JP2010281576A - Current sensor and electronic component incorporating the same - Google Patents

Current sensor and electronic component incorporating the same Download PDF

Info

Publication number
JP2010281576A
JP2010281576A JP2009132765A JP2009132765A JP2010281576A JP 2010281576 A JP2010281576 A JP 2010281576A JP 2009132765 A JP2009132765 A JP 2009132765A JP 2009132765 A JP2009132765 A JP 2009132765A JP 2010281576 A JP2010281576 A JP 2010281576A
Authority
JP
Japan
Prior art keywords
film
current
current sensor
thermoelectric
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009132765A
Other languages
Japanese (ja)
Inventor
Kenzo Nakamura
賢蔵 中村
Kensho Nagatomo
憲昭 長友
Mototaka Ishikawa
元貴 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2009132765A priority Critical patent/JP2010281576A/en
Publication of JP2010281576A publication Critical patent/JP2010281576A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To enable current detection without electrically connecting a detection circuit to a circuit to be measured, and enable size reduction at low cost, in a current sensor and an electronic component incorporating the current sensor. <P>SOLUTION: The current sensor includes: a substrate 11; a current heat conversion section 14, where a pair of electrode films 12 connected to the circuit, a first conducive material film 13A connected to one of the pair of electrode films 12, and a second conductive material film 13B that is joined to the first conductive material film 13A, is connected to the other of the pair of electrode films 12, and has a value of resistance larger than that of the first conductive material film 13A are subjected to pattern formation on the substrate 11; an insulation film 15 on the first and second conductive material films 13A, 13B; and a thin-film thermocouple section 17 formed from an upper portion of the first conductive material film 13A to that of the second conductive material film 13B, and is composed of at least a first thermoelectric film 16A and a second thermoelectric film 16B in a pair electrically connected in series while being joined at edges. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、回路に流れる電流を検出可能な電流センサ及び電流センサ内蔵電子部品に関する。   The present invention relates to a current sensor capable of detecting a current flowing in a circuit and an electronic component with a built-in current sensor.

種々の回路に流れる電流を測定する技術として、従来、シャント抵抗、カレントトランス(CT)、ホール素子等を用いたものが使用されている。上記シャント抵抗を用いた電流検出では、回路にシャント抵抗を接続し、電流を電圧に変換してシャント抵抗に接続した検出回路で電圧を測定して電流を検出している。このシャント抵抗を用いた電流検出では、直流及び交流の両方の電流計測が可能である。   As a technique for measuring the current flowing through various circuits, conventionally, a technique using a shunt resistor, a current transformer (CT), a Hall element, or the like has been used. In current detection using the shunt resistor, a shunt resistor is connected to the circuit, the current is converted into a voltage, and the voltage is measured by a detection circuit connected to the shunt resistor to detect the current. In current detection using this shunt resistor, both direct current and alternating current can be measured.

また、カレントトランスを用いた電流検出では、交流電流が流れる測定対象の回路を環状コアに巻回された1次側コイルに接続すると共に環状コアに巻回された2次側コイルに生じる電圧を検出回路で電流を検出している。
さらに、ホール素子を用いた電流検出では、例えば特許文献1に示すように、回路近傍にホール効果を利用した磁気センサであるホール素子を設置し、このホール素子によって回路の電流に応じて発生した磁界を捉えて電流を検出している。このホール素子では、測定対象の回路に非接触で電流を検出することができる。
In addition, in current detection using a current transformer, a circuit to be measured in which an alternating current flows is connected to a primary coil wound around an annular core, and a voltage generated in a secondary coil wound around the annular core is detected. The detection circuit detects the current.
Furthermore, in current detection using a Hall element, for example, as shown in Patent Document 1, a Hall element, which is a magnetic sensor using the Hall effect, is installed in the vicinity of the circuit, and is generated according to the circuit current by the Hall element. The current is detected by capturing the magnetic field. In this Hall element, a current can be detected without contact with a circuit to be measured.

特開2008−20402号公報JP 2008-20402 A

上記従来の技術には、以下の課題が残されている。
すなわち、シャント抵抗を用いた電流検出では、検出回路もシャント抵抗を介して測定対象の回路に電気的に接続させる必要があった。しかしながら、高電圧電源の電流検出を行う場合や大電流によるインパルス雑音等に対応して、検出回路の安全性や信頼性を確保するため、このような用途に応じて検出回路を測定対象の回路に電気的に接続せずに電流を検出する方法が要望されている。このため、従来、図9に示すように、高電圧電源1からの回路ECに直接接続する場合、シャント抵抗2の電圧を検出する検出回路3にカレントトランス4を挿入して電気的に分離して電流検出を行っていた。しかしながら、カレントトランス4を挿入することで形状が大きくなると共に部品数が増え、コストの増大とセンサ形状の大型化とを招いてしまう不都合があった。また、ホール素子を用いた電流検出では、高価なホール素子(磁気センサ)を使用するため、やはり高コストになってしまう不都合があった。
The following problems remain in the conventional technology.
That is, in current detection using a shunt resistor, the detection circuit must be electrically connected to the circuit to be measured via the shunt resistor. However, in order to ensure the safety and reliability of the detection circuit for current detection of high-voltage power supplies and for impulse noise due to large currents, etc. There is a need for a method of detecting current without being electrically connected to the circuit. For this reason, as shown in FIG. 9, when a direct connection is made to the circuit EC from the high voltage power supply 1, a current transformer 4 is inserted into the detection circuit 3 for detecting the voltage of the shunt resistor 2 and electrically separated. Current detection. However, the insertion of the current transformer 4 increases the shape and the number of components, leading to an increase in cost and an increase in the sensor shape. In addition, current detection using a Hall element has an inconvenience of being expensive because an expensive Hall element (magnetic sensor) is used.

本発明は、前述の課題に鑑みてなされたもので、測定対象の回路に対して検出回路を電気接続せずに電流検出が可能であると共に、低コストで小型化が可能な電流センサ及び電流センサ内蔵電子部品を提供することを目的とする。   The present invention has been made in view of the above-described problems, and is capable of detecting a current without electrically connecting a detection circuit to a circuit to be measured, and a current sensor and a current that can be reduced in size at low cost. An object is to provide an electronic component with a built-in sensor.

