JP2010225609A - Thermoelectric conversion element - Google Patents

Thermoelectric conversion element Download PDF

Info

Publication number
JP2010225609A
JP2010225609A JP2009067886A JP2009067886A JP2010225609A JP 2010225609 A JP2010225609 A JP 2010225609A JP 2009067886 A JP2009067886 A JP 2009067886A JP 2009067886 A JP2009067886 A JP 2009067886A JP 2010225609 A JP2010225609 A JP 2010225609A
Authority
JP
Japan
Prior art keywords
conductor film
insulating substrate
film
conversion element
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009067886A
Other languages
Japanese (ja)
Inventor
Kensho Nagatomo
憲昭 長友
Yoshiaki Mayuzumi
良享 黛
Hisashi Yamaguchi
尚志 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2009067886A priority Critical patent/JP2010225609A/en
Publication of JP2010225609A publication Critical patent/JP2010225609A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain high response while maintaining satisfactory strength in a thermoelectric conversion element. <P>SOLUTION: The thermoelectric conversion element includes an insulating substrate 2, and a plurality of pairs of first conductor films 4A and second conductor film 4B mutually patterned like a belt on the surface of the insulating substrate 2 directly or through an insulating layer 3 by p-type thermoelectric material and an n-type thermoelectric material, and electrically connected in series by being alternately joined at their end parts. The first conductor films 4A and the second conductor films 4B are extendedly placed side by side between both side end parts 2a, 2b with the end parts disposed in the vicinity of both side end parts 2a, 2b of the insulating substrate 2, and a thin end portion 7 made thinner than other portions is formed in the vicinity of both side end parts 2a, 2b on the back of the insulating substrate 2. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、熱電発電素子やサーモパイル等に適用可能な薄型の熱電変換素子に関する。   The present invention relates to a thin thermoelectric conversion element applicable to a thermoelectric power generation element, a thermopile, and the like.

ゼーベック効果による熱電発電(熱電発電素子)やペルチェ効果による熱電冷却(ペルチェ素子)、サーモパイル(熱電堆)等の素子として熱電変換素子が知られている。これらの熱電変換素子は、互いにp型熱電材料とn型熱電材料とを接続した構造を有している。一般的な熱電変換素子としては、p型熱電材料のブロック体とn型熱電材料のブロック体とを基板上に配列して直列に接続した構造であるが、この場合、微細な精密加工が難しく、小型化や薄型化が困難であった。   Thermoelectric conversion elements are known as elements such as thermoelectric power generation (thermoelectric power generation element) by the Seebeck effect, thermoelectric cooling (Peltier element) by the Peltier effect, and thermopile (thermoelectric stack). These thermoelectric conversion elements have a structure in which a p-type thermoelectric material and an n-type thermoelectric material are connected to each other. A general thermoelectric conversion element has a structure in which a block body of p-type thermoelectric material and a block body of n-type thermoelectric material are arranged on a substrate and connected in series, but in this case, fine precision processing is difficult. It was difficult to reduce the size and thickness.

このため、従来、例えば特許文献1に記載されているように、p型熱電材料とn型熱電材料とを基材の表面にスパッタリング等の物理的蒸着技術により薄膜状に形成した熱電変換素子が提案されている。このような熱電変換素子では、薄膜状の熱電材料を形成するので、微細で複雑なパターンを持った熱電材料の形成が可能で、極めて小さく薄い熱電変換素子を実現可能としている。   For this reason, conventionally, as described in Patent Document 1, for example, there is a thermoelectric conversion element in which a p-type thermoelectric material and an n-type thermoelectric material are formed in a thin film shape on the surface of a substrate by a physical vapor deposition technique such as sputtering. Proposed. In such a thermoelectric conversion element, since a thin thermoelectric material is formed, it is possible to form a thermoelectric material having a fine and complicated pattern, and an extremely small and thin thermoelectric conversion element can be realized.

