモパイル10a,10bは、それぞれ、第1及
び第2の薄膜部8a,8bが受光した赤外線量に比例し
た熱起電力を発生する。ここで、第1のサーモパイル1
0aと第2のサーモパイル10bは極性が逆になるよう
に接続されているので、本実施形態の赤外線検出装置
は、第1の薄膜部8aと第2の薄膜部8bが夫々受光し
た赤外線量の差に比例した信号を出力する。
When there is a difference in the amount of infrared rays received by the first and second thin film portions 8a and 8b, the first and second thermopiles 10a and 10b have the first and second thin films, respectively. The thermoelectromotive force proportional to the amount of infrared rays received by the units 8a and 8b is generated. Where the first thermopile 1
0a and the second thermopile 10b are connected so that the polarities thereof are opposite to each other. Therefore, the infrared detection device of the present embodiment is configured so that the first thin film portion 8a and the second thin film portion 8b respectively receive the infrared ray amounts of Outputs a signal proportional to the difference.

【0019】一方、第1及び第2の薄膜部8a,8bが
被測定物からの赤外線を受光していない場合、第1及び
第2の薄膜部8a,8bが受光する赤外線量は等しくな
る。ここで、第1及び第2の薄膜部8a,8bの熱容量
は等しいので、両者の温度は等しくなり、第1のサーモ
パイル10aと第2のサーモパイル10bに発生する熱
起電力は、大きさが等しく、極性が逆となる。従って、
第1及び第2のサーモパイル10a,10bに発生した
熱起電力が相殺されて、オフセット電圧が発生しない。
On the other hand, when the first and second thin film portions 8a and 8b do not receive infrared rays from the object to be measured, the amounts of infrared rays received by the first and second thin film portions 8a and 8b are equal. Here, since the heat capacities of the first and second thin film portions 8a and 8b are equal, their temperatures are equal, and the thermoelectromotive forces generated in the first thermopile 10a and the second thermopile 10b are equal in magnitude. , The polarities are reversed. Therefore,
The thermoelectromotive forces generated in the first and second thermopiles 10a and 10b are canceled out, and no offset voltage is generated.

【0020】また、第1の薄膜部8a上に第1のサーモ
パイル10aの温接点3aを形成し、第2の薄膜部8b
上に第2のサーモパイル10bの冷接点4bを形成する
とともに、第1及び第2の薄膜部8a,8b以外の薄膜
8上に第1のサーモパイル10aの冷接点4aと第2の
サーモパイル10bの温接点3bとを形成することによ
り、第1及び第2の薄膜部8a,8bが夫々受光した赤
外線量の差を、熱的に安定な第1及び第2の薄膜部8
a,8b以外の薄膜8の温度を基準として検出している
ので、赤外線検出装置の出力信号の安定性を高め、精度
を向上させることができる。
The hot junction 3a of the first thermopile 10a is formed on the first thin film portion 8a, and the second thin film portion 8b is formed.
The cold contact 4b of the second thermopile 10b is formed thereon, and the cold contact 4a of the first thermopile 10a and the temperature of the second thermopile 10b are formed on the thin film 8 other than the first and second thin film portions 8a and 8b. By forming the contact point 3b, the difference in the amount of infrared rays received by the first and second thin film portions 8a and 8b can be treated as a thermally stable first and second thin film portion 8a.
Since the temperature of the thin film 8 other than a and 8b is detected as a reference, the stability of the output signal of the infrared detection device can be improved and the accuracy can be improved.