本発明は、前記課題を解決するために以下の構成を採用した。すなわち、本発明の電流センサは、基板と、回路に接続される一対の電極膜と一対の前記電極膜の一方に接続された第1の導電体膜と該第1の導電体膜に接合されていると共に一対の前記電極膜の他方に接続され前記第1の導電体膜よりも抵抗値の高い第2の導電体膜とが前記基板上にパターン形成されて構成された電流熱変換部と、前記第1の導電体膜及び前記第2の導電体膜の上に形成された絶縁膜と、該絶縁膜上に前記第1の導電体膜の上方から前記第2の導電体膜の上方にわたって互いに異なるp型熱電材料とn型熱電材料とで帯状にパターン形成されていると共に端部で接合されて電気的に直列接続された少なくとも一対の第1の熱電膜及び第2の熱電膜で構成された薄膜熱電対部と、を備えていることを特徴とする。   The present invention employs the following configuration in order to solve the above problems. That is, the current sensor of the present invention is bonded to the substrate, the pair of electrode films connected to the circuit, the first conductor film connected to one of the pair of electrode films, and the first conductor film. And a second heat conductive film connected to the other of the pair of electrode films and having a resistance value higher than that of the first conductive film, and formed into a pattern on the substrate; An insulating film formed on the first conductive film and the second conductive film, and above the first conductive film on the insulating film from above the first conductive film. A p-type thermoelectric material and an n-type thermoelectric material which are different from each other, and at least a pair of first thermoelectric films and second thermoelectric films which are joined in ends and electrically connected in series. And a thin film thermocouple portion configured.

この電流センサでは、薄膜熱電対部が、第1の導電体膜の上方から第2の導電体膜の上方にわたって互いに異なるp型熱電材料とn型熱電材料とで形成されていると共に端部で接合された第1の熱電膜及び第2の熱電膜で構成されているので、電流熱変換部に流れる電流に応じて第1の導電体膜と第2の導電体膜との間で温度差が生じると共に薄膜熱電対部に起電力が発生することで、電流を検出することができる。
すなわち、測定対象の回路に接続された電流熱変換部に電流が流れると、第1の導電体膜よりも抵抗値の高い第2の導電体膜が第1の導電体膜よりも高いジュール熱で発熱し、電流に応じて第1の導電体膜と第2の導電体膜との間で温度差が生じる。この温度差により、第1の導電体膜から第2の導電体膜にわたって設置された薄膜熱電対部に起電力が生じる。このとき、電流熱変換部で生じるジュール熱による温度差は、通過する電流量に比例するため、上記起電力も電流量に比例することから、この起電力によって電流を検出することができる。特に、電流熱変換部及び薄膜熱電対部がいずれも膜状であることから、温度差が生じる部分間の断面積を小さくできるので、温接点から冷接点へ熱が伝わり難く、発熱による温度差が大きくなって検出感度が向上する。
このように、検出回路に接続される薄膜熱電対部を、測定対象の回路に接続された電流熱変換部に電気接続を行わずに、回路の電流検出が可能である。また、薄膜熱電対部の起電力を測定することで電流を検出できるため、簡易な検出回路で済み、低コストで作製可能である。さらに、薄膜熱電対部が簡易な構成で安価であるため、部材コストも安く、小型化も可能である。
また、電流熱変換部及び薄膜熱電対部が、いずれも基板上の薄膜でパターン形成されているので、低コストで作製可能であると共に薄型化が可能である。
In this current sensor, the thin film thermocouple portion is formed of a p-type thermoelectric material and an n-type thermoelectric material that are different from each other from above the first conductor film to above the second conductor film, and at the end. Since the first thermoelectric film and the second thermoelectric film are joined to each other, the temperature difference between the first conductor film and the second conductor film according to the current flowing through the current-to-heat converter. Is generated, and an electromotive force is generated in the thin film thermocouple portion, whereby a current can be detected.
That is, when a current flows through the current-to-heat converter connected to the circuit to be measured, the second conductor film having a higher resistance value than the first conductor film has a higher Joule heat than the first conductor film. And generates a temperature difference between the first conductor film and the second conductor film in accordance with the current. Due to this temperature difference, an electromotive force is generated in the thin film thermocouple portion installed from the first conductor film to the second conductor film. At this time, since the temperature difference due to Joule heat generated in the current-to-heat conversion unit is proportional to the amount of current passing therethrough, the electromotive force is also proportional to the amount of current, so that the current can be detected by this electromotive force. In particular, since both the current-to-heat converter and the thin film thermocouple are film-like, the cross-sectional area between the portions where the temperature difference occurs can be reduced. Becomes larger and the detection sensitivity is improved.
In this way, it is possible to detect the current of the circuit without electrically connecting the thin film thermocouple unit connected to the detection circuit to the current-to-heat conversion unit connected to the circuit to be measured. Further, since the current can be detected by measuring the electromotive force of the thin film thermocouple portion, a simple detection circuit is sufficient, and the device can be manufactured at low cost. Furthermore, since the thin film thermocouple unit is simple and inexpensive, the member cost is low and the size can be reduced.
In addition, since the current-to-heat conversion part and the thin film thermocouple part are both patterned with a thin film on the substrate, they can be manufactured at a low cost and can be thinned.

また、本発明の電流センサは、複数対の前記第1の熱電膜及び前記第2の熱電膜が、互いに交互に接続されて折り返され全体として櫛歯状に配設されていることを特徴とする。
すなわち、この電流センサでは、複数対の第1の熱電膜及び第2の熱電膜が、互いに交互に接続されて折り返され全体として櫛歯状に配設されているので、小さいスペースでも折り返し構造によって熱電対部分を多数直列に接続することができ、高い起電力を得ることができる。
The current sensor according to the present invention is characterized in that a plurality of pairs of the first thermoelectric film and the second thermoelectric film are alternately connected to each other and folded to be arranged in a comb-like shape as a whole. To do.
That is, in this current sensor, a plurality of pairs of the first thermoelectric film and the second thermoelectric film are alternately connected to each other and folded, and arranged in a comb-like shape as a whole. Many thermocouple parts can be connected in series, and a high electromotive force can be obtained.