また、特許文献2に記載されているように、p型FeSi膜のパターンの一部を露出させるようにして絶縁膜で被覆し、露出した部分に接合するようにn型FeSi膜を被着するサーモパイルの製造方法が提案されている。この製法では、膜厚を厚くできる結果、内部比抵抗を低くでき、熱センサとしてのS/N比を向上させることができる。 Further, as described in Patent Document 2, a part of the pattern of the p-type FeSi 2 film is covered with an insulating film so as to be exposed, and the n-type FeSi 2 film is covered so as to be joined to the exposed part. A method of manufacturing a thermopile to be worn has been proposed. In this manufacturing method, as a result of increasing the film thickness, the internal specific resistance can be lowered, and the S / N ratio as a thermal sensor can be improved.

特開2005−277343号公報(特許請求の範囲)Japanese Patent Laying-Open No. 2005-277343 (Claims) 特開平5−41545号公報(特許請求の範囲)JP-A-5-41545 (Claims)

上記従来の技術には、以下の課題が残されている。
すなわち、上記従来の技術では、薄膜を形成する基材としてセラミックス材料などの単層基板を用いているが、基板が厚いほど熱容量が大きくなり、応答性が低下してしまう不都合があった。このため、基板を薄くすれば、応答性が高くなるが、全体の強度が低下してしまい、信頼性の低下を招くおそれがあった。
The following problems remain in the conventional technology.
That is, in the above conventional technique, a single layer substrate made of a ceramic material or the like is used as a base material for forming a thin film. However, the thicker the substrate, the larger the heat capacity, and there is a disadvantage that the responsiveness is lowered. For this reason, if the substrate is made thinner, the responsiveness is improved, but the overall strength is lowered, and there is a possibility that the reliability is lowered.

本発明は、前述の課題に鑑みてなされたもので、良好な強度を維持して高い応答性を得ることができる熱電変換素子を提供することを目的とする。   This invention is made | formed in view of the above-mentioned subject, and it aims at providing the thermoelectric conversion element which can obtain high responsiveness, maintaining favorable intensity | strength.

本発明は、前記課題を解決するために以下の構成を採用した。すなわち、本発明の熱電変換素子は、絶縁性基板と、該絶縁性基板の表面に直接又は絶縁層を介して互いにp型熱電材料とn型熱電材料とで帯状にパターン形成されていると共に端部で交互に接合されて電気的に直列接続された複数対の第1の導電体膜及び第2の導電体膜と、を備え、前記第1の導電体膜及び前記第2の導電体膜が、前記端部を前記絶縁性基板の両側端部の近傍に配して前記両側端部の間に延在して並べられ、前記絶縁性基板の裏面であって両側端部の近傍に、他の部分よりも薄い厚さとされた端部薄肉部が形成されていることを特徴とする。   The present invention employs the following configuration in order to solve the above problems. That is, the thermoelectric conversion element of the present invention is formed in a strip pattern with an insulating substrate and a p-type thermoelectric material and an n-type thermoelectric material directly on the surface of the insulating substrate or via an insulating layer. A plurality of pairs of first conductor films and second conductor films that are alternately joined at a portion and are electrically connected in series, and the first conductor film and the second conductor film However, the end portions are arranged in the vicinity of both side end portions of the insulating substrate and are arranged to extend between the both side end portions, on the back surface of the insulating substrate and in the vicinity of both side end portions, An end thin portion having a thickness thinner than other portions is formed.

この熱電変換素子では、絶縁性基板の裏面であって両側端部の近傍、すなわち第1の導電体膜及び第2の導電体膜の両端部の直下に、他の部分よりも薄い厚さとされた端部薄肉部が形成されているので、低温部又は高温部とされる両側端部の近傍が、端部薄肉部によって小さい熱容量となることで、高い応答性を得ることができる。また、部分的に端部薄肉部のみを薄くすることで、絶縁性基板全体としては良好な強度を維持することができる。   In this thermoelectric conversion element, the thickness is thinner than the other portions on the back surface of the insulating substrate and in the vicinity of both end portions, that is, immediately below both end portions of the first conductor film and the second conductor film. Since the end thin portion is formed, the vicinity of both side end portions which are the low temperature portion or the high temperature portion has a small heat capacity due to the end thin portion, so that high responsiveness can be obtained. Further, by thinning only the thin end portion, it is possible to maintain good strength as the whole insulating substrate.