【0021】尚、本実施形態では、薄膜8上にゼーベッ
ク効果を有する2種の金属をアレイ状に直列に形成して
いるが、複数個のPN接合を直列に形成してもよい。 (実施形態3)本実施形態の赤外線検出装置の構造を図
3に示す。実施形態1又は2の赤外線検出装置におい
て、図3に示すように、第1及び第2の薄膜部8a,8
bが受光する赤外線の内、一方が受光する赤外線を完全
に遮断するとともに、他方が受光する赤外線をそのまま
入射させるような半円形のチョッパー11を設けてお
り、チョッパー11を第1及び第2の薄膜部8a,8b
の上方で回転軸12を中心として一定の周期で回転させ
ることにより、第1及び第2の薄膜部8a,8bは交互
に周期的に赤外線を受光している。
In this embodiment, two kinds of metals having the Seebeck effect are formed in series on the thin film 8 in an array, but a plurality of PN junctions may be formed in series. (Embodiment 3) The structure of the infrared detector of this embodiment is shown in FIG. In the infrared detector of the first or second embodiment, as shown in FIG. 3, the first and second thin film portions 8a, 8
Among the infrared rays received by b, the semi-circular chopper 11 that completely blocks the infrared rays received by one side and allows the infrared rays received by the other side to be incident as they are is provided. Thin film parts 8a, 8b
The first and second thin film portions 8a and 8b alternately receive the infrared rays periodically by rotating the rotating shaft 12 above them at a constant cycle.

【0022】ここで、第1の薄膜部8a上にはサーモパ
イルの温接点が設けられ、第2の薄膜部8b上にはサー
モパイルの冷接点が設けられている。従って、温接点が
形成されている第1の薄膜部8aが赤外線を受光してい
る場合、サーモパイルの出力信号は正となり、冷接点が
形成されている第2の薄膜部8bが赤外線を受光してい
る場合、サーモパイルの出力信号は負となる。
Here, a thermopile hot junction is provided on the first thin film portion 8a, and a thermopile cold junction is provided on the second thin film portion 8b. Therefore, when the first thin film portion 8a having the hot junction formed therein receives infrared rays, the output signal of the thermopile becomes positive, and the second thin film portion 8b having the cold junction formed therein receives infrared rays. Output, the thermopile output signal is negative.

【0023】ところで、第1及び第2の薄膜部8a,8
bがそれぞれ受光する赤外線の赤外線量が等しい場合、
第1及び第2の薄膜部8a,8bの熱容量は等しいの
で、両者の温度は等しくなる。従って、第1及び第2の
薄膜部8a,8bが夫々赤外線を受光している時、第1
の薄膜部8a上に設けられた温接点の温度と第2の薄膜
部8b上に設けられた冷接点の温度とは等しくなり、サ
ーモパイルの出力信号は、大きさが等しく、極性が逆と
なる。
By the way, the first and second thin film portions 8a, 8
When the amount of infrared rays received by b is equal,
Since the heat capacities of the first and second thin film portions 8a and 8b are equal, the temperatures of both are equal. Therefore, when the first and second thin film portions 8a and 8b respectively receive infrared rays,
, The temperature of the hot junction provided on the thin film portion 8a becomes equal to the temperature of the cold junction provided on the second thin film portion 8b, and the output signals of the thermopile have the same magnitude and opposite polarities. .

【0024】従って、チョッパー11の回転周期が第1
及び第2の薄膜部8a,8b上に設けられたサーモパイ
ルの時定数に比べて十分長い場合、図4に示すように、
サーモパイルの出力信号は正弦波出力(図4のa)とな
る。よって、本実施形態のサーモパイルの出力信号は交
流信号となるので、フィルタ等を用いて、出力信号に含
まれるノイズ成分やオフセット電圧を除去することがで
き、ノイズやオフセット電圧の影響が少ないサーモパイ
ルの出力信号を得ることができる。
Therefore, the rotation cycle of the chopper 11 is the first.
And when it is sufficiently longer than the time constant of the thermopile provided on the second thin film portions 8a and 8b, as shown in FIG.
The output signal of the thermopile is a sine wave output (a in FIG. 4). Therefore, since the output signal of the thermopile of the present embodiment is an AC signal, it is possible to remove the noise component and the offset voltage included in the output signal by using a filter or the like, and the influence of the noise or the offset voltage of the thermopile is small. An output signal can be obtained.