本発明の電流センサ内蔵電子部品は、基板と、該基板に形成された回路と、前記基板上に形成され前記回路に一対の前記電極膜が接続された上記本発明の電流センサと、を備えていることを特徴とする。
すなわち、この電流センサ内蔵電子部品では、基板上に形成され回路に一対の電極膜が接続された上記本発明の電流センサを備えているので、基板上に回路と共に一体に形成された電流センサによって小型の電流センサ内蔵電子部品を得ることができる。
An electronic component with a built-in current sensor according to the present invention includes a substrate, a circuit formed on the substrate, and the current sensor according to the present invention formed on the substrate and having the pair of electrode films connected to the circuit. It is characterized by.
That is, this electronic component with a built-in current sensor includes the current sensor of the present invention formed on a substrate and connected to a circuit with a pair of electrode films, so that the current sensor integrally formed with the circuit on the substrate A small electronic component with a built-in current sensor can be obtained.

また、本発明の電流センサ内蔵電子部品は、前記基板が、半導体基板であって、前記回路が、半導体素子を含んでいることを特徴とする。
すなわち、この電流センサ内蔵電子部品では、基板が半導体基板であって、回路が半導体素子を含んでいるので、フォトリソグラフィ技術等の半導体製造技術により電流センサと共に1チップに集積化が可能になり、より小型化及び低コスト化を図ることができる。
In the electronic component with a built-in current sensor according to the present invention, the substrate is a semiconductor substrate, and the circuit includes a semiconductor element.
That is, in this electronic component with a built-in current sensor, since the substrate is a semiconductor substrate and the circuit includes a semiconductor element, it can be integrated on a single chip together with the current sensor by a semiconductor manufacturing technique such as a photolithography technique. Further downsizing and cost reduction can be achieved.

本発明によれば、以下の効果を奏する。
すなわち、本発明に係る電流センサ及び電流センサ内蔵電子部品によれば、薄膜熱電対部が、第1の導電体膜の上方から第2の導電体膜の上方にわたって形成されていると共に端部で接合された第1の熱電膜及び第2の熱電膜で構成されているので、電流熱変換部に流れる電流に応じて第1の導電体膜と第2の導電体膜との間で温度差が生じると共に薄膜熱電対部に起電力が発生することで、電流を検出することができる。したがって、電流熱変換部に電気接続を行わずに、回路の電流検出が可能であると共に、薄膜熱電対部が安価であり、検出回路も簡単であるため、低コスト化及び小型化が可能である。
The present invention has the following effects.
That is, according to the current sensor and the electronic component with built-in current sensor according to the present invention, the thin film thermocouple portion is formed from above the first conductor film to above the second conductor film and at the end. Since the first thermoelectric film and the second thermoelectric film are joined to each other, the temperature difference between the first conductor film and the second conductor film according to the current flowing through the current-to-heat converter. Is generated, and an electromotive force is generated in the thin film thermocouple portion, whereby a current can be detected. Therefore, it is possible to detect the current of the circuit without making an electrical connection to the current-to-heat converter, and the thin-film thermocouple unit is inexpensive and the detection circuit is simple, so the cost and size can be reduced. is there.

本発明に係る電流センサ及び電流センサ内蔵電子部品の一実施形態において、電流センサを示す平面図である。1 is a plan view showing a current sensor in an embodiment of a current sensor and an electronic component with built-in current sensor according to the present invention. 本実施形態において、第1の熱電膜と第2の熱電膜との接合を示す要部の拡大平面図である。In this embodiment, it is an enlarged plan view of the principal part which shows joining of the 1st thermoelectric film and the 2nd thermoelectric film. 本実施形態において、測定対象の回路に接続した電流センサの等価回路図である。In this embodiment, it is an equivalent circuit schematic of the current sensor connected to the circuit to be measured. 本実施形態の電流センサにおいて、基板上に第1の導電体膜、第2の導電体膜及び電極膜を形成した状態と、第1の導電体膜及び第2の導電体膜の上に絶縁膜を形成した状態と、を示す平面図である。In the current sensor according to this embodiment, the first conductor film, the second conductor film, and the electrode film are formed on the substrate, and the first conductor film and the second conductor film are insulated. It is a top view which shows the state in which the film | membrane was formed. 本実施形態において、薄膜熱電対部の製造方法を工程順に示す要部(図2のA−A線)の断面図である。In this embodiment, it is sectional drawing of the principal part (AA line of FIG. 2) which shows the manufacturing method of a thin film thermocouple part in order of a process. 本実施形態において、1チップ化された電流センサ内蔵電子部品を示す断面図である。In this embodiment, it is sectional drawing which shows the electronic component with a built-in current sensor made into 1 chip. 本実施形態において、電流センサ内蔵電子部品を示す等価回路図である。In this embodiment, it is an equivalent circuit diagram which shows the electronic component with a built-in current sensor. 本発明に係る従来例において、IGBTに接続された電流センサの等価回路図である。In the prior art example which concerns on this invention, it is an equivalent circuit schematic of the current sensor connected to IGBT. 本発明に係る従来例において、測定対象の回路に接続した電流検出回路の等価回路図である。In the conventional example which concerns on this invention, it is an equivalent circuit schematic of the current detection circuit connected to the circuit of a measuring object.

以下、本発明に係る電流センサ及び電流センサ内蔵電子部品の一実施形態を、図1から図8を参照しながら説明する。なお、以下の説明に用いる各図面では、各部材を認識可能又は認識容易な大きさとするために縮尺を適宜変更している。   Hereinafter, an embodiment of a current sensor and an electronic component with a built-in current sensor according to the present invention will be described with reference to FIGS. In each drawing used in the following description, the scale is appropriately changed so that each member can be recognized or easily recognized.