また、本発明の熱電変換素子は、前記第1の導電体膜及び前記第2の導電体膜が、絶縁層を介して複数積層されていることを特徴とする。
すなわち、この熱電変換素子では、第1の導電体膜及び第2の導電体膜が、絶縁層を介して複数積層されているので、小さいスペースでも多層構造によって熱電対部分を多数直列に接続することができ、高い起電力を得ることができる。特に、絶縁層をZrO膜等の熱伝導性の低い材料で形成することで、より明確な温度差を得ることが可能になる。
Further, the thermoelectric conversion element of the present invention is characterized in that a plurality of the first conductor films and the second conductor films are laminated via an insulating layer.
That is, in this thermoelectric conversion element, a plurality of first conductor films and a plurality of second conductor films are laminated via an insulating layer, so that a large number of thermocouple portions are connected in series with a multilayer structure even in a small space. And high electromotive force can be obtained. In particular, a clearer temperature difference can be obtained by forming the insulating layer with a material having low thermal conductivity such as a ZrO 2 film.

本発明によれば、以下の効果を奏する。
すなわち、本発明に係る熱電変換素子によれば、絶縁性基板の裏面であって両側端部の近傍に、他の部分よりも薄い厚さとされた端部薄肉部が形成されているので、低温部又は高温部とされる両側端部の近傍が、端部薄肉部によって小さい熱容量となることで、高い応答性を得ることができる。また、第1の導電体膜及び第2の導電体膜を、絶縁層を介して複数積層することで、熱電対部分を多数直列に接続することができ、高い起電力を得ることができる。
The present invention has the following effects.
That is, according to the thermoelectric conversion element according to the present invention, the end thin portion having a thickness thinner than other portions is formed on the back surface of the insulating substrate in the vicinity of both end portions. High responsiveness can be obtained because the vicinity of both side end portions, which are considered to be part or high temperature portion, has a small heat capacity due to the end thin portion. Further, by laminating a plurality of first conductor films and second conductor films with an insulating layer interposed therebetween, a large number of thermocouple portions can be connected in series, and a high electromotive force can be obtained.

本発明に係る熱電変換素子の一実施形態を示す斜視図である。It is a perspective view which shows one Embodiment of the thermoelectric conversion element which concerns on this invention. 本実施形態において、熱電変換素子を示す分解斜視図及び裏面側から見た斜視図である。In this embodiment, it is the disassembled perspective view which shows the thermoelectric conversion element, and the perspective view seen from the back surface side. 図1のA−A線矢視断面図である。It is AA arrow sectional drawing of FIG. 本実施形態において、第1の導電体膜と第2の導電体膜との接合を示す要部の拡大平面図である。In this embodiment, it is an enlarged plan view of the principal part which shows joining of the 1st conductor film and the 2nd conductor film. 本実施形態において、熱電変換素子の製造方法を工程順に示す要部の拡大断面図である。In this embodiment, it is an expanded sectional view of the principal part which shows the manufacturing method of a thermoelectric conversion element in process order.

以下、本発明に係る熱電変換素子の第1実施形態を、図1から図5を参照しながら説明する。なお、以下の説明に用いる各図面では、各部材を認識可能又は認識容易な大きさとするために縮尺を適宜変更している。   Hereinafter, a first embodiment of a thermoelectric conversion element according to the present invention will be described with reference to FIGS. 1 to 5. In each drawing used in the following description, the scale is appropriately changed so that each member can be recognized or easily recognized.

本実施形態の熱電変換素子1は、熱電発電素子や温度センサ等に適用されるものであって、図1から図4に示すように、絶縁性基板2と、該絶縁性基板2の表面に直接又は絶縁層3を介して互いにp型熱電材料とn型熱電材料とで帯状にパターン形成されていると共に端部で交互に接合されて電気的に直列接続された複数対の第1の導電体膜4A及び第2の導電体膜4Bと、直列接続された第1の導電体膜4A及び第2の導電体膜4Bの末端に接続された一対のリード線5と、を備えている。   The thermoelectric conversion element 1 of this embodiment is applied to a thermoelectric power generation element, a temperature sensor, and the like. As shown in FIGS. 1 to 4, an insulating substrate 2 and a surface of the insulating substrate 2 are provided. A plurality of pairs of first conductive layers which are patterned in a strip shape with a p-type thermoelectric material and an n-type thermoelectric material directly or through an insulating layer 3 and are alternately joined at the ends and electrically connected in series. A body film 4A and a second conductor film 4B, and a pair of lead wires 5 connected to the ends of the first conductor film 4A and the second conductor film 4B connected in series are provided.