【0025】尚、本実施形態のサーモパイルの構造は、
実施形態1又は2と同様であるので、その説明は省略す
る。 (実施形態4)本実施形態の赤外線検出装置の構造を図
5に示す。実施形態1又は2の赤外線検出装置におい
て、第1の薄膜部8aに第1の被測定物14aからの赤
外線を受光させるための第1の光学系レンズ13aと、
第2の薄膜部8bに第2の被測定物14bからの赤外線
を受光させるための第2の光学系レンズ13bとが設け
られており、第1の薄膜部8aと第2の薄膜部8bは、
それぞれ異なる第1及び第2の被測定物14a,14b
から赤外線を受光している。
The structure of the thermopile of this embodiment is as follows.
Since it is similar to the first or second embodiment, the description thereof is omitted. (Embodiment 4) The structure of the infrared detector of this embodiment is shown in FIG. In the infrared detection device according to the first or second embodiment, a first optical system lens 13a for causing the first thin film portion 8a to receive the infrared light from the first DUT 14a,
The second thin film portion 8b is provided with a second optical system lens 13b for receiving infrared rays from the second DUT 14b, and the first thin film portion 8a and the second thin film portion 8b are ,
First and second DUTs 14a and 14b which are different from each other
Infrared is received from.

【0026】ここで、第1及び第2の薄膜部8a,8b
が、それぞれ第1及び第2の被側定物14a,14bか
ら赤外線を受光する場合、両者の温度は受光した赤外線
の赤外線量に比例してそれぞれ変化する。ところで、第
1及び第2の薄膜部8a,8bの熱容量は等しいので、
第1及び第2の薄膜部8a,8bの温度差は、両者が受
光した赤外線量の差に比例している。
Here, the first and second thin film portions 8a, 8b
However, when infrared rays are received from the first and second side fixed objects 14a and 14b, the temperatures of both of them change in proportion to the infrared ray amount of the received infrared rays. By the way, since the heat capacities of the first and second thin film portions 8a and 8b are equal,
The temperature difference between the first and second thin film portions 8a and 8b is proportional to the difference in the amount of infrared rays received by the two.

【0027】この時、第1の薄膜部8a上にはサーモパ
イルの温接点が設けられ、第2の薄膜部8b上にはサー
モパイルの冷接点が設けられているので、温接点と冷接
点との温度差に比例してサーモパイルの出力信号が発生
する。従って、サーモパイルの出力信号は、第1及び第
2の薄膜部8a,8bが夫々受光した赤外線量の差に比
例するので、本実施形態のサーモパイルの出力信号か
ら、第1及び第2の被測定物14a,14bから受光し
た赤外線量の差を検出することができる。
At this time, since the thermopile hot junction is provided on the first thin film portion 8a and the thermopile cold junction is provided on the second thin film portion 8b, the hot junction and the cold junction are formed. The thermopile output signal is generated in proportion to the temperature difference. Therefore, since the output signal of the thermopile is proportional to the difference in the amount of infrared rays received by the first and second thin film portions 8a and 8b, respectively, from the output signal of the thermopile of this embodiment, the first and second measured objects are measured. The difference in the amount of infrared rays received from the objects 14a and 14b can be detected.

【0028】尚、本実施形態のサーモパイルの構造は、
実施形態1又は2と同様であるので、その説明は省略す
る。
The structure of the thermopile of this embodiment is as follows.
Since it is similar to the first or second embodiment, the description thereof is omitted.

【0029】[0029]

【発明の効果】請求項1の発明は、上述のように、半導
体基板の上面に形成された薄膜と、薄膜の一部を構成し
互いに熱的に絶縁された第1及び第2の薄膜部と、薄膜
上に熱電対がアレイ状に直列に形成されたサーモパイル
と、第1の薄膜部上に形成されたサーモパイルの温接点
と、第2の薄膜部上に形成されたサーモパイルの冷接点
とを備えているので、第1及び第2の薄膜部が赤外線を
受光していない場合、第1及び第2の薄膜部の温度は等
しくなり、温接点と冷接点の温度差が発生しないので、
オフセット電圧が発生しないという効果がある。
According to the invention of claim 1, as described above, the thin film formed on the upper surface of the semiconductor substrate and the first and second thin film portions forming a part of the thin film and thermally insulated from each other. A thermopile in which thermocouples are formed in series on the thin film in an array, a thermopile hot junction formed on the first thin film portion, and a thermopile cold junction formed on the second thin film portion. Therefore, when the first and second thin film portions do not receive infrared rays, the temperatures of the first and second thin film portions become equal and the temperature difference between the hot junction and the cold junction does not occur.
The effect is that no offset voltage is generated.