本実施形態の電流センサ10は、図1から図3に示すように、基板11と、測定対象の回路ECに接続される一対の電極膜12と一対の電極膜12の一方に接続された第1の導電体膜13Aと該第1の導電体膜13Aに接合されていると共に一対の電極膜12の他方に接続され第1の導電体膜13Aよりも抵抗値の高い第2の導電体膜13Bとが基板11上にパターン形成されて構成された電流熱変換部14と、第1の導電体膜13A及び第2の導電体膜13Bの上に形成された絶縁膜15と、該絶縁膜15上に第1の導電体膜13Aの上方から第2の導電体膜13Bの上方にわたって互いに異なるp型熱電材料とn型熱電材料とで帯状にパターン形成されていると共に端部で接合されて電気的に直列接続された複数対の第1の熱電膜16A及び第2の熱電膜16Bで構成された薄膜熱電対部17と、直列接続された第1の熱電膜16A及び第2の熱電膜16Bの末端に接続された一対の電極端部18と、を備えている。   As shown in FIGS. 1 to 3, the current sensor 10 of the present embodiment includes a substrate 11, a pair of electrode films 12 connected to a circuit EC to be measured, and a first electrode film 12 connected to one of the pair of electrode films 12. The first conductor film 13A and the second conductor film bonded to the first conductor film 13A and connected to the other of the pair of electrode films 12 and having a higher resistance value than the first conductor film 13A 13B is formed by patterning on the substrate 11, the current-to-heat conversion unit 14, the insulating film 15 formed on the first conductor film 13A and the second conductor film 13B, and the insulating film 15 is formed in a belt-like pattern with different p-type thermoelectric material and n-type thermoelectric material from above the first conductor film 13A to above the second conductor film 13B and joined at the end. A plurality of pairs of first thermoelectric films 16A electrically connected in series A thin film thermocouple portion 17 composed of a second thermoelectric film 16B, and a pair of electrode end portions 18 connected to the ends of the first thermoelectric film 16A and the second thermoelectric film 16B connected in series. I have.

上記基板11は、例えば、シリコン基板等の半導体基板で形成されている。
上記第1の導電体膜13Aは、例えば銅膜で形成されていると共に、上記第2の導電体膜13Bは、銅とニッケルとの合金膜で形成されている。すなわち、銅で形成された第1の導電体膜13Aは、その抵抗値がほぼ0Ωであるのに対して、不純物としてニッケルが添加された第2の導電体膜13Bは、その抵抗値が約0.1mΩに設定されている。
The substrate 11 is formed of a semiconductor substrate such as a silicon substrate, for example.
The first conductor film 13A is formed of, for example, a copper film, and the second conductor film 13B is formed of an alloy film of copper and nickel. That is, the first conductor film 13A formed of copper has a resistance value of approximately 0Ω, whereas the second conductor film 13B to which nickel is added as an impurity has a resistance value of about 0Ω. It is set to 0.1 mΩ.

上記絶縁膜15は、例えばSiO膜である。
互いに端部で接合される上記第1の熱電膜16Aと第2の熱電膜16Bとは、図2に示すように、一方の熱電膜の端部がL字状に曲がって他方の熱電膜の端部に重なって接合部16aを形成している。
The insulating film 15 is, for example, a SiO 2 film.
As shown in FIG. 2, the first thermoelectric film 16A and the second thermoelectric film 16B joined to each other at the end are bent in an L shape so that the end of one thermoelectric film is the other thermoelectric film. A joining portion 16a is formed so as to overlap the end portion.

すなわち、第1の熱電膜16Aと第2の熱電膜16Bとは、互いに端部の接合部16aで接続されて一対で一つの熱電対部を構成している。また、第1の熱電膜16Aと第2の熱電膜16Bとは、複数が交互に接続されて折り返すことで全体として櫛歯状に配設され、複数の熱電対部が繰り返し直列接続されて構成されている。この第1の熱電膜16Aと第2の熱電膜16Bとによる熱電対部のパターンの繰り返し数(第1の熱電膜16Aと第2の熱電膜16Bとの接続の数)を増やすことによってその感度を向上させることができる。   That is, the first thermoelectric film 16 </ b> A and the second thermoelectric film 16 </ b> B are connected to each other at the joint portion 16 a at the end portion to constitute one thermocouple portion. The first thermoelectric film 16A and the second thermoelectric film 16B are arranged in a comb-like shape as a whole by being alternately connected and folded, and a plurality of thermocouple parts are repeatedly connected in series. Has been. The sensitivity is increased by increasing the number of repetitions of the pattern of the thermocouple portion by the first thermoelectric film 16A and the second thermoelectric film 16B (the number of connections between the first thermoelectric film 16A and the second thermoelectric film 16B). Can be improved.

これら第1の熱電膜16A及び第2の熱電膜16Bは、例えばp型熱電材料及びn型熱電材料の双方がFeSi系熱電材料で形成されている。例えば、FeSi系熱電材料以外には、既知のBi−Te系熱電材料、Mg―Si系熱電材料、Mn−Si系熱電材料、酸化物系熱電材料でもよい。 In the first thermoelectric film 16A and the second thermoelectric film 16B, for example, both a p-type thermoelectric material and an n-type thermoelectric material are formed of a FeSi 2 -based thermoelectric material. For example, a known Bi—Te thermoelectric material, Mg—Si thermoelectric material, Mn—Si thermoelectric material, and oxide thermoelectric material may be used in addition to the FeSi 2 thermoelectric material.

次に、本実施形態の電流センサ10の製造方法について、図4から図5を参照して説明する。   Next, a method for manufacturing the current sensor 10 of the present embodiment will be described with reference to FIGS.

まず、基板11として、例えばシリコン基板を使用し、図4の(a)に示すように、この基板11の表面に、第1の導電体膜13A及び第2の導電体膜13Bとして例えば銅膜及び銅とニッケルとの合金膜をスパッタリング等により互いに中央で接合状態に所定パターンで成膜する。さらに、第1の導電体膜13Aの端部及び第2の導電体膜13Bの端部にそれぞれ金、銅又はアルミニウム等の金属膜で電極膜12をパターン形成する。   First, for example, a silicon substrate is used as the substrate 11, and as shown in FIG. 4A, a copper film, for example, is formed on the surface of the substrate 11 as the first conductor film 13A and the second conductor film 13B. And an alloy film of copper and nickel is formed in a predetermined pattern in a bonded state at the center by sputtering or the like. Furthermore, the electrode film 12 is patterned with a metal film such as gold, copper, or aluminum at the end of the first conductor film 13A and the end of the second conductor film 13B.