上記各第1の導電体膜4A及び第2の導電体膜4Bは、端部を絶縁性基板2の両側端部2a,2bの近傍に配して両側端部2a,2bの間に延在して並べられている。また、図4に示すように、互いに端部で接合される第1の導電体膜4Aと第2の導電体膜4Bとは、一方の導電体膜の端部がL字状に曲がって他方の導電体膜の端部に重なって接合部4aを形成している。   Each of the first conductor film 4A and the second conductor film 4B has an end portion disposed in the vicinity of both end portions 2a and 2b of the insulating substrate 2 and extends between the end portions 2a and 2b. Are lined up. Also, as shown in FIG. 4, the first conductor film 4A and the second conductor film 4B joined to each other at the end portions are such that the end portion of one conductor film is bent in an L shape and the other is The junction 4a is formed so as to overlap the end of the conductive film.

すなわち、第1の導電体膜4Aと第2の導電体膜4Bとは、互いに端部の接合部4aで接続されて一対で一つの熱電対部を構成している。また、第1の導電体膜4Aと第2の導電体膜4Bとは、複数が交互に接続されて折り返すことで全体として櫛歯状に配設され、複数の熱電対部が繰り返し直列接続されて構成されている。この第1の導電体膜4Aと第2の導電体膜4Bとによる熱電対部のパターンの繰り返し数(第1の導電体膜4Aと第2の導電体膜4Bとの接続の数)を増やすことによってその感度を向上させることができる。   In other words, the first conductor film 4A and the second conductor film 4B are connected to each other at the joint portion 4a at the end portion to constitute one thermocouple portion. In addition, the first conductor film 4A and the second conductor film 4B are arranged in a comb shape as a whole by being alternately connected and folded, and the plurality of thermocouple portions are repeatedly connected in series. Configured. Increasing the number of repetitions of the pattern of the thermocouple portion by the first conductor film 4A and the second conductor film 4B (the number of connections between the first conductor film 4A and the second conductor film 4B). The sensitivity can be improved.

これら第1の導電体膜4A及び第2の導電体膜4Bは、例えばp型熱電材料及びn型熱電材料の双方がFeSi系熱電材料で形成されている。例えば、FeSi系熱電材料以外には、既知のBi−Te系熱電材料、Mg―Si系熱電材料、Mn−Si系熱電材料、酸化物系熱電材料でもよい。 In the first conductor film 4A and the second conductor film 4B, for example, both a p-type thermoelectric material and an n-type thermoelectric material are formed of a FeSi 2 -based thermoelectric material. For example, a known Bi—Te thermoelectric material, Mg—Si thermoelectric material, Mn—Si thermoelectric material, and oxide thermoelectric material may be used in addition to the FeSi 2 thermoelectric material.

また、第1の導電体膜4A及び第2の導電体膜4Bは、絶縁層3を介して複数積層されている。この絶縁層3は、熱伝導性の低い材料が好ましく、本実施形態では、ZrO膜が採用されている。各層の絶縁層3は、第1の導電体膜4Aと第2の導電体膜4Bとの折り返し部分の一部(接合部4a)を除いて第1の導電体膜4A又は第2の導電体膜4Bの表面と絶縁性基板2全体とを覆っている。 A plurality of first conductor films 4A and second conductor films 4B are stacked with an insulating layer 3 interposed therebetween. The insulating layer 3 is preferably made of a material having low thermal conductivity. In this embodiment, a ZrO 2 film is employed. The insulating layer 3 of each layer is the first conductor film 4A or the second conductor except for a part of the folded portion (joint part 4a) between the first conductor film 4A and the second conductor film 4B. The surface of the film 4B and the entire insulating substrate 2 are covered.