【0030】請求項2の発明は、半導体基板の上面に形
成された薄膜と、薄膜の一部を構成し互いに熱的に絶縁
された第1及び第2の薄膜部と、薄膜上に夫々熱電対が
アレイ状に直列に形成され互いに逆極性に接続された第
1及び第2のサーモパイルと、第1の薄膜部上に形成さ
れた第1のサーモパイルの冷接点と、第2の薄膜部上に
形成された第2のサーモパイルの温接点と、第1及び第
2の薄膜部以外の薄膜上に形成された第1のサーモパイ
ルの温接点及び第2のサーモパイルの冷接点とを備えて
おり、第1及び第2の薄膜部が赤外線を受光していない
場合、第1及び第2の薄膜部の熱容量が等しいので、両
者の温度は等しくなり、逆極性に接続された第1及び第
2のサーモパイルに発生する熱起電力が互いに相殺さ
れ、オフセット電圧が発生しないという効果がある。ま
た、第1及び第2のサーモパイルの基準温度を熱的に安
定した第1及び第2の薄膜部以外の薄膜の温度としてい
るので、基準温度の変動が少なく、赤外線検出装置の出
力信号が安定し、精度が向上するという効果もある。
According to a second aspect of the present invention, the thin film formed on the upper surface of the semiconductor substrate, the first and second thin film portions forming a part of the thin film and thermally insulated from each other, and the thermoelectric film on the thin film, respectively. First and second thermopiles in which pairs are formed in series in an array and connected in opposite polarities, cold junctions of the first thermopile formed on the first thin film portion, and on the second thin film portion A hot junction of the second thermopile formed in, and a hot junction of the first thermopile and a cold junction of the second thermopile formed on a thin film other than the first and second thin film portions, When the first and second thin film parts do not receive infrared rays, the heat capacities of the first and second thin film parts are equal, so that the temperatures of both are equal and the first and second thin films connected to the opposite polarities are the same. The thermoelectromotive forces generated in the thermopile cancel each other out, and the offset voltage There is an effect that does not occur. Further, since the reference temperatures of the first and second thermopiles are the temperatures of the thin films other than the thermally stable first and second thin film portions, the reference temperature does not fluctuate and the output signal of the infrared detection device is stable. However, there is also an effect that accuracy is improved.

【0031】請求項3の発明は、第1及び第2の薄膜部
が被測定物から受光する赤外線を交互に周期的に遮断す
る遮光手段を備えており、サーモパイルの出力信号が交
流信号となるので、信号処理が容易に行え、フィルタ等
を用いてノイズやオフセット電圧を除去することが出来
るという効果がある。請求項4の発明は、第1及び第2
の薄膜部が夫々異なる第1及び第2の被測定物から赤外
線を受光するための光学系レンズ等の集光手段を備えて
いるので、サーモパイルの出力信号から第1及び第2の
被測定物の赤外線量の差を検出することにより、異なる
2つの被測定物の赤外線量の差を非接触で検出できると
いう効果がある。
According to a third aspect of the present invention, the first and second thin film portions are provided with light shielding means for alternately and periodically blocking infrared rays received from the object to be measured, and the output signal of the thermopile becomes an AC signal. Therefore, there is an effect that signal processing can be easily performed and noise and offset voltage can be removed by using a filter or the like. The invention of claim 4 is the first and second aspects.
Since the thin film portion of the device is provided with a condensing means such as an optical system lens for receiving infrared rays from the first and second DUTs different from each other, the first and second DUTs are output from the thermopile output signal. By detecting the difference in the amount of infrared rays of the above, there is an effect that the difference in the amount of infrared rays of two different measured objects can be detected without contact.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)実施形態1の赤外線検出装置を示す平面
図である。 (b)同上の断面図である。
FIG. 1A is a plan view showing an infrared detection device according to a first embodiment. (B) It is sectional drawing same as the above.

【図2】(a)実施形態2の赤外線検出装置を示す平面
図である。 (b)同上の断面図である。
FIG. 2A is a plan view showing an infrared detection device according to a second embodiment. (B) It is sectional drawing same as the above.

【図3】実施形態3の赤外線検出装置を示す外観斜視図
である。
FIG. 3 is an external perspective view showing an infrared detection device according to a third embodiment.