そして、図4の(b)及び図5(a)に示すように、第1の導電体膜13A及び第2の導電体膜13Bの表面に、例えばSiO膜の絶縁膜15を所定のパターンで成膜する。
次に、図5の(b)に示すように、絶縁膜15を含む基板11の表面全面に、第1の熱電膜16Aとして例えばp型FeSi膜をスパッタリングにより所定の厚さに被着する。さらに、図5の(c)に示すように、この第1の熱電膜16A上に第1フォトレジスト膜21を被着、露光等することにより所定のパターンの第1フォトレジスト膜21を形成する。
Then, as shown in shown in FIG. 4 (b) and 5 (a), the surface of the first conductive film 13A and the second conductive film 13B, for example, an insulating film 15 of SiO 2 film a predetermined pattern The film is formed.
Next, as shown in FIG. 5B, for example, a p-type FeSi 2 film is deposited as a first thermoelectric film 16A to a predetermined thickness on the entire surface of the substrate 11 including the insulating film 15 by sputtering. . Further, as shown in FIG. 5C, a first photoresist film 21 having a predetermined pattern is formed by depositing a first photoresist film 21 on the first thermoelectric film 16A, exposing the first photoresist film 21, and so on. .

次に、図5の(d)に示すように、HF+HNO系またはHF+HSO系等のエッチング液で選択的にエッチングして第1フォトレジスト膜21の下地以外の部分の第1の熱電膜16Aを除去する。図5の(e)に示すように、さらに、第1フォトレジスト膜21を除去して第1の熱電膜16Aのパターンを基板11上に形成する。 Subsequently, as shown in (d) of FIG. 5, the first thermoelectric selectively etched to underlying other portion of the first photoresist film 21 with an etching solution of HF + HNO 3 based or HF + H 2 SO 4 system or the like The film 16A is removed. As shown in FIG. 5E, the first photoresist film 21 is further removed to form a pattern of the first thermoelectric film 16A on the substrate 11.

次に、図5の(f)に示すように、この第1の熱電膜16Aを第2フォトレジスト膜22で覆い、露光、エッチングしてこの第1の熱電膜16A上の一部に所定パターンの第2フォトレジスト膜22を残す。さらに、図5の(g)に示すように、この基板11、第1の熱電膜16Aおよび第2フォトレジスト膜22の全体を覆うように絶縁層24としてZrO膜を被着する。そして、図5の(h)に示すように、リフトオフ法によりこの第2フォトレジスト膜22を絶縁層24の一部とともに剥離することにより、第1の熱電膜16Aのパターンの一部を露出部16bとして露出させる。 Next, as shown in FIG. 5 (f), the first thermoelectric film 16A is covered with a second photoresist film 22, exposed and etched, and a predetermined pattern is formed on a part of the first thermoelectric film 16A. The second photoresist film 22 is left. Furthermore, as shown in (g) in FIG. 5, the substrate 11, depositing a ZrO 2 film as the insulating layer 24 to cover the entire first thermoelectric film 16A and the second photo-resist film 22. Then, as shown in FIG. 5H, a part of the pattern of the first thermoelectric film 16A is exposed by peeling off the second photoresist film 22 together with a part of the insulating layer 24 by a lift-off method. Exposed as 16b.

次に、図5の(i)に示すように、第1の熱電膜16Aの露出部16b及び絶縁層24の全体を覆うように第2の熱電膜16Bを、スパッタリング等で被着する。さらに、図5の(j)に示すように、この第2の熱電膜16B上に所定パターンの第3フォトレジスト膜23を被着する。そして、図5の(k)に示すように、HF+HNO系等のエッチング液で第3フォトレジスト膜23の下地以外の第2の熱電膜16Bを選択的にエッチングする。さらに、図5の(l)に示すように、第3フォトレジスト膜23を除去する。この結果、第1の熱電膜16Aの一部(露出部16b)と第2の熱電膜16Bの一部とは接合されて接合部16aとなる。 Next, as shown in FIG. 5I, the second thermoelectric film 16B is deposited by sputtering or the like so as to cover the exposed portion 16b of the first thermoelectric film 16A and the entire insulating layer 24. Further, as shown in FIG. 5J, a third photoresist film 23 having a predetermined pattern is deposited on the second thermoelectric film 16B. Then, as shown in FIG. 5K, the second thermoelectric film 16B other than the base of the third photoresist film 23 is selectively etched with an etching solution such as HF + HNO 3 . Further, as shown in FIG. 5L, the third photoresist film 23 is removed. As a result, a part of the first thermoelectric film 16A (exposed part 16b) and a part of the second thermoelectric film 16B are joined to form a joined part 16a.

次いで、第1の熱電膜16Aと第2の熱電膜16Bとを結晶化させるために400〜900℃でアニールを行う。このアニールは、熱起電力を高めるものである。
そして、接続された第1の熱電膜16Aと第2の熱電膜16Bとの末端に電極端部18を銅やアルミニウム等の金属膜でパターン形成することで、電流センサ10が作製される。
Next, annealing is performed at 400 to 900 ° C. in order to crystallize the first thermoelectric film 16A and the second thermoelectric film 16B. This annealing increases the thermoelectromotive force.
Then, the current sensor 10 is fabricated by patterning the electrode end 18 with a metal film such as copper or aluminum at the ends of the connected first thermoelectric film 16A and second thermoelectric film 16B.

この電流センサ10により測定対象の回路ECの電流を検出する場合、図3に示すように、高電圧電源1に接続された回路ECに電流熱変換部14を接続する。すなわち、この電流熱変換部14は、従来のシャント抵抗と同様に測定対象の回路ECに接続される。さらに、この電流熱変換部14に取り付けられた薄膜熱電対部17の一対の電極膜12に検出回路43を接続する。なお、図3に示す符号19は、回路EC中の負荷部である。   When the current of the circuit EC to be measured is detected by the current sensor 10, the current-heat converter 14 is connected to the circuit EC connected to the high voltage power supply 1 as shown in FIG. That is, the current-to-heat converter 14 is connected to the circuit EC to be measured in the same manner as a conventional shunt resistor. Further, the detection circuit 43 is connected to the pair of electrode films 12 of the thin film thermocouple unit 17 attached to the current heat conversion unit 14. In addition, the code | symbol 19 shown in FIG. 3 is a load part in the circuit EC.

測定対象の回路ECに接続された電流熱変換部14に電流が流れると第1の導電体膜13Aよりも抵抗値の高い第2の導電体膜13Bが第1の導電体膜13Aよりも高いジュール熱で発熱し、電流に応じて第1の導電体膜13Aと第2の導電体膜13Bとの間で温度差が生じる。この温度差により、第1の導電体膜13Aから第2の導電体膜13Bにわたって設置された薄膜熱電対部17に起電力が生じる。このとき、電流熱変換部14で生じるジュール熱による温度差は、通過する電流量に比例するため、上記起電力も電流量に比例することから、この起電力によって電流を検出することができる。特に、電流熱変換部14及び薄膜熱電対部17がいずれも膜状であることから、温度差が生じる部分間の断面積を小さくできるので、温接点から冷接点へ熱が伝わり難く、発熱による温度差が大きくなって検出感度が向上する。   When a current flows through the current-to-heat converter 14 connected to the circuit EC to be measured, the second conductor film 13B having a higher resistance value than the first conductor film 13A is higher than the first conductor film 13A. Heat is generated by Joule heat, and a temperature difference is generated between the first conductor film 13A and the second conductor film 13B according to the current. Due to this temperature difference, an electromotive force is generated in the thin film thermocouple portion 17 installed from the first conductor film 13A to the second conductor film 13B. At this time, since the temperature difference due to Joule heat generated in the current-to-heat converter 14 is proportional to the amount of current passing therethrough, the electromotive force is also proportional to the amount of current. Therefore, the current can be detected by this electromotive force. In particular, the current-to-heat conversion unit 14 and the thin film thermocouple unit 17 are both film-like, so that the cross-sectional area between the portions where the temperature difference occurs can be reduced. The temperature difference increases and detection sensitivity improves.

このように本実施形態の電流センサ10では、薄膜熱電対部17が、第1の導電体膜13Aの上方から第2の導電体膜13Bの上方にわたって互いに異なるp型熱電材料とn型熱電材料とで形成されていると共に端部で接合された第1の熱電膜16A及び第2の熱電膜16Bで構成されているので、電流熱変換部14に流れる電流に応じて第1の導電体膜13Aと第2の導電体膜13Bとの間で温度差が生じると共に薄膜熱電対部17に起電力が発生することで、電流を検出することができる。   As described above, in the current sensor 10 according to the present embodiment, the thin film thermocouple unit 17 has different p-type thermoelectric material and n-type thermoelectric material from above the first conductor film 13A to above the second conductor film 13B. And the first thermoelectric film 16A and the second thermoelectric film 16B joined at the end portions, so that the first conductor film according to the current flowing through the current-to-heat conversion section 14 A current can be detected by causing a temperature difference between 13A and the second conductive film 13B and generating an electromotive force in the thin-film thermocouple unit 17.

したがって、検出回路43に接続される薄膜熱電対部17を、測定対象の回路ECに接続された電流熱変換部14に電気接続を行わずに、回路ECの電流検出が可能である。また、薄膜熱電対部17の起電力を測定することで電流を検出できるため、簡易な検出回路43で済み、低コストで作製可能である。さらに、薄膜熱電対部17が簡易な構成で安価であるため、部材コストも安く、小型化も可能である。   Accordingly, it is possible to detect the current of the circuit EC without electrically connecting the thin film thermocouple unit 17 connected to the detection circuit 43 to the current-heat conversion unit 14 connected to the circuit EC to be measured. Further, since the current can be detected by measuring the electromotive force of the thin film thermocouple unit 17, a simple detection circuit 43 is sufficient, and the device can be manufactured at low cost. Furthermore, since the thin film thermocouple unit 17 has a simple configuration and is inexpensive, the member cost is low and the size can be reduced.

また、電流熱変換部14及び薄膜熱電対部17が、いずれも基板11上の薄膜でパターン形成されているので、低コストで作製可能であると共に薄型化が可能である。
さらに、複数対の第1の熱電膜16A及び第2の熱電膜16Bが、互いに交互に接続されて折り返され全体として櫛歯状に配設されているので、小さいスペースでも折り返し構造によって熱電対部分を多数直列に接続することができ、高い起電力を得ることができる。
In addition, since the current-to-heat conversion unit 14 and the thin film thermocouple unit 17 are both patterned with a thin film on the substrate 11, they can be manufactured at a low cost and can be thinned.
Further, since the plurality of pairs of the first thermoelectric film 16A and the second thermoelectric film 16B are alternately connected to each other and folded and arranged in a comb-like shape as a whole, the thermocouple portion is formed by the folded structure even in a small space. Can be connected in series, and a high electromotive force can be obtained.

次に、本実施形態の電流センサを内蔵した電流センサ内蔵電子部品について、図6から図8を参照して説明する。   Next, a current sensor built-in electronic component incorporating the current sensor of the present embodiment will be described with reference to FIGS.

本実施形態の電流センサ内蔵電子部品30は、図6及び図7に示すように、スイッチングのドライバ回路に使用されるIGBT(Insulated Gate Bipolar Transistor:絶縁ゲートバイポーラトランジスタ)31と、該IGBT31の電流を検出する電流センサ10と、を1チップに集積化した電子部品である。   As shown in FIGS. 6 and 7, the electronic component 30 with a built-in current sensor according to the present embodiment has an IGBT (Insulated Gate Bipolar Transistor) 31 used in a switching driver circuit and a current of the IGBT 31. This is an electronic component in which the current sensor 10 to be detected is integrated on one chip.

すなわち、図6に示すように、シリコン基板の基板11にゲートG、エミッタE及びコレクタCを有するIGBT31が半導体製造プロセスによって形成され、同じ基板11の表面であってIGBT31の近傍に、上記の電流センサ10が形成されている。また、一方の電極膜12とIGBT31のコレクタCとが、ワイヤーボンディングによる金属細線32を介して接続されている。なお、図6に示す符号pはp型半導体層を示し、符号nはn型半導体層を示している。   That is, as shown in FIG. 6, an IGBT 31 having a gate G, an emitter E, and a collector C is formed on a silicon substrate 11 by a semiconductor manufacturing process, and the above current is present on the surface of the same substrate 11 in the vicinity of the IGBT 31. A sensor 10 is formed. Also, one electrode film 12 and the collector C of the IGBT 31 are connected via a fine metal wire 32 by wire bonding. In addition, the code | symbol p shown in FIG. 6 has shown the p-type semiconductor layer, and the code | symbol n has shown the n-type semiconductor layer.

従来は、図8に示すように、回路基板上に実装されたIGBT31にシャント抵抗やホール素子等の電流センサ部品33が別途接続されて回路基板上に実装されていた。また、この電流センサ部品33の出力は、負荷回路側に接続されていた。
これに対し、本実施形態の電流センサ内蔵電子部品30では、図7に示すように、IGBT31と電流センサ10とが1チップ化されており、一体化されて回路基板に実装されると共に、電流センサ10の出力(電極端部18)が、負荷回路側に接続されずに絶縁されている。なお、図7及び図8に示す符号34は負荷抵抗であり、符号35は電源電圧である。
Conventionally, as shown in FIG. 8, a current sensor component 33 such as a shunt resistor or a Hall element is separately connected to the IGBT 31 mounted on the circuit board and mounted on the circuit board. Further, the output of the current sensor component 33 is connected to the load circuit side.
On the other hand, in the electronic component 30 with a built-in current sensor of the present embodiment, as shown in FIG. 7, the IGBT 31 and the current sensor 10 are integrated into one chip and are integrated and mounted on a circuit board. The output (electrode end 18) of the sensor 10 is insulated without being connected to the load circuit side. In FIG. 7 and FIG. 8, reference numeral 34 is a load resistance, and reference numeral 35 is a power supply voltage.

このように、本実施形態の電流センサ内蔵電子部品30では、基板11上に形成され測定対象であるドライバ回路のIGBT31に電極膜12が接続された電流センサ10を備えているので、基板11上にIGBT31と共に一体に形成された電流センサ10によって小型の電流センサ内蔵電子部品を得ることができる。
特に、基板11がシリコン基板等の半導体基板であって、測定対象回路がIGBT31等の半導体素子のIGBT31を含んでいるので、フォトリソグラフィ技術等の半導体製造技術により電流センサ10と共に1チップに集積化が可能になり、より小型化及び低コスト化を図ることができる。
As described above, the current sensor built-in electronic component 30 according to the present embodiment includes the current sensor 10 formed on the substrate 11 and connected to the IGBT 31 of the driver circuit to be measured. A small current sensor built-in electronic component can be obtained by the current sensor 10 integrally formed with the IGBT 31.
In particular, since the substrate 11 is a semiconductor substrate such as a silicon substrate, and the circuit to be measured includes the IGBT 31 of a semiconductor element such as an IGBT 31, it is integrated on a single chip together with the current sensor 10 by a semiconductor manufacturing technique such as a photolithography technique. Therefore, further downsizing and cost reduction can be achieved.

なお、本発明の技術範囲は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。   The technical scope of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.

例えば、上記実施形態では、第1の導電膜及び第2の導電膜が一層形成されているが、第1の導電膜及び第2の導電膜を、絶縁層を介してそれぞれ複数積層しても構わない。すなわち、上記リソグラフィプロセスのうち図5の(f)〜(l)で示す工程を、各層毎に繰り返し、第1の熱電膜と第2の導電体膜とを交互にパターン形成しつつ接合部を除いて絶縁層を挟むことで、電気的に直列接続された複数の熱電対部を有する層を複数積層する。   For example, although the first conductive film and the second conductive film are formed in a single layer in the above embodiment, a plurality of the first conductive film and the second conductive film may be stacked with an insulating layer interposed therebetween. I do not care. That is, the steps shown in FIGS. 5F to 5L in the lithography process are repeated for each layer, and the bonding portion is formed while alternately patterning the first thermoelectric film and the second conductor film. By excluding the insulating layer, a plurality of layers having a plurality of thermocouple portions electrically connected in series are stacked.

この場合、第1の導電膜及び第2の導電膜が、絶縁層を介してそれぞれ複数積層されているので、小さいスペースでも多層構造によって熱電対部分を多数直列に接続することができ、さらに高い起電力を得ることができる。特に、絶縁層をZrO膜等の熱伝導性の低い材料で形成することで、より明確な温度差を得ることが可能になる。
また、上記実施形態では、IGBTと電流センサとを1チップに集積化したが、他の半導体素子を含むIC回路等の回路と電流センサとを同一基板上に一体に形成しても構わない。
In this case, since a plurality of first conductive films and a plurality of second conductive films are laminated via an insulating layer, a large number of thermocouple portions can be connected in series with a multilayer structure even in a small space, which is even higher. An electromotive force can be obtained. In particular, a clearer temperature difference can be obtained by forming the insulating layer with a material having low thermal conductivity such as a ZrO 2 film.
In the above embodiment, the IGBT and the current sensor are integrated on a single chip. However, a circuit such as an IC circuit including other semiconductor elements and the current sensor may be integrally formed on the same substrate.

10…電流センサ、11…基板、12…電極膜、13A…第1の導電体膜、13B…第2の導電体膜、14…電流熱変換部、15…絶縁膜、16A…第1の熱電膜、16B…第2の熱電膜、17…薄膜熱電対部、30…電流センサ内蔵電子部品、31…IGBT(半導体素子)、EC…測定対象の回路   DESCRIPTION OF SYMBOLS 10 ... Current sensor, 11 ... Board | substrate, 12 ... Electrode film | membrane, 13A ... 1st conductor film, 13B ... 2nd conductor film | membrane, 14 ... Current heat conversion part, 15 ... Insulating film, 16A ... 1st thermoelectric Membrane, 16B ... second thermoelectric membrane, 17 ... thin film thermocouple, 30 ... electronic component with built-in current sensor, 31 ... IGBT (semiconductor element), EC ... circuit to be measured

Claims (4)

基板と、
回路に接続される一対の電極膜と一対の前記電極膜の一方に接続された第1の導電体膜と該第1の導電体膜に接合されていると共に一対の前記電極膜の他方に接続され前記第1の導電体膜よりも抵抗値の高い第2の導電体膜とが前記基板上にパターン形成されて構成された電流熱変換部と、
前記第1の導電体膜及び前記第2の導電体膜の上に形成された絶縁膜と、
該絶縁膜上に前記第1の導電体膜の上方から前記第2の導電体膜の上方にわたって互いに異なるp型熱電材料とn型熱電材料とで帯状にパターン形成されていると共に端部で接合されて電気的に直列接続された少なくとも一対の第1の熱電膜及び第2の熱電膜で構成された薄膜熱電対部と、を備えていることを特徴とする電流センサ。
A substrate,
A pair of electrode films connected to a circuit, a first conductor film connected to one of the pair of electrode films, and joined to the first conductor film and connected to the other of the pair of electrode films And a current-to-heat conversion part configured by patterning the second conductor film having a higher resistance value than the first conductor film on the substrate;
An insulating film formed on the first conductor film and the second conductor film;
A p-type thermoelectric material and an n-type thermoelectric material that are different from each other are formed on the insulating film from above the first conductor film to above the second conductor film, and are joined at the ends. A current sensor comprising: a thin film thermocouple portion including at least a pair of first thermoelectric film and second thermoelectric film electrically connected in series.
請求項1に記載の電流センサにおいて、
複数対の前記第1の熱電膜及び前記第2の熱電膜が、互いに交互に接続されて折り返され全体として櫛歯状に配設されていることを特徴とする電流センサ。
The current sensor according to claim 1.
A plurality of pairs of the first thermoelectric film and the second thermoelectric film are alternately connected to each other and folded, and arranged in a comb-like shape as a whole.
基板と、
該基板に形成された回路と、
前記基板上に形成され前記回路に一対の前記電極膜が接続された請求項1又は2に記載の電流センサと、を備えていることを特徴とする電流センサ内蔵電子部品。
A substrate,
A circuit formed on the substrate;
An electronic component with a built-in current sensor, comprising: the current sensor according to claim 1, wherein the current sensor is formed on the substrate and the pair of electrode films are connected to the circuit.
請求項3に記載の電流センサ内蔵電子部品において、
前記基板が、半導体基板であって、
前記回路が、半導体素子を含んでいることを特徴とする電流センサ内蔵電子部品。
In the electronic component with a built-in current sensor according to claim 3,
The substrate is a semiconductor substrate;
An electronic component with a built-in current sensor, wherein the circuit includes a semiconductor element.
JP2009132765A 2009-06-02 2009-06-02 Current sensor and electronic component incorporating the same Withdrawn JP2010281576A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009132765A JP2010281576A (en) 2009-06-02 2009-06-02 Current sensor and electronic component incorporating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009132765A JP2010281576A (en) 2009-06-02 2009-06-02 Current sensor and electronic component incorporating the same

Publications (1)

Publication Number Publication Date
JP2010281576A true JP2010281576A (en) 2010-12-16

Family

ID=43538458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009132765A Withdrawn JP2010281576A (en) 2009-06-02 2009-06-02 Current sensor and electronic component incorporating the same

Country Status (1)

Country Link
JP (1) JP2010281576A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018045293A (en) * 2016-09-12 2018-03-22 株式会社デンソーウェーブ Insulating signal transmission device, and electronic apparatus
CN108124500A (en) * 2015-09-23 2018-06-05 伊西康有限责任公司 Surgical stapling device with the motor control based on temperature
CN109387685A (en) * 2018-11-01 2019-02-26 华南理工大学 A kind of differential probe and contactless voltage measuring apparatus
CN109387685B (en) * 2018-11-01 2024-04-30 华南理工大学 Differential probe and non-contact voltage measurement device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108124500A (en) * 2015-09-23 2018-06-05 伊西康有限责任公司 Surgical stapling device with the motor control based on temperature
JP2018535800A (en) * 2015-09-23 2018-12-06 エシコン エルエルシーEthicon LLC Surgical stapler with temperature-based motor control
JP2018045293A (en) * 2016-09-12 2018-03-22 株式会社デンソーウェーブ Insulating signal transmission device, and electronic apparatus
US11326963B2 (en) 2016-09-12 2022-05-10 Denso Wave Incorporated Isolated signal transmission device and electronic apparatus
CN109387685A (en) * 2018-11-01 2019-02-26 华南理工大学 A kind of differential probe and contactless voltage measuring apparatus
CN109387685B (en) * 2018-11-01 2024-04-30 华南理工大学 Differential probe and non-contact voltage measurement device

Similar Documents

Publication Publication Date Title
US8269594B2 (en) Insulated transformers, and power converting device
JP5493562B2 (en) Thermoelectric conversion module
JP2007142138A (en) Semiconductor device
EP2876687B1 (en) Thermoelectric conversion element and manufacturing method for same
JP6983527B2 (en) Current detection resistor
JP2001230467A (en) Current detector provided with hall element
JP2000174357A (en) Semiconductor device containing hall-effect element
JP2003050254A (en) Current detector
JP3230580B2 (en) Current detection device equipped with a ball element
JP4731418B2 (en) Semiconductor module
JP2010281576A (en) Current sensor and electronic component incorporating the same
CN111373271B (en) Semiconductor component, assembly and method for manufacturing semiconductor component
CN111448463A (en) Semiconductor device, semiconductor component, and method for manufacturing semiconductor device
JP2007292544A (en) Magnetic device
JP2010008122A (en) Gas sensor
JP2008004833A (en) Current detection equipment and power supply apparatus using the same
JP4323299B2 (en) Semiconductor device
JP2010225608A (en) Thermoelectric conversion element
JP5500536B2 (en) Power semiconductor module and power converter using the power semiconductor module
JP2004200008A (en) Electrical contact device and its manufacturing method
TWI281745B (en) CMOS power sensor
JP2010281577A (en) Current sensor
KR100713875B1 (en) High precise and miniaturized current transformer, method for manufacturing the same, trip current circuit and using the same
CN107861056A (en) It is determined that the method and system and power switch circuit of the electric current for passing through power switch
JP2012173206A (en) Magnetic sensor and manufacturing method thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120807