最下層である第1層L1の第1の導電体膜4A及び第2の導電体膜4Bは、一端がリード線5の一方に接続されていると共に他端が一層上に積層された第2層L2の第1の導電体膜4A及び第2の導電体膜4Bの一端に接続されている。第2層L2の第1の導電体膜4A及び第2の導電体膜4Bの他端は、さらにその上に積層された層の第1の導電体膜4A及び第2の導電体膜4Bの一端に接続されている。   The first conductor film 4A and the second conductor film 4B of the first layer L1, which is the lowermost layer, have one end connected to one of the lead wires 5 and the other end laminated on one layer. The first conductor film 4A and the second conductor film 4B of the layer L2 are connected to one end. The other ends of the first conductor film 4A and the second conductor film 4B of the second layer L2 are further formed of the first conductor film 4A and the second conductor film 4B of the layer laminated thereon. Connected to one end.

そして、最上層Lnの第1の導電体膜4A及び第2の導電体膜4Bの他端は、他方のリード線5に接続されている。このように上下の層間でも第1の導電体膜4A及び第2の導電体膜4Bは交互に直列接続されている。なお、図3では、簡略的に第1の導電体膜4A及び第2の導電体膜4Bの層を三層のみで図示している。   The other ends of the first conductor film 4A and the second conductor film 4B of the uppermost layer Ln are connected to the other lead wire 5. As described above, the first conductor film 4A and the second conductor film 4B are alternately connected in series between the upper and lower layers. In FIG. 3, only the three layers of the first conductor film 4A and the second conductor film 4B are illustrated in a simplified manner.

上記絶縁性基板2は、例えば、アルミナ基板等のセラミックス材料で形成されている。
また、絶縁性基板2の裏面であって両側端部2a,2bの近傍、すなわち第1の導電体膜4A及び第2の導電体膜4Bの両端部の直下に、他の部分よりも薄い厚さとされた一対の端部薄肉部7が形成されている。
これら端部薄肉部7は、側端部2a又は側端部2bに沿って延在した長方形状の穴部である。
なお、上記リード線5は、電流測定器又は電圧測定器(図示略)に接続される。
The insulating substrate 2 is made of a ceramic material such as an alumina substrate, for example.
Further, it is a back surface of the insulating substrate 2 and in the vicinity of both side end portions 2a and 2b, that is, immediately below both end portions of the first conductor film 4A and the second conductor film 4B, and is thinner than other portions. A pair of thin end portions 7 are formed.
These end thin portions 7 are rectangular holes extending along the side end 2a or the side end 2b.
The lead wire 5 is connected to a current measuring device or a voltage measuring device (not shown).

次に、本実施形態の熱電変換素子1の製造方法について、図4及び図5を参照して説明する。   Next, the manufacturing method of the thermoelectric conversion element 1 of this embodiment is demonstrated with reference to FIG.4 and FIG.5.

まず、絶縁性基板2として、図5の(a)に示すように、例えば所定の一定厚さのアルミナ基板を使用し、図5の(b)に示すように、この絶縁性基板2の上面全面に、第1の導電体膜4Aとして例えばp型FeSi膜をスパッタリングにより所定の厚さに被着する。さらに、図5の(c)に示すように、この第1の導電体膜4A上に第1フォトレジスト膜11を被着、露光等することにより所定のパターンの第1フォトレジスト膜11を形成する。 First, as the insulating substrate 2, as shown in FIG. 5A, for example, an alumina substrate having a predetermined constant thickness is used, and as shown in FIG. 5B, the upper surface of the insulating substrate 2 is used. A p-type FeSi 2 film, for example, is deposited as a first conductor film 4A on the entire surface to a predetermined thickness by sputtering. Further, as shown in FIG. 5C, the first photoresist film 11 having a predetermined pattern is formed by depositing the first photoresist film 11 on the first conductor film 4A, exposing the first photoresist film 11 and exposing the same. To do.