【図4】同上の動作状態を示す波形図である。FIG. 4 is a waveform diagram showing an operating state of the above.

【図5】実施形態4の赤外線検出装置を示す外観斜視図
である。
FIG. 5 is an external perspective view showing an infrared detection device according to a fourth embodiment.

【図6】(a)従来例の赤外線検出装置を示す平面図で
ある。 (b)同上の断面図である。
FIG. 6A is a plan view showing an infrared detection device of a conventional example. (B) It is sectional drawing same as the above.

【符号の説明】[Explanation of symbols]

1 第1の金属 2 第2の金属 3 温接点 4 冷接点 7 半導体基板 8 薄膜 8a 第1の薄膜部 8b 第2の薄膜部 9a 第1の凹部 9b 第2の凹部 10 サーモパイル 1 1st metal 2 2nd metal 3 hot junction 4 cold junction 7 semiconductor substrate 8 thin film 8a 1st thin film part 8b 2nd thin film part 9a 1st recessed part 9b 2nd recessed part 10 thermopile

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】半導体基板の上面に形成された薄膜と、前
記薄膜の一部を構成し互いに熱的に絶縁された第1及び
第2の薄膜部と、前記薄膜上に熱電対がアレイ状に直列
に形成されたサーモパイルと、前記第1の薄膜部上に形
成された前記サーモパイルの温接点と、前記第2の薄膜
部上に形成された前記サーモパイルの冷接点とを備えて
成ることを特徴とする赤外線検出装置。
1. A thin film formed on an upper surface of a semiconductor substrate, first and second thin film portions forming a part of the thin film and thermally insulated from each other, and thermocouples arranged in an array on the thin film. A thermopile formed in series, a hot contact of the thermopile formed on the first thin film portion, and a cold contact of the thermopile formed on the second thin film portion. Infrared detector featuring.
【請求項2】半導体基板の上面に形成された薄膜と、前
記薄膜の一部を構成し互いに熱的に絶縁された第1及び
第2の薄膜部と、前記薄膜上に夫々熱電対がアレイ状に
直列に形成され互いに逆極性に接続された第1及び第2
のサーモパイルと、前記第1の薄膜部上に形成された前
記第1のサーモパイルの冷接点と、前記第2の薄膜部上
に形成された前記第2のサーモパイルの温接点と、前記
第1及び第2の薄膜部以外の前記薄膜上に形成された前
記第1のサーモパイルの温接点及び前記第2のサーモパ
イルの冷接点とを備えて成ることを特徴とする赤外線検
出装置。
2. A thin film formed on an upper surface of a semiconductor substrate, first and second thin film portions forming a part of the thin film and thermally insulated from each other, and thermocouples on the thin film, respectively. First and second electrodes formed in series and connected in opposite polarities
A thermopile, a cold junction of the first thermopile formed on the first thin film portion, a hot junction of the second thermopile formed on the second thin film portion, the first and An infrared detecting device comprising: a hot contact of the first thermopile and a cold contact of the second thermopile formed on the thin film other than the second thin film portion.
【請求項3】前記第1及び第2の薄膜部が被測定物から
受光する赤外線を交互に周期的に遮断する遮光手段を備
えて成ることを特徴とする請求項1又は2記載の赤外線
検出装置。
3. The infrared detecting device according to claim 1, wherein the first and second thin film portions are provided with a light shielding means for alternately and periodically blocking infrared light received from the object to be measured. apparatus.
【請求項4】前記第1及び第2の薄膜部が夫々異なる第
1及び第2の被測定物から赤外線を受光するための光学
系レンズ等の集光手段を備えて成ることを特徴とする請
求項1又は2記載の赤外線検出装置。
4. The first and second thin film portions are provided with a condensing means such as an optical system lens for receiving infrared rays from different first and second DUTs, respectively. The infrared detection device according to claim 1 or 2.
JP07248102A 1995-09-26 1995-09-26 Infrared detector Expired - Fee Related JP3101190B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07248102A JP3101190B2 (en) 1995-09-26 1995-09-26 Infrared detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07248102A JP3101190B2 (en) 1995-09-26 1995-09-26 Infrared detector

Publications (2)