次に、図5の(d)に示すように、HF+HNO系またはHF+HSO系等のエッチング液で選択的にエッチングして第1フォトレジスト膜11の下地以外の部分の第1の導電体膜4Aを除去する。図5の(e)に示すように、さらに、第1フォトレジスト膜11を除去して第1の導電体膜4Aのパターンを絶縁性基板2上に形成する。 Next, as shown in FIG. 5D, the first conductive film in a portion other than the base of the first photoresist film 11 is selectively etched with an etching solution such as HF + HNO 3 system or HF + H 2 SO 4 system. The body membrane 4A is removed. As shown in FIG. 5E, the first photoresist film 11 is further removed to form a pattern of the first conductor film 4A on the insulating substrate 2.

次に、図5の(f)に示すように、この第1の導電体膜4Aを第2フォトレジスト膜12で覆い、露光、エッチングしてこの第1の導電体膜4A上の一部に所定パターンの第2フォトレジスト膜12を残す。さらに、図5の(g)に示すように、この絶縁性基板2、第1の導電体膜4Aおよび第2フォトレジスト膜12の全体を覆うように絶縁層3としてZrO膜を被着する。そして、図5の(h)に示すように、リフトオフ法によりこの第2フォトレジスト膜12を絶縁層3の一部とともに剥離することにより、第1の導電体膜4Aのパターンの一部を露出部4bとして露出させる。 Next, as shown in FIG. 5 (f), the first conductor film 4A is covered with a second photoresist film 12, exposed and etched to form a part on the first conductor film 4A. The second photoresist film 12 having a predetermined pattern is left. Further, as shown in FIG. 5G, a ZrO 2 film is deposited as the insulating layer 3 so as to cover the whole of the insulating substrate 2, the first conductor film 4A, and the second photoresist film 12. . Then, as shown in FIG. 5H, a part of the pattern of the first conductor film 4A is exposed by peeling the second photoresist film 12 together with a part of the insulating layer 3 by a lift-off method. Exposed as part 4b.

次に、図5の(i)に示すように、第1の導電体膜4Aの露出部4b及び絶縁層3の全体を覆うように第2の導電体膜4Bを、スパッタリング等で被着する。さらに、図5の(j)に示すように、この第2の導電体膜4B上に所定パターンの第3フォトレジスト膜13を被着する。そして、図5の(k)に示すように、HF+HNO系等のエッチング液で第3フォトレジスト膜13の下地以外の第2の導電体膜4Bを選択的にエッチングする。さらに、図5の(l)に示すように、第3フォトレジスト膜13を除去する。この結果、第1の導電体膜4Aの一部(露出部4b)と第2の導電体膜4Bの一部とは接合されて接合部4aとなる。 Next, as shown in FIG. 5I, the second conductor film 4B is deposited by sputtering or the like so as to cover the exposed portion 4b of the first conductor film 4A and the entire insulating layer 3. . Further, as shown in FIG. 5J, a third photoresist film 13 having a predetermined pattern is deposited on the second conductor film 4B. Then, as shown in FIG. 5 (k), the second conductor film 4B other than the base of the third photoresist film 13 is selectively etched with an etchant such as HF + HNO 3 . Further, as shown in FIG. 5L, the third photoresist film 13 is removed. As a result, a part of the first conductor film 4A (exposed part 4b) and a part of the second conductor film 4B are joined to form a joined part 4a.

次いで、第1の導電体膜4Aと第2の導電体膜4Bとを結晶化させるために400〜900℃でアニールを行う。このアニールは、熱起電力を高めるものである。
さらに、上記リソグラフィプロセスのうち図5の(f)〜(l)で示す工程を、各層毎に繰り返し、第1の導電体膜4Aと第2の導電体膜4Bとを交互にパターン形成しつつ接合部4aを除いて絶縁層3を挟むことで、電気的に直列接続された複数の熱電対部を有する層を複数積層する。
Next, annealing is performed at 400 to 900 ° C. in order to crystallize the first conductor film 4A and the second conductor film 4B. This annealing increases the thermoelectromotive force.
Further, the steps shown in FIGS. 5F to 5L in the lithography process are repeated for each layer, and the first conductor film 4A and the second conductor film 4B are alternately patterned. A plurality of layers having a plurality of thermocouple portions electrically connected in series are stacked by sandwiching the insulating layer 3 except for the joint portion 4a.

次に、上記各薄膜形成後、図3に示すように、絶縁性基板2の裏面に所定パターンのメタルマスクを配して、両側端部2a,2bの近傍、すなわち第1の導電体膜4A及び第2の導電体膜4Bの両端部の直下に、ブラスト加工を行うことで、所定厚さまで薄くした一対の長方形状の端部薄肉部7を形成する。
そして、接続された第1の導電体膜4Aと第2の導電体膜4Bとの末端に電極部としてリード線5をハンダ付けすることで、熱電変換素子1が作製される。
Next, after each thin film is formed, as shown in FIG. 3, a metal mask having a predetermined pattern is arranged on the back surface of the insulating substrate 2, and in the vicinity of both end portions 2a and 2b, that is, the first conductor film 4A. A pair of rectangular end thin portions 7 that are thinned to a predetermined thickness are formed by blasting just below both ends of the second conductor film 4B.
And the thermoelectric conversion element 1 is produced by soldering the lead wire 5 as an electrode part to the terminal of the connected 1st conductor film 4A and 2nd conductor film 4B.

このように本実施形態の熱電変換素子1では、絶縁性基板2の裏面であって両側端部2a,2bの近傍、すなわち第1の導電体膜4A及び第2の導電体膜4Bの両端部の直下に、他の部分よりも薄い厚さとされた端部薄肉部7が形成されているので、低温部又は高温部とされる両側端部2a,2bの近傍が、端部薄肉部7によって小さい熱容量となることで、高い応答性を得ることができる。また、部分的に端部薄肉部7のみを薄くすることで、絶縁性基板2全体としては良好な強度を維持することができる。   Thus, in the thermoelectric conversion element 1 of the present embodiment, it is the back surface of the insulating substrate 2 and in the vicinity of both side end portions 2a and 2b, that is, both end portions of the first conductor film 4A and the second conductor film 4B. Since the end thin part 7 having a thickness smaller than that of the other part is formed immediately below the two sides 2a and 2b, which are the low temperature part or the high temperature part, the end thin part 7 High response can be obtained by having a small heat capacity. Further, by thinning only the thin end portion 7 partly, the insulating substrate 2 as a whole can maintain good strength.

また、第1の導電体膜4A及び第2の導電体膜4Bが、絶縁層3を介して複数積層されているので、小さいスペースでも多層構造によって熱電対部分を多数直列に接続することができ、高い起電力を得ることができる。特に、絶縁層3をZrO膜等の熱伝導性の低い材料で形成することで、より明確な温度差を得ることが可能になる。 In addition, since a plurality of first conductor films 4A and second conductor films 4B are laminated via the insulating layer 3, a large number of thermocouple portions can be connected in series with a multilayer structure even in a small space. High electromotive force can be obtained. In particular, a clearer temperature difference can be obtained by forming the insulating layer 3 with a material having low thermal conductivity such as a ZrO 2 film.

なお、本発明の技術範囲は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。   The technical scope of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.

1…熱電変換素子、2…絶縁性基板、2a,2b…絶縁性基板の両側端部、3…絶縁層、4A…第1の導電体膜、4B…第2の導電体膜、7…端部薄肉部   DESCRIPTION OF SYMBOLS 1 ... Thermoelectric conversion element, 2 ... Insulating substrate, 2a, 2b ... Both ends of insulating substrate, 3 ... Insulating layer, 4A ... 1st conductor film, 4B ... 2nd conductor film, 7 ... End Thin part

Claims (2)

絶縁性基板と、
該絶縁性基板の表面に直接又は絶縁層を介して互いにp型熱電材料とn型熱電材料とで帯状にパターン形成されていると共に端部で交互に接合されて電気的に直列接続された複数対の第1の導電体膜及び第2の導電体膜と、を備え、
前記第1の導電体膜及び前記第2の導電体膜が、前記端部を前記絶縁性基板の両側端部の近傍に配して前記両側端部の間に延在して並べられ、
前記絶縁性基板の裏面であって両側端部の近傍に、他の部分よりも薄い厚さとされた端部薄肉部が形成されていることを特徴とする熱電変換素子。
An insulating substrate;
A plurality of p-type thermoelectric materials and n-type thermoelectric materials that are patterned in a band shape on the surface of the insulating substrate directly or through an insulating layer, and are alternately joined at the ends and electrically connected in series. A pair of first conductor film and second conductor film,
The first conductor film and the second conductor film are arranged such that the end portions are arranged in the vicinity of both end portions of the insulating substrate and extend between the both end portions;
A thermoelectric conversion element characterized in that an end thin portion having a thickness thinner than other portions is formed in the vicinity of both side end portions on the back surface of the insulating substrate.
請求項1に記載の熱電変換素子において、
前記第1の導電体膜及び前記第2の導電体膜が、絶縁層を介して複数積層されていることを特徴とする熱電変換素子。
In the thermoelectric conversion element according to claim 1,
A thermoelectric conversion element, wherein a plurality of the first conductor films and the second conductor films are laminated via an insulating layer.
JP2009067886A 2009-03-19 2009-03-19 Thermoelectric conversion element Pending JP2010225609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009067886A JP2010225609A (en) 2009-03-19 2009-03-19 Thermoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009067886A JP2010225609A (en) 2009-03-19 2009-03-19 Thermoelectric conversion element

Publications (1)

Publication Number Publication Date
JP2010225609A true JP2010225609A (en) 2010-10-07

Family

ID=43042544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009067886A Pending JP2010225609A (en) 2009-03-19 2009-03-19 Thermoelectric conversion element

Country Status (1)

Country Link
JP (1) JP2010225609A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111527524A (en) * 2017-11-03 2020-08-11 脸谱公司 Dynamic graceful degradation of augmented reality effects

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0989655A (en) * 1995-09-26 1997-04-04 Matsushita Electric Works Ltd Infrared detection apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0989655A (en) * 1995-09-26 1997-04-04 Matsushita Electric Works Ltd Infrared detection apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111527524A (en) * 2017-11-03 2020-08-11 脸谱公司 Dynamic graceful degradation of augmented reality effects
JP2021501933A (en) * 2017-11-03 2021-01-21 フェイスブック,インク. Dynamic Graceful Degradation for Augmented Reality Effects
JP7038205B2 (en) 2017-11-03 2022-03-17 メタ プラットフォームズ, インク. Dynamic Graceful Degradation for Augmented Reality Effects

Similar Documents

Publication Publication Date Title
JP3816750B2 (en) Method for making a thermoelectric converter
JP5493562B2 (en) Thermoelectric conversion module
JP5987444B2 (en) Thermoelectric conversion device and manufacturing method thereof
JP5891584B2 (en) Thermoelectric generator
KR102605880B1 (en) Detection device with suspended bolometric membranes having a high absorption efficiency and signal-to-noise ratio
US20110094556A1 (en) Planar thermoelectric generator
EP0954036A1 (en) Thermoelectric device
WO2011065185A1 (en) Thermoelectric conversion module and method for manufacturing same
US20130069194A1 (en) Graphene-based thermopile
JP2008205181A (en) Thermoelectric module
JP2006086510A (en) Thermoelectric conversion device and its manufacturing method
JP2015233154A (en) Stacked thermopile
JPH01220870A (en) Small thermoelectric converter
JP6035970B2 (en) Thermoelectric conversion device and manufacturing method thereof
JP2010225608A (en) Thermoelectric conversion element
JP5669103B2 (en) Thermoelectric thin film device
US20140130839A1 (en) Structure useful for producing a thermoelectric generator, thermoelectric generator comprising same and method for producing same
JP2010225609A (en) Thermoelectric conversion element
US20160247995A1 (en) Thermoelectric converter having thermoelectric conversion elements connected to each other via wiring pattern, and method for fabricating the thermoelectric converter
JP2010225610A (en) Thermoelectric conversion element, and method of manufacturing the same
JP2003344155A (en) Infrared sensor
JP2011192923A (en) Thermoelectric conversion apparatus, and method of manufacturing the same
JPH10247752A (en) Thermoelectric conversion device and manufacture thereof
JP2009218320A (en) Thermal power generation device element
JP2010281576A (en) Current sensor and electronic component incorporating the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110928

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130517