Publication Number Publication Date
JPH0989655A true JPH0989655A (en) 1997-04-04
JP3101190B2 JP3101190B2 (en) 2000-10-23

Family

ID=17173257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07248102A Expired - Fee Related JP3101190B2 (en) 1995-09-26 1995-09-26 Infrared detector

Country Status (1)

Country Link
JP (1) JP3101190B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002075262A1 (en) * 2001-03-16 2002-09-26 Seiko Epson Corporation Infrared detection element and method for fabricating the same and equipment for measuring temperature
JP2004361386A (en) * 2003-02-05 2004-12-24 General Electric Co <Ge> Infrared emission-detecting device
WO2008052522A1 (en) * 2006-10-31 2008-05-08 Webasto Ag Method for providing an anti-trapping device for movable parts of a motor vehicle, particularly for realizing an anti-trapping device in a convertible vehicle
JP2009105100A (en) * 2007-10-19 2009-05-14 Furukawa Electric Co Ltd:The Temperature element and temperature detecting module, and temperature detection method, heating/cooling module, and temperature control method therefor
JP2010225608A (en) * 2009-03-19 2010-10-07 Mitsubishi Materials Corp Thermoelectric conversion element
JP2010225609A (en) * 2009-03-19 2010-10-07 Mitsubishi Materials Corp Thermoelectric conversion element
JP2016173250A (en) * 2015-03-16 2016-09-29 ヤマハファインテック株式会社 Infrared sensor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002075262A1 (en) * 2001-03-16 2002-09-26 Seiko Epson Corporation Infrared detection element and method for fabricating the same and equipment for measuring temperature
US6909093B2 (en) 2001-03-16 2005-06-21 Seiko Epson Corporation Infrared detecting element, method of manufacturing the same and temperature measuring device
JP2004361386A (en) * 2003-02-05 2004-12-24 General Electric Co <Ge> Infrared emission-detecting device
WO2008052522A1 (en) * 2006-10-31 2008-05-08 Webasto Ag Method for providing an anti-trapping device for movable parts of a motor vehicle, particularly for realizing an anti-trapping device in a convertible vehicle
JP2009105100A (en) * 2007-10-19 2009-05-14 Furukawa Electric Co Ltd:The Temperature element and temperature detecting module, and temperature detection method, heating/cooling module, and temperature control method therefor
JP2010225608A (en) * 2009-03-19 2010-10-07 Mitsubishi Materials Corp Thermoelectric conversion element
JP2010225609A (en) * 2009-03-19 2010-10-07 Mitsubishi Materials Corp Thermoelectric conversion element
JP2016173250A (en) * 2015-03-16 2016-09-29 ヤマハファインテック株式会社 Infrared sensor

Also Published As

Publication number Publication date
JP3101190B2 (en) 2000-10-23

Similar Documents

Publication Publication Date Title
EP0354369B1 (en) Infrared detector
US6300554B1 (en) Method of fabricating thermoelectric sensor and thermoelectric sensor device
Vincent et al. Fundamentals of infrared and visible detector operation and testing
US5021663A (en) Infrared detector
US6043493A (en) Infrared sensor and method for compensating temperature thereof
EP1333504A3 (en) Monolithically-integrated infrared sensor
JPH0989655A (en) Infrared detection apparatus
Sarro et al. An integrated thermal infrared sensing array
US8981296B2 (en) Terahertz dispersive spectrometer system
JP4231681B2 (en) Thermopile array sensor
US4472594A (en) Method of increasing the sensitivity of thermopile
JPH0249124A (en) Thermopile
JP2002048649A5 (en)
JPS637611B2 (en)
JPH0585014B2 (en)
US6437331B1 (en) Bolometer type infrared sensor with material having hysterisis
JPS61259580A (en) Thermopile
JP3775830B2 (en) Infrared detector
Sarro Integrated silicon thermopile infrared detectors.
JP3008210B2 (en) Speed detecting device and size measuring device using array type thermopile
JPH09318442A (en) Infrared detector
JPH0394127A (en) Infrared ray sensor
JPH11258040A (en) Thermopile type infrared ray sensor
JPH07140008A (en) Radiation thermometer
JPS6153549A (en) Optical measuring apparatus

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000808

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070818

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080818

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130818

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees