USRE36706E - Microstructure design for high IR sensitivity - Google Patents
Microstructure design for high IR sensitivity Download PDFInfo
- Publication number
- USRE36706E USRE36706E US08/601,411 US60141196A USRE36706E US RE36706 E USRE36706 E US RE36706E US 60141196 A US60141196 A US 60141196A US RE36706 E USRE36706 E US RE36706E
- Authority
- US
- United States
- Prior art keywords
- iaddend
- iadd
- microbridge
- thin film
- infrared
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000035945 sensitivity Effects 0.000 title abstract description 7
- 229910052751 metal Inorganic materials 0.000 claims abstract description 14
- 239000002184 metal Substances 0.000 claims abstract description 14
- 229910052737 gold Inorganic materials 0.000 claims abstract description 6
- 229910052697 platinum Inorganic materials 0.000 claims abstract description 6
- 239000010409 thin film Substances 0.000 claims description 30
- 239000010408 film Substances 0.000 claims description 18
- 238000010521 absorption reaction Methods 0.000 claims description 16
- 239000006096 absorbing agent Substances 0.000 claims description 14
- 239000000758 substrate Substances 0.000 claims description 14
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 13
- 239000011248 coating agent Substances 0.000 claims description 13
- 238000000576 coating method Methods 0.000 claims description 13
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 13
- 230000005855 radiation Effects 0.000 claims description 7
- 239000004065 semiconductor Substances 0.000 claims description 7
- 229910001935 vanadium oxide Inorganic materials 0.000 claims description 6
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 claims description 5
- 238000002955 isolation Methods 0.000 claims description 5
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 4
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims 3
- 230000000149 penetrating effect Effects 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 30
- 239000000463 material Substances 0.000 description 8
- 230000003287 optical effect Effects 0.000 description 6
- 239000011521 glass Substances 0.000 description 5
- 238000000151 deposition Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 229910007277 Si3 N4 Inorganic materials 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- -1 V2 O3 Chemical compound 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229910003087 TiOx Inorganic materials 0.000 description 1
- 239000011358 absorbing material Substances 0.000 description 1
- 230000009194 climbing Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 229910000889 permalloy Inorganic materials 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000002195 soluble material Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- HLLICFJUWSZHRJ-UHFFFAOYSA-N tioxidazole Chemical compound CCCOC1=CC=C2N=C(NC(=O)OC)SC2=C1 HLLICFJUWSZHRJ-UHFFFAOYSA-N 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/10—Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
- G01J5/20—Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using resistors, thermistors or semiconductors sensitive to radiation, e.g. photoconductive devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N19/00—Integrated devices, or assemblies of multiple devices, comprising at least one thermoelectric or thermomagnetic element covered by groups H10N10/00 - H10N15/00
Definitions
- the field of the invention is in a high sensitivity two-level microstructure infrared bolometer array which can produce absorptance levels of greater than 80% and also achieve high IR sensitivity over a wavelength range from 8-14 microns.
- This invention is an improvement on co-pending application Ser. No. 887,495, filed Jul. 16, 1986, entitled “Thermal Sensor”, and assigned to the same assignee as the present invention.
- the teachings of the co-pending application are incorporated herein by reference.
- the invention is directed to a pixel size sensor of an array of sensors, for an infrared microbridge construction of high fill factor, made possible by placing the detector microbridge on a second plane above the silicon surface carrying the integrated components and bus lines.
- the improvement in the present invention is directed to a structure which increases the sensitivity.
- FIGS. 1 and 2 are front and top views of a microstructure design according to the invention.
- FIG. 3 is a graphical plot of overall absorptance vs. wavelength of the device over a selected wavelength including 8-14 microns.
- FIG. 4 shows graphically the transmittance, absorption and reflectance of the resistive layer.
- FIG. 5 shows graphically absorption vs. air gap thickness.
- FIG. 6 shows absorption of entire structure vs. metal absorber thickness.
- FIG. 7 shows measured optical properties of Si 3 N 4 .
- FIG. 1 A cross section view of the two-level microbridge bolometer pixel 10 is shown in FIG. 1.
- the device 10 has two levels, an elevated microbridge detector level 11 and a lower level 12.
- the lower level has a flat surfaced semiconductor substrate 13, such as a single crystal silicon substrate.
- the surface 14 of the substrate has fabricated thereon conventional components of an integrated circuit 15 such as diodes, bus lines, connections and contact pads (not specifically shown), the fabrication following conventional silicon IC technology.
- the IC is coated with a protective layer of silicon nitride 16.
- the elevated detector level 11 includes a silicon nitride layer 20, a thin film resistive layer 21, preferably a vanadium or titanium oxide (such as V 2 O 3 , TiO x , VO x ), .[.i.e..]. .Iadd.sometimes hereinafter referred to as .Iaddend.AB x a silicon nitride layer 22 over the layers 20 and 21 and an IR absorber coating 23 over the silicon nitride layer 22.
- the thin absorber coating (approximately 20A thick) may be of a nickel iron alloy, often called permalloy.
- the glass was dissolved out to provide the thermal isolation cavity or air gap (i.e., the air gap actually may be in operation, a vacuum gap).
- the horizontal dimension, as shown, is greatly foreshortened. That is, the height of FIG. 1 is exaggerated in the drawing compared to the length in order to show the details of the invention.
- FIG. 2 is a top plan view of the elevated detector level 11. This drawing is made as though the overlying absorber coating 23 and the upper silicon nitride layer 22 are transparent so that the resistive thin film layer 21 can be shown.
- the material for the resistive layer 21 is a vanadium oxide, preferably V 2 O 3 . Vanadium oxides have very strong changes in resistance with temperature allowing high sensitivity microbolometer operation. It also has a low reflectance to IR in the 8-14 micron range. In the preferred embodiment at this time.Iadd., .Iaddend.the V 2 O 3 is operated in its semiconductor phase.
- Its deposition is preferably by the process of ion beam sputter which permits the deposition of very thin layers such as 50-75 .[.mm.]. .Iadd.nm.Iaddend.. This material was thus selected for its low IR reflectance together with a relatively high temperature coefficient of resistance (TCR).
- TCR temperature coefficient of resistance
- FIG. 2 also shows nitride window cuts 35, 36 and 37 which are opened through the silicon nitride layers 20 and 22 to provide access to the phos-glass beneath for dissolving it from beneath the detector plane.
- the sloping supports may be of the necessary length is provide adequate support and thermal isolation for the upper level 11.
- each pixel assembly may cover an area about 50 microns on a side, as an example.
- a sequence of fabrication steps for the upper level is described. Following the deposition of the silicon nitride layer 16 in fabricating the lower level 12, a thin film layer 18 of reflective material, such as a metal film like Pt or Au, is deposited. The construction of the upper level can then commence.
- the detectors presently being described are intended for use in the 8-14 micron IR wavelength.
- the reflective layer 18 is on the lower plane 12.
- the vertical distance between reflective layer 18 and upper level 11 is chosen so the reflected IR from layer 18 returned upwardly has interference properties such that significant absorption is achieved for a wide range of wavelengths (8-14 microns) .[.and air gap spacing between the reflector and the detector structure.]..
- a layer of phos-glass or other easily soluble material in the range of about 1-2 microns thick is deposited and the slopes 30 and 30' are thoroughly rounded to eliminate slope coverage problems.
- the upper level silicon nitride base layer 20 is then deposited, the resistive film 21 is deposited, connections down the slope to lower plane contact pads are made, and a silicon nitride passivation layer 22 covers the layers 21 and 20.
- a thin metal absorber coating 23 (about 15-40A) is deposited on top of the upper level.
- the slots 35, 36 and 37, earlier mentioned are made and the phos-glass is dissolved from beneath the detector plane.
- Pt, Au or other reflecting thin film 18 on the substrate before the stack is formed, it is possible to reflect transmitted radiation reaching the reflecting film back to the absorber coating.
- the optical properties of the total structure are achieved by careful selection of optical materials with the proper optical and electrical properties.
- the top film must reflect little radiation and generally transmit a significant percentage of the non-absorbed radiation through to the reflected light at a nodal position in the film determined by the air gap distance. .Iadd.Stated otherwise, the air gap distance is determined so that the reflected light is at a nodal position in the film. .Iaddend.An additional constraint on the absorbing film is that to be compatible with the total structure, the absorbing material must be very thin (and hence have a low mass).
- the absorbing films in the present device consist of .[.ABx.]. .Iadd.AB x .Iaddend., .[.SIN.]. .Iadd.SiN.Iaddend., and the thin absorbing metal described above.
- the .[.ABx.]. .Iadd.AB x .Iaddend.and .[.SIN nitride.]. .Iadd.SiN .Iaddend.thicknesses are chosen by electrical and physical requirements. Both have absorption levels ranging from 10-20% in the spectral region of interest (FIGS. 4 and 7).
- a combination of these materials produces an absorption of no more than about 30% in the 8-14 micron region.
- This absorption level is very close to ideal, however, for use with a Pt reflective layer and an air gap which intensifies the field in the absorbing film, it is possible to achieve absorptances in excess of 80% (FIG. 5) in this configuration.
- the use of a thin absorbing metal which in the standard design provides 50% absorption, here is used to fine tune the absorption for maximum effect.
- FIG. 6 shows the small absorption improvements that can be achieved by using this metal film.
- the low thermal mass structure 11 is separated from the .[.Pt/substrate.]. .Iadd.Pt substrate .Iaddend.layer by an air gap.
- the interference properties of this reflected radiation are such that significant absorption is achieved .[.by.]. .Iadd.for .Iaddend.a wide range of wavelengths .[.and air gap spacing between the Pt reflector and the detector structure.]..
- gap thickness The effect of gap thickness on the absorptance vs. wavelength in the regions of interest are further displayed graphically in FIG. 5. It can be seen in the curve of 1.5 microns gap thickness that at 8 microns the absorptance of the structure is climbing rapidly towards 90% and more, and that it remains relatively high out to about 14 microns. The curve for a gap of 2 microns shows that at IR wavelengths of 14 microns the absorptance is better and well above 90%. In measuring the data for FIG. 5 the absorber film 23 was not included in the stack structure.
- FIG. 6 there is shown graphically how the overall absorption of the film structure varies across the IR wavelength of 8-14 microns as the thickness of the metal absorber film is increased to 3 .[.mm.]. .Iadd.nm .Iaddend.and to 5 .[.mm.]. .Iadd.nm.Iaddend..
- the Si 3 N 4 layer 22 is 250 .[.mm.]. .Iadd.nm.Iaddend.
- the resistive film 21 is 75 nm and the Si 3 N 4 film 20 is 100 nm with an air gap of 1.5 microns and a reflective Pt layer 18 of 50 nm.
- This curve for 3 nm shows absorptance>90% between 8 and 14 microns.
- the measured optical properties of reflectance R, transmissivity T, and absorptance A of the silicon nitride layers 20 and 22 (800A thick) are shown in FIG. 7 with percent of signal shown on the ordinate axis and IR wavelength along the abscissa. It can be seen that the transmissivity at 8 microns (about 90) and at 14 microns (about 80) is quite high and that the reflectance R at both 8 and 14 microns is well under ten.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
Abstract
A microstructure design for high IR sensitivity having a two level infrared bolometer microstructure, the lower level having a reflective metal film surface such as Pt, Au, or Al to reflect IR penetrating to that level, the upper level being separated from the lower level by an air gap of about 1-2 microns which allows the reflected IR to interfere with the incident IR and increase the sensitivity to a higher level.
Description
The field of the invention is in a high sensitivity two-level microstructure infrared bolometer array which can produce absorptance levels of greater than 80% and also achieve high IR sensitivity over a wavelength range from 8-14 microns.
This invention is an improvement on co-pending application Ser. No. 887,495, filed Jul. 16, 1986, entitled "Thermal Sensor", and assigned to the same assignee as the present invention. The teachings of the co-pending application are incorporated herein by reference. In the co-pending application the invention is directed to a pixel size sensor of an array of sensors, for an infrared microbridge construction of high fill factor, made possible by placing the detector microbridge on a second plane above the silicon surface carrying the integrated components and bus lines. The improvement in the present invention is directed to a structure which increases the sensitivity.
FIGS. 1 and 2 are front and top views of a microstructure design according to the invention.
FIG. 3 is a graphical plot of overall absorptance vs. wavelength of the device over a selected wavelength including 8-14 microns.
FIG. 4 shows graphically the transmittance, absorption and reflectance of the resistive layer.
FIG. 5 shows graphically absorption vs. air gap thickness.
FIG. 6 shows absorption of entire structure vs. metal absorber thickness.
FIG. 7 shows measured optical properties of Si3 N4.
A cross section view of the two-level microbridge bolometer pixel 10 is shown in FIG. 1. The device 10 has two levels, an elevated microbridge detector level 11 and a lower level 12. The lower level has a flat surfaced semiconductor substrate 13, such as a single crystal silicon substrate. The surface 14 of the substrate has fabricated thereon conventional components of an integrated circuit 15 such as diodes, bus lines, connections and contact pads (not specifically shown), the fabrication following conventional silicon IC technology. The IC is coated with a protective layer of silicon nitride 16.
The elevated detector level 11 includes a silicon nitride layer 20, a thin film resistive layer 21, preferably a vanadium or titanium oxide (such as V2 O3, TiOx, VOx), .[.i.e..]. .Iadd.sometimes hereinafter referred to as .Iaddend.ABx a silicon nitride layer 22 over the layers 20 and 21 and an IR absorber coating 23 over the silicon nitride layer 22. The thin absorber coating (approximately 20A thick) may be of a nickel iron alloy, often called permalloy. Downwardly extending silicon nitride layers 20' and 22' deposited at the same time as layers 20 and 22 during the fabrication make up the sloping supports 30 .Iadd.and 30' .Iaddend.for the elevated detector level. The cavity or gap 26 (approximately 1-2 microns high) between the two levels is ambient atmosphere. During the fabrication process, however, the cavity 26 was originally filled with a previously deposited layer of easily dissolvable glass or other dissolvable material until the layers 20, 20', 22 and 22' were deposited. Some other easily dissolvable materials are quartz, polyimide and resist. Subsequently in the process the glass was dissolved out to provide the thermal isolation cavity or air gap (i.e., the air gap actually may be in operation, a vacuum gap). In FIG. 1 the horizontal dimension, as shown, is greatly foreshortened. That is, the height of FIG. 1 is exaggerated in the drawing compared to the length in order to show the details of the invention.
FIG. 2 is a top plan view of the elevated detector level 11. This drawing is made as though the overlying absorber coating 23 and the upper silicon nitride layer 22 are transparent so that the resistive thin film layer 21 can be shown. In one preferred embodiment the material for the resistive layer 21 is a vanadium oxide, preferably V2 O3. Vanadium oxides have very strong changes in resistance with temperature allowing high sensitivity microbolometer operation. It also has a low reflectance to IR in the 8-14 micron range. In the preferred embodiment at this time.Iadd., .Iaddend.the V2 O3 is operated in its semiconductor phase. Its deposition is preferably by the process of ion beam sputter which permits the deposition of very thin layers such as 50-75 .[.mm.]. .Iadd.nm.Iaddend.. This material was thus selected for its low IR reflectance together with a relatively high temperature coefficient of resistance (TCR). The ends of the resistive paths 21a and 21b are continued down the slope area 30 embedded in 20' and 22' to make electrical contact with contact pads 31 and 32 on the lower level.
FIG. 2 also shows nitride window cuts 35, 36 and 37 which are opened through the silicon nitride layers 20 and 22 to provide access to the phos-glass beneath for dissolving it from beneath the detector plane. The sloping supports may be of the necessary length is provide adequate support and thermal isolation for the upper level 11.
Although the description is basically in terms of individual detector pixels, the invention is directed for use to an x,y array assembly of adjoining pixels forming an imaging or mosaic detector array. Each pixel assembly may cover an area about 50 microns on a side, as an example.
Referring again to FIG. 1 a sequence of fabrication steps for the upper level is described. Following the deposition of the silicon nitride layer 16 in fabricating the lower level 12, a thin film layer 18 of reflective material, such as a metal film like Pt or Au, is deposited. The construction of the upper level can then commence. The detectors presently being described are intended for use in the 8-14 micron IR wavelength. The reflective layer 18 is on the lower plane 12. The vertical distance between reflective layer 18 and upper level 11 is chosen so the reflected IR from layer 18 returned upwardly has interference properties such that significant absorption is achieved for a wide range of wavelengths (8-14 microns) .[.and air gap spacing between the reflector and the detector structure.]..
A layer of phos-glass or other easily soluble material in the range of about 1-2 microns thick is deposited and the slopes 30 and 30' are thoroughly rounded to eliminate slope coverage problems. The upper level silicon nitride base layer 20 is then deposited, the resistive film 21 is deposited, connections down the slope to lower plane contact pads are made, and a silicon nitride passivation layer 22 covers the layers 21 and 20. A thin metal absorber coating 23 (about 15-40A) is deposited on top of the upper level. The slots 35, 36 and 37, earlier mentioned are made and the phos-glass is dissolved from beneath the detector plane. As earlier described, by depositing Pt, Au or other reflecting thin film 18 on the substrate before the stack is formed, it is possible to reflect transmitted radiation reaching the reflecting film back to the absorber coating.
The optical properties of the total structure are achieved by careful selection of optical materials with the proper optical and electrical properties. The top film must reflect little radiation and generally transmit a significant percentage of the non-absorbed radiation through to the reflected light at a nodal position in the film determined by the air gap distance. .Iadd.Stated otherwise, the air gap distance is determined so that the reflected light is at a nodal position in the film. .Iaddend.An additional constraint on the absorbing film is that to be compatible with the total structure, the absorbing material must be very thin (and hence have a low mass).
To optimize the absorption in the structure, the thickness of all the absorbing layers and the air gap distance must be controlled. The absorbing films in the present device consist of .[.ABx.]. .Iadd.ABx .Iaddend., .[.SIN.]. .Iadd.SiN.Iaddend., and the thin absorbing metal described above. In practice, the .[.ABx.]. .Iadd.ABx .Iaddend.and .[.SIN nitride.]. .Iadd.SiN .Iaddend.thicknesses are chosen by electrical and physical requirements. Both have absorption levels ranging from 10-20% in the spectral region of interest (FIGS. 4 and 7). A combination of these materials produces an absorption of no more than about 30% in the 8-14 micron region. This absorption level is very close to ideal, however, for use with a Pt reflective layer and an air gap which intensifies the field in the absorbing film, it is possible to achieve absorptances in excess of 80% (FIG. 5) in this configuration. The use of a thin absorbing metal which in the standard design provides 50% absorption, here is used to fine tune the absorption for maximum effect. FIG. 6 shows the small absorption improvements that can be achieved by using this metal film.
In this two-level structure, the low thermal mass structure 11 is separated from the .[.Pt/substrate.]. .Iadd.Pt substrate .Iaddend.layer by an air gap. The interference properties of this reflected radiation are such that significant absorption is achieved .[.by.]. .Iadd.for .Iaddend.a wide range of wavelengths .[.and air gap spacing between the Pt reflector and the detector structure.]..
For this optical interference to occur in the detector, it is necessary to avoid other films in the detector structure which reflect IR. The use of ABx which has both a high TCR and a low IR reflectance (FIG. 4) ideally meets these requirements. Thus the merging of this absorption phenomenon into a detector structure which has a detector material processing both a high TCR and low reflectance permits this interference effect to occur.
There is a substantial degree of variability of detector absorptance with air gap in the structure. Referring to the table below which shows wavelength in nanometers in the left column vs. air gap in microns across the top it can be seen that with an air gap of only 0.5 micron the detector absorptance varies widely with wavelength and it is not very high. With air gaps of 1-2 microns and especially at 1.5 microns the absorptance is relatively high across the desired wavelength spread.
TABLE 1 ______________________________________ DETECTOR ABSORPTANCE Air Gap (microns) Wavelength (NM) .5 .75 1.0 1.5 2.0 ______________________________________ 8000 .89 .91 .9 .84 .76 9000 .84 .88 .86 .81 10000 .76 .82 .84 .84 .82 11000 .69 .77 .8 .82 .82 12000 .66 .74 .79 .83 .84 13000 .64 .78 .85 .93 .94 14000 .56 .72 .83 .95 .98 15000 .47 .64 .77 .92 .99 ______________________________________
The effect of gap thickness on the absorptance vs. wavelength in the regions of interest are further displayed graphically in FIG. 5. It can be seen in the curve of 1.5 microns gap thickness that at 8 microns the absorptance of the structure is climbing rapidly towards 90% and more, and that it remains relatively high out to about 14 microns. The curve for a gap of 2 microns shows that at IR wavelengths of 14 microns the absorptance is better and well above 90%. In measuring the data for FIG. 5 the absorber film 23 was not included in the stack structure.
Referring now to FIG. 6 there is shown graphically how the overall absorption of the film structure varies across the IR wavelength of 8-14 microns as the thickness of the metal absorber film is increased to 3 .[.mm.]. .Iadd.nm .Iaddend.and to 5 .[.mm.]. .Iadd.nm.Iaddend.. In this film stack design the Si3 N4 layer 22 is 250 .[.mm.]. .Iadd.nm.Iaddend., the resistive film 21 is 75 nm and the Si3 N4 film 20 is 100 nm with an air gap of 1.5 microns and a reflective Pt layer 18 of 50 nm. This curve for 3 nm shows absorptance>90% between 8 and 14 microns.
The measured optical properties of reflectance R, transmissivity T, and absorptance A of the silicon nitride layers 20 and 22 (800A thick) are shown in FIG. 7 with percent of signal shown on the ordinate axis and IR wavelength along the abscissa. It can be seen that the transmissivity at 8 microns (about 90) and at 14 microns (about 80) is quite high and that the reflectance R at both 8 and 14 microns is well under ten.
Claims (14)
1. A two-level microbridge infrared bolometer structure comprising:
a bolometer structure on a semiconductor substrate, said structure having a lower section on the surface of the substrate and a microbridge upper detector plane structure spaced from and immediately above the lower section;
an infrared-reflective thin film metal coating on the surface of said lower section;
said upper microbridge detector plane structure comprising a planar sandwich structure including a .Iadd.first .Iaddend.supporting dielectric thin film layer, and a thin film temperature responsive resistive element having first and second terminals;
downwardly extending dielectric leg portion means which are a downwardly extending continuation of said .[.upper structure.]. .Iadd.first .Iaddend.dielectric .Iadd.layer .Iaddend.supporting said upper microbridge detector plane structure above said lower section so that a thermal isolation gap exists between said upper .[.and.]. .Iadd.detector plane structure and said .Iaddend.lower .[.sections.]. .Iadd.section.Iaddend.; and,
electrically conductive paths included in said downwardly extending leg portion means connecting said first and second terminals to said lower section.
2. The microbridge structure according to claim 1 wherein said reflective thin film metal coating is selected from the group consisting of Au, Pt, and Al.
3. The microbridge structure according to claim 1 wherein said dielectric is of silicon nitride.
4. The microbridge structure according to claim 1 wherein said thin film resistive element is selected from the group consisting of vanadium oxide and titanium oxide.
5. The microbridge structure according to claim 1 wherein said thin film resistive element is V2 O3.
6. The microbridge structure according to claim 1 wherein said gap between said lower section and said upper detector .Iadd.plane .Iaddend.structure is in the range of about 1-2 microns.
7. The microbridge structure according to claim 2 wherein the coating is about 50 nm in thickness.
8. The microbridge structure according to claim 1 and further comprising, in said planar sandwich structure, a second dielectric thin film layer and a thin film absorber layer.
9. The microbridge structure according to claim .[.3.]. .Iadd.8 .Iaddend.wherein the first .Iadd.supporting .Iaddend.dielectric .Iadd.thin film .Iaddend.layer .[.in.]. .Iadd.is .Iaddend.on the order of 100 nm in thickness and the second dielectric .Iadd.thin film .Iaddend.layer is on the order of 250 nm in thickness.
10. The microbridge structure according to claim 4 wherein the .[.resistive element film.]. .Iadd.thin film resistive element .Iaddend.is on the order of 50-75 nm in thickness.
11. The microbridge structure according to claim 8 wherein the absorber layer is on the order of 30 nm in thickness.
12. A two-level microbridge infrared bolometer structure comprising:
a bolometer microstructure on a semiconductor substrate, said structure having a lower section on the surface of the substrate and a microbridge upper detector plane structure spaced from and immediately above the lower section;
an infrared reflective thin film metal coating on the surface of said lower section, said metal being selected from the group consisting of Au, Pt, and Al;
said upper microbridge detector plane structure comprising a planar sandwich structure including a first bridging dielectric thin film layer, a thin film temperature responsive resistive element selected from the group consisting of vanadium oxide and titanium oxide, said resistive element having first and second terminals, a second dielectric thin film layer over said first dielectric layer and resistive layer, and a thin film absorber layer;
downwardly extending dielectric leg portion means which are a downwardly extending continuation of said .[.upper structure.]. .Iadd.first .Iaddend.dielectric .Iadd.layer .Iaddend.supporting said upper microbridge detector plane structure above said lower section so that an air gap on the order of 1-2 microns exists between said upper .[.and.]. .Iadd.detector plane structure and said .Iaddend.lower .[.sections.]. .Iadd.section.Iaddend.; and,
electrically conductive paths included in said downwardly extending leg portion means connecting said first and second terminals to said lower section. .Iadd.13. A two-level microbridge uncooled infrared thermal detector means comprising:
a pixel on a semiconductor substrate, said pixel having a lower section on the surface of said substrate and a microbridge upper detector section spaced from and immediately above the lower section;
said lower section including integrated circuit means and infrared-reflective means coating said integrated circuit means;
said microbridge upper detector section comprising a bridging dielectric layer having mounted thereon temperature responsive means having first and second terminals, said microbridge upper detector section being supported above said lower section by dielectric leg portions which are downward extending continuations of the bridging dielectric layer to thereby support said upper section and so that a thermal isolation gap is defined between said upper and lower sections;
and said first and second terminals being continued down said leg portions to said integrated circuit means; and
said two-level microbridge uncooled infrared thermal detector means being further characterized by the size of said gap, i.e., the distance between said upper and lower sections, being selected so that infrared radiation which initially passes through said upper section to said infrared-reflective means is then reflected toward and is intensified at said upper section to optimize infrared absorption over a preselected band
of infrared wavelengths. .Iaddend..Iadd.14. The thermal detector means of claim 13 wherein said bridging dielectric layer comprises a first dielectric layer beneath said temperature responsive means and a second dielectric layer over said first dielectric layer and said temperature responsive means. .Iaddend..Iadd.15. The thermal detector means of claim 14 wherein said dielectric layers are of silicon nitride. .Iaddend..Iadd.16. The thermal detector means according to claim 15 wherein the first dielectric layer is on the order of 100 nm in thickness and the second dielectric layer is on the order of 250 nm in thickness. .Iaddend..Iadd.17. The two-level microbridge uncooled infrared thermal detector means of claim 13 wherein:
said temperature responsive means is a thin film resistive element;
said upper detector section includes absorber means covering said resistive element; and
said gap is selected so that infrared radiation reflected from said infrared-reflective means is intensified at said absorber means, to thereby optimize the absorption of infrared radiation in said upper detector section. .Iaddend..Iadd.18. The thermal detector means according to claim 17 wherein the absorber means is a layer on the order of 30 nm in thickness. .Iaddend..Iadd.19. The thermal detector means of claim 13 wherein said infrared-reflective means is a thin film metal coating.
.Iaddend..Iadd.20. The thermal detector means of claim 13 wherein said infrared-reflective means is a thin film metal coating selected from the group consisting of Au, Pt, and Al. .Iaddend..Iadd.21. The thermal detector means according to claim 20 wherein the coating about 50 nm in thickness. .Iaddend..Iadd.22. The thermal detector means of claim 13 wherein said temperature responsive means is a thin film resistive element. .Iaddend..Iadd.23. The thermal detector means of claim 22 wherein said thin film resistive element is selected from the group consisting of vanadium oxide and titanium oxide. .Iaddend..Iadd.24. The thermal detector means according to claim 23 wherein said thin film resistive element is on the order of 50-75 nm in thickness. .Iaddend..Iadd.25. The thermal detector means of claim 22 wherein said thin film resistive element is V2 O3. .Iaddend..Iadd.26. The thermal detector means of claim 22 wherein said thin film resistive element is V2 O3 operated in its semiconductor phase. .Iaddend..Iadd.27. The thermal detector means according to claim 13 wherein said gap between said upper and lower sections is in the range of about 1-2 microns. .Iaddend..Iadd.28. A two-level microbridge infrared bolometer structure comprising:
a bolometer structure on a semiconductor substrate, said structure having a lower section on the surface of the substrate and a microbridge upper detector plane structure spaced from and immediately above the lower section by a thermal isolation gap of between about 1-2 microns, the upper microbridge upper detector plane structure including a thin film resistive element having first and second terminals;
an infrared-reflective thin film on the surface of said lower section; and
electrically conductive paths connecting said first and second terminals to said lower section. .Iaddend.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/601,411 USRE36706E (en) | 1988-11-07 | 1996-02-14 | Microstructure design for high IR sensitivity |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/288,701 US5286976A (en) | 1988-11-07 | 1988-11-07 | Microstructure design for high IR sensitivity |
US08/601,411 USRE36706E (en) | 1988-11-07 | 1996-02-14 | Microstructure design for high IR sensitivity |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/288,701 Reissue US5286976A (en) | 1988-11-07 | 1988-11-07 | Microstructure design for high IR sensitivity |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE36706E true USRE36706E (en) | 2000-05-23 |
Family
ID=23108254
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/288,701 Ceased US5286976A (en) | 1988-11-07 | 1988-11-07 | Microstructure design for high IR sensitivity |
US08/601,411 Expired - Lifetime USRE36706E (en) | 1988-11-07 | 1996-02-14 | Microstructure design for high IR sensitivity |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/288,701 Ceased US5286976A (en) | 1988-11-07 | 1988-11-07 | Microstructure design for high IR sensitivity |
Country Status (1)
Country | Link |
---|---|
US (2) | US5286976A (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6441374B1 (en) * | 1999-07-26 | 2002-08-27 | Nec Corporation | Thermal type infrared ray detector with thermal separation structure for high sensitivity |
US6541772B2 (en) | 2000-12-26 | 2003-04-01 | Honeywell International Inc. | Microbolometer operating system |
US20030062480A1 (en) * | 2001-10-01 | 2003-04-03 | Nec Corporation | Infrared ray detector having a vacuum encapsulation structure |
US6559447B2 (en) | 2000-12-26 | 2003-05-06 | Honeywell International Inc. | Lightweight infrared camera |
US6621083B2 (en) * | 2000-12-29 | 2003-09-16 | Honeywell International Inc. | High-absorption wide-band pixel for bolometer arrays |
US20030197124A1 (en) * | 2000-12-26 | 2003-10-23 | Honeywell International Inc. | Camera having distortion correction |
US6667479B2 (en) | 2001-06-01 | 2003-12-23 | Raytheon Company | Advanced high speed, multi-level uncooled bolometer and method for fabricating same |
US20040084308A1 (en) * | 2002-11-01 | 2004-05-06 | Cole Barrett E. | Gas sensor |
US20040217264A1 (en) * | 2002-03-18 | 2004-11-04 | Wood Roland A. | Tunable sensor |
US7442933B2 (en) | 2005-02-03 | 2008-10-28 | Lin Alice L | Bolometer having an amorphous titanium oxide layer with high resistance stability |
US20080272921A1 (en) * | 2007-05-01 | 2008-11-06 | Honeywell International Inc. | Fire detection system and method |
US20090014657A1 (en) * | 2007-05-01 | 2009-01-15 | Honeywell International Inc. | Infrared fire detection system |
US20090140147A1 (en) * | 2007-08-22 | 2009-06-04 | Skidmore George D | Pixel structure having an umbrella type absorber with one or more recesses or channels sized to increase radiation absorption |
US20100171190A1 (en) * | 2009-01-07 | 2010-07-08 | Robert Bosch Gmbh | Electromagnetic Radiation Sensor and Metod of Manufacture |
US8314769B2 (en) | 2010-04-28 | 2012-11-20 | Honeywell International Inc. | High performance detection pixel |
WO2013052701A1 (en) | 2011-10-04 | 2013-04-11 | Flir Systems, Inc. | Microbolometer detector layer |
US9250135B2 (en) | 2011-03-16 | 2016-02-02 | Honeywell International Inc. | MWIR sensor for flame detection |
Families Citing this family (113)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2833450B2 (en) * | 1993-11-24 | 1998-12-09 | 日本電気株式会社 | Infrared imaging device |
US5446284A (en) * | 1994-01-25 | 1995-08-29 | Loral Infrared & Imaging Systems, Inc. | Monolithic detector array apparatus |
US5608568A (en) * | 1994-04-11 | 1997-03-04 | The Johns Hopkins University | Thin film vanadium oxide spatial light modulators and methods |
US5561295A (en) * | 1994-07-29 | 1996-10-01 | Litton Systems, Inc. | Infrared-responsive photoconductive array and method of making |
JP2710228B2 (en) * | 1994-08-11 | 1998-02-10 | 日本電気株式会社 | Bolometer type infrared detecting element, driving method thereof, and detecting integration circuit |
US5489776A (en) * | 1994-08-30 | 1996-02-06 | Hughes Aircraft Company | Microbolometer unit cell signal processing circuit |
US5550373A (en) * | 1994-12-30 | 1996-08-27 | Honeywell Inc. | Fabry-Perot micro filter-detector |
US5554849A (en) * | 1995-01-17 | 1996-09-10 | Flir Systems, Inc. | Micro-bolometric infrared staring array |
US5572060A (en) * | 1995-02-01 | 1996-11-05 | Southern Methodist University | Uncooled YBaCuO thin film infrared detector |
US5821598A (en) * | 1995-02-01 | 1998-10-13 | Research Corporation Technologies, Inc. | Uncooled amorphous YBaCuO thin film infrared detector |
JPH08278192A (en) * | 1995-04-07 | 1996-10-22 | Ishizuka Denshi Kk | Infrared detector |
JP3287173B2 (en) * | 1995-04-07 | 2002-05-27 | 三菱電機株式会社 | Infrared detector |
US5602393A (en) * | 1995-06-07 | 1997-02-11 | Hughes Aircraft Company | Microbolometer detector element with enhanced sensitivity |
US7495220B2 (en) * | 1995-10-24 | 2009-02-24 | Bae Systems Information And Electronics Systems Integration Inc. | Uncooled infrared sensor |
WO1997018589A1 (en) * | 1995-11-15 | 1997-05-22 | Lockheed-Martin Ir Imaging Systems, Inc. | A dual-band multi-level microbridge detector |
DE69610118T2 (en) * | 1995-12-04 | 2001-02-01 | Lockheed-Martin Ir Imaging Systems, Lexington | INFRARED RADIATION DETECTOR WITH A REDUCED EFFECTIVE SURFACE |
US5584117A (en) * | 1995-12-11 | 1996-12-17 | Industrial Technology Research Institute | Method of making an interferometer-based bolometer |
US5691921A (en) * | 1996-01-05 | 1997-11-25 | Xerox Corporation | Thermal sensors arrays useful for motion tracking by thermal gradient detection |
US5811808A (en) | 1996-09-12 | 1998-09-22 | Amber Engineering, Inc. | Infrared imaging system employing on-focal plane nonuniformity correction |
US5831266A (en) * | 1996-09-12 | 1998-11-03 | Institut National D'optique | Microbridge structure for emitting or detecting radiations and method for forming such microbridge structure |
US5962909A (en) * | 1996-09-12 | 1999-10-05 | Institut National D'optique | Microstructure suspended by a microsupport |
JP2856180B2 (en) * | 1996-11-27 | 1999-02-10 | 日本電気株式会社 | Thermal type infrared detecting element and manufacturing method thereof |
US6322670B2 (en) | 1996-12-31 | 2001-11-27 | Honeywell International Inc. | Flexible high performance microbolometer detector material fabricated via controlled ion beam sputter deposition process |
US6028309A (en) * | 1997-02-11 | 2000-02-22 | Indigo Systems Corporation | Methods and circuitry for correcting temperature-induced errors in microbolometer focal plane array |
US5756999A (en) * | 1997-02-11 | 1998-05-26 | Indigo Systems Corporation | Methods and circuitry for correcting temperature-induced errors in microbolometer focal plane array |
US7176111B2 (en) * | 1997-03-28 | 2007-02-13 | Interuniversitair Microelektronica Centrum (Imec) | Method for depositing polycrystalline SiGe suitable for micromachining and devices obtained thereof |
EP0867701A1 (en) | 1997-03-28 | 1998-09-30 | Interuniversitair Microelektronica Centrum Vzw | Method of fabrication of an infrared radiation detector and more particularly an infrared sensitive bolometer |
JP3097591B2 (en) * | 1997-03-31 | 2000-10-10 | 日本電気株式会社 | Thermal infrared detector |
US6459084B1 (en) | 1997-05-30 | 2002-10-01 | University Of Central Florida | Area receiver with antenna-coupled infrared sensors |
JP3196823B2 (en) | 1997-06-11 | 2001-08-06 | 日本電気株式会社 | Semiconductor device |
US6097031A (en) * | 1997-07-25 | 2000-08-01 | Honeywell Inc. | Dual bandwith bolometer |
JPH11148861A (en) * | 1997-09-09 | 1999-06-02 | Honda Motor Co Ltd | Microbidge structure |
JP3003853B2 (en) | 1997-09-09 | 2000-01-31 | 本田技研工業株式会社 | Sensor with bridge structure |
FI107407B (en) * | 1997-09-16 | 2001-07-31 | Metorex Internat Oy | A submillimeter wave imaging system |
US5900799A (en) * | 1997-10-03 | 1999-05-04 | Mcdonnell Douglas Corporation | High responsivity thermochromic infrared detector |
US6144030A (en) * | 1997-10-28 | 2000-11-07 | Raytheon Company | Advanced small pixel high fill factor uncooled focal plane array |
JP4011851B2 (en) | 1997-12-18 | 2007-11-21 | 三菱電機株式会社 | Infrared solid-state image sensor |
US5973383A (en) | 1998-04-09 | 1999-10-26 | Honeywell Inc. | High temperature ZrN and HfN IR scene projector pixels |
US6201243B1 (en) | 1998-07-20 | 2001-03-13 | Institut National D'optique | Microbridge structure and method for forming the microbridge structure |
FR2781927B1 (en) | 1998-07-28 | 2001-10-05 | Commissariat Energie Atomique | DEVICE FOR DETECTING INFRARED / VISIBLE MULTISPECTRAL RADIATION |
WO2000012985A1 (en) * | 1998-08-31 | 2000-03-09 | Daewoo Electronics Co., Ltd. | Bolometer including an absorber made of a material having a low deposition-temperature and a low heat-conductivity |
WO2000012986A1 (en) * | 1998-08-31 | 2000-03-09 | Daewoo Electronics Co., Ltd. | Bolometer including a reflective layer |
WO2000012984A1 (en) * | 1998-08-31 | 2000-03-09 | Daewoo Electronics Co., Ltd. | Bolometer with a serpentine stress balancing member |
JP3080093B2 (en) | 1998-09-01 | 2000-08-21 | 日本電気株式会社 | Oxide thin film for bolometer and infrared sensor using the oxide thin film |
JP3635937B2 (en) | 1998-09-10 | 2005-04-06 | 三菱電機株式会社 | Infrared camera |
WO2000023774A1 (en) | 1998-10-19 | 2000-04-27 | Mitsubishi Denki Kabushiki Kaisha | Infrared sensor and infrared sensor array comprising the same |
WO2000033041A1 (en) * | 1998-11-30 | 2000-06-08 | Daewoo Electronics Co., Ltd. | Infrared bolometer |
FR2788129B1 (en) * | 1998-12-30 | 2001-02-16 | Commissariat Energie Atomique | BOLOMETRIC DETECTOR WITH ANTENNA |
US6046485A (en) * | 1999-04-01 | 2000-04-04 | Honeywell International Inc. | Large area low mass IR pixel having tailored cross section |
FR2794527B1 (en) * | 1999-06-04 | 2001-09-21 | Thomson Csf | THERMAL DETECTOR WITH A BOUNDARY VIEW ANGLE |
US6307194B1 (en) | 1999-06-07 | 2001-10-23 | The Boeing Company | Pixel structure having a bolometer with spaced apart absorber and transducer layers and an associated fabrication method |
GB9919877D0 (en) | 1999-08-24 | 1999-10-27 | Secr Defence | Micro-bridge structure |
US6144285A (en) * | 1999-09-13 | 2000-11-07 | Honeywell International Inc. | Thermal sensor and method of making same |
AU2004203904B2 (en) * | 1999-09-13 | 2007-02-01 | Honeywell Inc. | Thermal sensor and method of making same |
US6444983B1 (en) | 1999-10-07 | 2002-09-03 | Infrared Solutions, Inc. | Microbolometer focal plane array with controlled bias |
JP3514681B2 (en) | 1999-11-30 | 2004-03-31 | 三菱電機株式会社 | Infrared detector |
US6479320B1 (en) | 2000-02-02 | 2002-11-12 | Raytheon Company | Vacuum package fabrication of microelectromechanical system devices with integrated circuit components |
US6521477B1 (en) | 2000-02-02 | 2003-02-18 | Raytheon Company | Vacuum package fabrication of integrated circuit components |
US6690014B1 (en) | 2000-04-25 | 2004-02-10 | Raytheon Company | Microbolometer and method for forming |
US6465785B1 (en) | 2000-05-05 | 2002-10-15 | Infrared Solutions, Inc. | Apparatus and method for compensating for pixel non-uniformity in a bolometer |
FR2811139B1 (en) * | 2000-06-29 | 2003-10-17 | Centre Nat Rech Scient | OPTOELECTRONIC DEVICE WITH INTEGRATED WAVELENGTH FILTERING |
AU2002213108A1 (en) | 2000-10-13 | 2002-04-22 | Litton Systems Inc. | Monolithic lead-salt infrared radiation detectors |
US6507021B1 (en) * | 2000-11-15 | 2003-01-14 | Drs Sensors & Targeting Systems, Inc. | Reference bolometer and associated fabrication methods |
DE10058861A1 (en) * | 2000-11-27 | 2002-06-13 | Siemens Ag | Infrared sensor for high-resolution infrared detector arrangements and method for its production |
US6489616B2 (en) | 2001-03-19 | 2002-12-03 | The Board Of Governors Of Southwest Missouri State University | Doped, organic carbon-containing sensor for infrared detection and a process for the preparation thereof |
US6777681B1 (en) | 2001-04-25 | 2004-08-17 | Raytheon Company | Infrared detector with amorphous silicon detector elements, and a method of making it |
JP2004529359A (en) * | 2001-05-21 | 2004-09-24 | プレスコ テクノロジー インコーポレーテッド | Apparatus and method for providing snapshot operated thermal infrared imaging within an automated process control article inspection application |
JP4911875B2 (en) * | 2001-06-01 | 2012-04-04 | ハネウェル・インターナショナル・インコーポレーテッド | Ion beam sputtering deposition method |
US6770882B2 (en) * | 2002-01-14 | 2004-08-03 | Multispectral Imaging, Inc. | Micromachined pyro-optical structure |
US7196790B2 (en) * | 2002-03-18 | 2007-03-27 | Honeywell International Inc. | Multiple wavelength spectrometer |
US7473031B2 (en) * | 2002-04-01 | 2009-01-06 | Palo Alto Research Center, Incorporated | Resistive thermal sensing |
JP2004062938A (en) * | 2002-07-25 | 2004-02-26 | Pioneer Electronic Corp | Spherical aberration correcting device and spherical aberration correcting method |
JP3944465B2 (en) | 2003-04-11 | 2007-07-11 | 三菱電機株式会社 | Thermal infrared detector and infrared focal plane array |
US7378655B2 (en) * | 2003-04-11 | 2008-05-27 | California Institute Of Technology | Apparatus and method for sensing electromagnetic radiation using a tunable device |
US6958478B2 (en) | 2003-05-19 | 2005-10-25 | Indigo Systems Corporation | Microbolometer detector with high fill factor and transducers having enhanced thermal isolation |
US20040240012A1 (en) * | 2003-05-26 | 2004-12-02 | Fuji Xerox Co., Ltd. | Hologram recording method and hologram recording apparatus |
FR2855609B1 (en) * | 2003-05-26 | 2005-07-01 | Commissariat Energie Atomique | OPTIMIZED CAVITY BULOMETRIC ANTENNA DETECTION DEVICE FOR MILLIMETRIC OR SUBMILLIMETRIC ELECTROMAGNETIC WAVES, AND METHOD OF MANUFACTURING THE SAME |
US7170059B2 (en) * | 2003-10-03 | 2007-01-30 | Wood Roland A | Planar thermal array |
US7531363B2 (en) * | 2003-12-30 | 2009-05-12 | Honeywell International Inc. | Particle detection using fluorescence |
US7491938B2 (en) * | 2004-03-23 | 2009-02-17 | Bae Systems Information And Electronic Systems Integration Inc. | Multi-spectral uncooled microbolometer detectors |
EP1727359B1 (en) | 2005-05-26 | 2013-05-01 | Fluke Corporation | Method for fixed pattern noise reduction in infrared imaging cameras |
US7527999B2 (en) | 2005-12-06 | 2009-05-05 | Technion Research & Development Foundation Ltd. | Cd1−xZnxS high performance TCR material for uncooled microbolometers used in infrared sensors and method of making same |
US7655909B2 (en) * | 2006-01-26 | 2010-02-02 | L-3 Communications Corporation | Infrared detector elements and methods of forming same |
US7462831B2 (en) * | 2006-01-26 | 2008-12-09 | L-3 Communications Corporation | Systems and methods for bonding |
US7459686B2 (en) * | 2006-01-26 | 2008-12-02 | L-3 Communications Corporation | Systems and methods for integrating focal plane arrays |
US7968846B2 (en) * | 2006-05-23 | 2011-06-28 | Regents Of The University Of Minnesota | Tunable finesse infrared cavity thermal detectors |
US7718965B1 (en) | 2006-08-03 | 2010-05-18 | L-3 Communications Corporation | Microbolometer infrared detector elements and methods for forming same |
US8153980B1 (en) | 2006-11-30 | 2012-04-10 | L-3 Communications Corp. | Color correction for radiation detectors |
JP2010512507A (en) * | 2006-12-08 | 2010-04-22 | リージェンツ オブ ザ ユニバーシティ オブ ミネソタ | Detection beyond standard radiated noise limits using emissivity reduction and optical cavity coupling |
US20080185522A1 (en) * | 2007-02-06 | 2008-08-07 | Shih-Chia Chang | Infrared sensors and methods for manufacturing the infrared sensors |
US7786440B2 (en) | 2007-09-13 | 2010-08-31 | Honeywell International Inc. | Nanowire multispectral imaging array |
US7750301B1 (en) | 2007-10-02 | 2010-07-06 | Flir Systems, Inc. | Microbolometer optical cavity tuning and calibration systems and methods |
US8629398B2 (en) | 2008-05-30 | 2014-01-14 | The Regents Of The University Of Minnesota | Detection beyond the standard radiation noise limit using spectrally selective absorption |
KR101663034B1 (en) * | 2009-08-26 | 2016-10-07 | 삼성디스플레이 주식회사 | Touch sensible electrophoretic display device |
KR100983818B1 (en) * | 2009-09-02 | 2010-09-27 | 한국전자통신연구원 | Resistive materials for bolometer, bolometer for infrared detector using the materials, and method for preparing the same |
US9658111B2 (en) | 2009-10-09 | 2017-05-23 | Flir Systems, Inc. | Microbolometer contact systems and methods |
US8729474B1 (en) | 2009-10-09 | 2014-05-20 | Flir Systems, Inc. | Microbolometer contact systems and methods |
JP5428783B2 (en) * | 2009-11-12 | 2014-02-26 | 日本電気株式会社 | Bolometer type THz wave detector |
US8513605B2 (en) | 2010-04-28 | 2013-08-20 | L-3 Communications Corporation | Optically transitioning thermal detector structures |
US8610070B2 (en) | 2010-04-28 | 2013-12-17 | L-3 Communications Corporation | Pixel-level optical elements for uncooled infrared detector devices |
US8765514B1 (en) | 2010-11-12 | 2014-07-01 | L-3 Communications Corp. | Transitioned film growth for conductive semiconductor materials |
US9167179B2 (en) | 2011-02-21 | 2015-10-20 | Vectronix, Inc. | On-board non-uniformity correction calibration methods for microbolometer focal plane arrays |
JP6282029B2 (en) * | 2012-03-08 | 2018-02-21 | キヤノン株式会社 | Device that emits or receives electromagnetic waves |
CN102610619B (en) * | 2012-03-29 | 2014-04-16 | 江苏物联网研究发展中心 | Wafer-level vacuum encapsulated infrared focal plane array (IRFPA) device and method for producing same |
US8767448B2 (en) | 2012-11-05 | 2014-07-01 | International Business Machines Corporation | Magnetoresistive random access memory |
EA022126B1 (en) * | 2013-02-18 | 2015-11-30 | Государственное Научное Учреждение "Институт Тепло- И Массообмена Имени А.В. Лыкова Национальной Академии Наук Беларуси" | Method of measuring radiant heat flux in vacuum |
US9324937B1 (en) | 2015-03-24 | 2016-04-26 | International Business Machines Corporation | Thermally assisted MRAM including magnetic tunnel junction and vacuum cavity |
US10359316B1 (en) * | 2016-06-08 | 2019-07-23 | Nutech Ventures, Inc. | Fiber optic bolometer |
WO2018014438A1 (en) * | 2016-07-18 | 2018-01-25 | 上海集成电路研发中心有限公司 | Infrared detector image element structure and fabrication method therefor |
JP6552547B2 (en) | 2017-05-24 | 2019-07-31 | 三菱電機株式会社 | Infrared sensor and infrared solid-state imaging device |
JP6440805B1 (en) | 2017-11-16 | 2018-12-19 | 三菱電機株式会社 | Thermal infrared detector and method for manufacturing the same |
CN110118605A (en) * | 2019-05-30 | 2019-08-13 | 中国科学院长春光学精密机械与物理研究所 | A kind of mode of resonance wide spectrum non-refrigerated infrared detector and preparation method thereof |
CN110332998A (en) * | 2019-06-17 | 2019-10-15 | 华中科技大学 | Metamaterial non-refrigerating infrared focal plane polychrome polarization detector and preparation method thereof |
Citations (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3484611A (en) * | 1967-05-16 | 1969-12-16 | Hitachi Ltd | Infrared detector composed of a sintered body of vanadium pentoxide and vanadium oxide |
US3619614A (en) * | 1967-12-31 | 1971-11-09 | Matsushita Electric Ind Co Ltd | An infrared intensity detector |
US3629585A (en) * | 1968-12-31 | 1971-12-21 | Philips Corp | Immersed bolometer using thin film thermistors |
US3693011A (en) * | 1971-02-02 | 1972-09-19 | Hughes Aircraft Co | Ion implanted bolometer |
DE2253214A1 (en) * | 1972-10-30 | 1974-05-22 | Siemens Ag | DEVICE FOR MEASURING TEMPERATURE RADIATION |
US3851174A (en) * | 1973-05-04 | 1974-11-26 | Ibm | Light detector for the nanosecond-dc pulse width range |
US3896309A (en) * | 1973-05-21 | 1975-07-22 | Westinghouse Electric Corp | Radiation detecting device |
US4009516A (en) * | 1976-03-29 | 1977-03-01 | Honeywell Inc. | Pyroelectric detector fabrication |
US4029962A (en) * | 1975-06-23 | 1977-06-14 | Texas Instruments Incorporated | Arrays for infrared image detection |
US4067104A (en) * | 1977-02-24 | 1978-01-10 | Rockwell International Corporation | Method of fabricating an array of flexible metallic interconnects for coupling microelectronics components |
US4115692A (en) * | 1977-05-04 | 1978-09-19 | The United States Of America As Represented By The Secretary Of The Army | Solid state readout device for a two dimensional pyroelectric detector array |
US4169273A (en) * | 1978-06-26 | 1979-09-25 | Honeywell Inc. | Photodetector signal processing |
US4239312A (en) * | 1978-11-29 | 1980-12-16 | Hughes Aircraft Company | Parallel interconnect for planar arrays |
US4286278A (en) * | 1977-09-01 | 1981-08-25 | Honeywell Inc. | Hybrid mosaic IR/CCD focal plane |
US4317126A (en) * | 1980-04-14 | 1982-02-23 | Motorola, Inc. | Silicon pressure sensor |
US4354109A (en) * | 1979-12-31 | 1982-10-12 | Honeywell Inc. | Mounting for pyroelectric detecctor arrays |
US4365106A (en) * | 1979-08-24 | 1982-12-21 | Pulvari Charles F | Efficient method and apparatus for converting solar energy to electrical energy |
US4378489A (en) * | 1981-05-18 | 1983-03-29 | Honeywell Inc. | Miniature thin film infrared calibration source |
JPS58131525A (en) * | 1982-01-31 | 1983-08-05 | Matsushita Electric Works Ltd | Infrared-ray detector |
US4463493A (en) * | 1981-10-14 | 1984-08-07 | Tokyo Shibaura Denki Kabushiki Kaisha | Method for making mask aligned narrow isolation grooves for a semiconductor device |
US4472239A (en) * | 1981-10-09 | 1984-09-18 | Honeywell, Inc. | Method of making semiconductor device |
JPS60119426A (en) * | 1983-12-01 | 1985-06-26 | Murata Mfg Co Ltd | Thin film type pyroelectric sensor array |
JPS61170626A (en) * | 1985-01-24 | 1986-08-01 | Matsushita Electric Ind Co Ltd | Infrared linear array element |
JPS61195318A (en) * | 1985-02-26 | 1986-08-29 | Matsushita Electric Ind Co Ltd | Pyroelectric type infrared detector |
US4691104A (en) * | 1984-06-14 | 1987-09-01 | Murata Manufacturing Co., Ltd. | One-dimensional pyroelectric sensor array |
US4750834A (en) * | 1986-01-07 | 1988-06-14 | D.O.M. Associates, Inc. | Interferometer including stationary, electrically alterable optical masking device |
US4803360A (en) * | 1984-09-19 | 1989-02-07 | U.S. Philips Corp. | Infrared radiation detector with flanged semiconductor window |
JPH01136035A (en) * | 1987-11-24 | 1989-05-29 | Hamamatsu Photonics Kk | Pyroelectric detection element and manufacture thereof |
JPH0341305A (en) * | 1989-07-07 | 1991-02-21 | Matsushita Electric Ind Co Ltd | Pyroelectric device for detecting infrared ray |
US5010251A (en) * | 1988-08-04 | 1991-04-23 | Hughes Aircraft Company | Radiation detector array using radiation sensitive bridges |
US5017784A (en) * | 1985-03-11 | 1991-05-21 | Savin Corporation | Thermal detector |
US5021663A (en) * | 1988-08-12 | 1991-06-04 | Texas Instruments Incorporated | Infrared detector |
WO1991016607A1 (en) * | 1990-04-26 | 1991-10-31 | Commonwealth Of Australia, The Secretary Department Of Defence | Semiconductor film bolometer thermal infrared detector |
US5455421A (en) * | 1985-08-13 | 1995-10-03 | Massachusetts Institute Of Technology | Infrared detector using a resonant optical cavity for enhanced absorption |
-
1988
- 1988-11-07 US US07/288,701 patent/US5286976A/en not_active Ceased
-
1996
- 1996-02-14 US US08/601,411 patent/USRE36706E/en not_active Expired - Lifetime
Patent Citations (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3484611A (en) * | 1967-05-16 | 1969-12-16 | Hitachi Ltd | Infrared detector composed of a sintered body of vanadium pentoxide and vanadium oxide |
US3619614A (en) * | 1967-12-31 | 1971-11-09 | Matsushita Electric Ind Co Ltd | An infrared intensity detector |
US3629585A (en) * | 1968-12-31 | 1971-12-21 | Philips Corp | Immersed bolometer using thin film thermistors |
US3693011A (en) * | 1971-02-02 | 1972-09-19 | Hughes Aircraft Co | Ion implanted bolometer |
DE2253214A1 (en) * | 1972-10-30 | 1974-05-22 | Siemens Ag | DEVICE FOR MEASURING TEMPERATURE RADIATION |
US3851174A (en) * | 1973-05-04 | 1974-11-26 | Ibm | Light detector for the nanosecond-dc pulse width range |
US3896309A (en) * | 1973-05-21 | 1975-07-22 | Westinghouse Electric Corp | Radiation detecting device |
US4029962A (en) * | 1975-06-23 | 1977-06-14 | Texas Instruments Incorporated | Arrays for infrared image detection |
US4009516A (en) * | 1976-03-29 | 1977-03-01 | Honeywell Inc. | Pyroelectric detector fabrication |
US4067104A (en) * | 1977-02-24 | 1978-01-10 | Rockwell International Corporation | Method of fabricating an array of flexible metallic interconnects for coupling microelectronics components |
US4115692A (en) * | 1977-05-04 | 1978-09-19 | The United States Of America As Represented By The Secretary Of The Army | Solid state readout device for a two dimensional pyroelectric detector array |
US4286278A (en) * | 1977-09-01 | 1981-08-25 | Honeywell Inc. | Hybrid mosaic IR/CCD focal plane |
US4169273A (en) * | 1978-06-26 | 1979-09-25 | Honeywell Inc. | Photodetector signal processing |
US4239312A (en) * | 1978-11-29 | 1980-12-16 | Hughes Aircraft Company | Parallel interconnect for planar arrays |
US4365106A (en) * | 1979-08-24 | 1982-12-21 | Pulvari Charles F | Efficient method and apparatus for converting solar energy to electrical energy |
US4354109A (en) * | 1979-12-31 | 1982-10-12 | Honeywell Inc. | Mounting for pyroelectric detecctor arrays |
US4317126A (en) * | 1980-04-14 | 1982-02-23 | Motorola, Inc. | Silicon pressure sensor |
US4378489A (en) * | 1981-05-18 | 1983-03-29 | Honeywell Inc. | Miniature thin film infrared calibration source |
US4472239A (en) * | 1981-10-09 | 1984-09-18 | Honeywell, Inc. | Method of making semiconductor device |
US4463493A (en) * | 1981-10-14 | 1984-08-07 | Tokyo Shibaura Denki Kabushiki Kaisha | Method for making mask aligned narrow isolation grooves for a semiconductor device |
JPS58131525A (en) * | 1982-01-31 | 1983-08-05 | Matsushita Electric Works Ltd | Infrared-ray detector |
JPS60119426A (en) * | 1983-12-01 | 1985-06-26 | Murata Mfg Co Ltd | Thin film type pyroelectric sensor array |
US4691104A (en) * | 1984-06-14 | 1987-09-01 | Murata Manufacturing Co., Ltd. | One-dimensional pyroelectric sensor array |
US4803360A (en) * | 1984-09-19 | 1989-02-07 | U.S. Philips Corp. | Infrared radiation detector with flanged semiconductor window |
JPS61170626A (en) * | 1985-01-24 | 1986-08-01 | Matsushita Electric Ind Co Ltd | Infrared linear array element |
JPS61195318A (en) * | 1985-02-26 | 1986-08-29 | Matsushita Electric Ind Co Ltd | Pyroelectric type infrared detector |
US5017784A (en) * | 1985-03-11 | 1991-05-21 | Savin Corporation | Thermal detector |
US5455421A (en) * | 1985-08-13 | 1995-10-03 | Massachusetts Institute Of Technology | Infrared detector using a resonant optical cavity for enhanced absorption |
US4750834A (en) * | 1986-01-07 | 1988-06-14 | D.O.M. Associates, Inc. | Interferometer including stationary, electrically alterable optical masking device |
JPH01136035A (en) * | 1987-11-24 | 1989-05-29 | Hamamatsu Photonics Kk | Pyroelectric detection element and manufacture thereof |
US5010251A (en) * | 1988-08-04 | 1991-04-23 | Hughes Aircraft Company | Radiation detector array using radiation sensitive bridges |
US5021663A (en) * | 1988-08-12 | 1991-06-04 | Texas Instruments Incorporated | Infrared detector |
US5021663B1 (en) * | 1988-08-12 | 1997-07-01 | Texas Instruments Inc | Infrared detector |
JPH0341305A (en) * | 1989-07-07 | 1991-02-21 | Matsushita Electric Ind Co Ltd | Pyroelectric device for detecting infrared ray |
WO1991016607A1 (en) * | 1990-04-26 | 1991-10-31 | Commonwealth Of Australia, The Secretary Department Of Defence | Semiconductor film bolometer thermal infrared detector |
Non-Patent Citations (18)
Title |
---|
A. Tanaka, et al., Infrared Linear Image Sensor using a Poly Si pn Junction Diode Array, 33 Infrared Phys., 229 231, and 234 236, 1992. * |
A. Tanaka, et al., Infrared Linear Image Sensor using a Poly-Si pn Junction Diode Array, 33 Infrared Phys., 229-231, and 234-236, 1992. |
H. Elabd & W.F. Kosonocky, Theory and Measurements of Photoresponse for Thin Film Pd 2 Si and PtSi Infrared Schottky Barrier Detectors with Optical Cavity, 43 RCA Review, 569 588, 1982, * |
H. Elabd & W.F. Kosonocky, Theory and Measurements of Photoresponse for Thin Film Pd2 Si and PtSi Infrared Schottky-Barrier Detectors with Optical Cavity, 43 RCA Review, 569-588, 1982, |
K.C. Liddiard, Thin Film Resistance Bolometer IR Detectors II, Infrared Phys., vol. 26, No. 1, 43 49, 1986. * |
K.C. Liddiard, Thin Film Resistance Bolometer IR Detectors, Infrared Phys., vol. 24, No. 1, 57 64, 1984. * |
K.C. Liddiard, Thin Film Resistance Bolometer IR Detectors, Infrared Phys., vol. 24, No. 1, 57-64, 1984. |
K.C. Liddiard, Thin-Film Resistance Bolometer IR Detectors--II, Infrared Phys., vol. 26, No. 1, 43-49, 1986. |
Kurt Peterson & Anne Shartel, Micromechanical Accelerometer Integrated with MOS Detection Circuitry, IBM Research Facility, 1980, pp. 673 675. * |
Kurt Peterson & Anne Shartel, Micromechanical Accelerometer Integrated with MOS Detection Circuitry, IBM Research Facility, 1980, pp. 673-675. |
Suzuki, et al, An Infrared Detector Using Poly Silicon p n Junction Diode, Tech Digest of 9th Sensor Symposium, 71, 72, and 74, 1990. * |
Suzuki, et al, An Infrared Detector Using Poly-Silicon p-n Junction Diode, Tech Digest of 9th Sensor Symposium, 71, 72, and 74, 1990. |
Thin Film Resistance Bolometer IR Detectors II, K.C. Liddiard, Infrared Phys., vol. 26, No. 1, pp. 43 49, 1986. * |
Thin Film Resistance Bolometer IR Detectors, K.C. Liddiard, Infrared Phys., vol. 24, No. 1, pp. 57 64, 1984. * |
Thin-Film Resistance Bolometer IR Detectors II, K.C. Liddiard, Infrared Phys., vol. 26, No. 1, pp. 43-49, 1986. |
Thin-Film Resistance Bolometer IR Detectors, K.C. Liddiard, Infrared Phys., vol. 24, No. 1, pp. 57-64, 1984. |
W.F. Kosonosky, et al., 160 244 Element PtSi Schottky Barrier IR CCD Image Sensor, vol. Ed 32, No. 8, IEEE Transactions on Electron Devices, 1564 1573, Aug., 1985. * |
W.F. Kosonosky, et al., 160×244 Element PtSi Schottky-Barrier IR-CCD Image Sensor, vol. Ed-32, No. 8, IEEE Transactions on Electron Devices, 1564-1573, Aug., 1985. |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6441374B1 (en) * | 1999-07-26 | 2002-08-27 | Nec Corporation | Thermal type infrared ray detector with thermal separation structure for high sensitivity |
US7365326B2 (en) | 2000-12-26 | 2008-04-29 | Honeywell International Inc. | Camera having distortion correction |
US6541772B2 (en) | 2000-12-26 | 2003-04-01 | Honeywell International Inc. | Microbolometer operating system |
US20030197124A1 (en) * | 2000-12-26 | 2003-10-23 | Honeywell International Inc. | Camera having distortion correction |
US20090321637A1 (en) * | 2000-12-26 | 2009-12-31 | Honeywell International Inc. | Camera having distortion correction |
US6661010B2 (en) | 2000-12-26 | 2003-12-09 | Honeywell International Inc. | Microbolometer operating system |
US6559447B2 (en) | 2000-12-26 | 2003-05-06 | Honeywell International Inc. | Lightweight infrared camera |
US6621083B2 (en) * | 2000-12-29 | 2003-09-16 | Honeywell International Inc. | High-absorption wide-band pixel for bolometer arrays |
US6667479B2 (en) | 2001-06-01 | 2003-12-23 | Raytheon Company | Advanced high speed, multi-level uncooled bolometer and method for fabricating same |
US20030062480A1 (en) * | 2001-10-01 | 2003-04-03 | Nec Corporation | Infrared ray detector having a vacuum encapsulation structure |
US6924485B2 (en) * | 2001-10-01 | 2005-08-02 | Nec Corporation | Infrared ray detector having a vacuum encapsulation structure |
US7145143B2 (en) | 2002-03-18 | 2006-12-05 | Honeywell International Inc. | Tunable sensor |
US20040217264A1 (en) * | 2002-03-18 | 2004-11-04 | Wood Roland A. | Tunable sensor |
US20040084308A1 (en) * | 2002-11-01 | 2004-05-06 | Cole Barrett E. | Gas sensor |
US7442933B2 (en) | 2005-02-03 | 2008-10-28 | Lin Alice L | Bolometer having an amorphous titanium oxide layer with high resistance stability |
US20090014657A1 (en) * | 2007-05-01 | 2009-01-15 | Honeywell International Inc. | Infrared fire detection system |
US20080272921A1 (en) * | 2007-05-01 | 2008-11-06 | Honeywell International Inc. | Fire detection system and method |
US7746236B2 (en) | 2007-05-01 | 2010-06-29 | Honeywell International Inc. | Fire detection system and method |
US20090140147A1 (en) * | 2007-08-22 | 2009-06-04 | Skidmore George D | Pixel structure having an umbrella type absorber with one or more recesses or channels sized to increase radiation absorption |
US7622717B2 (en) | 2007-08-22 | 2009-11-24 | Drs Sensors & Targeting Systems, Inc. | Pixel structure having an umbrella type absorber with one or more recesses or channels sized to increase radiation absorption |
US20100171190A1 (en) * | 2009-01-07 | 2010-07-08 | Robert Bosch Gmbh | Electromagnetic Radiation Sensor and Metod of Manufacture |
US7842533B2 (en) | 2009-01-07 | 2010-11-30 | Robert Bosch Gmbh | Electromagnetic radiation sensor and method of manufacture |
US8314769B2 (en) | 2010-04-28 | 2012-11-20 | Honeywell International Inc. | High performance detection pixel |
US9250135B2 (en) | 2011-03-16 | 2016-02-02 | Honeywell International Inc. | MWIR sensor for flame detection |
WO2013052701A1 (en) | 2011-10-04 | 2013-04-11 | Flir Systems, Inc. | Microbolometer detector layer |
US8502147B2 (en) | 2011-10-04 | 2013-08-06 | Flir Systems, Inc. | Microbolometer detector layer |
Also Published As
Publication number | Publication date |
---|---|
US5286976A (en) | 1994-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE36706E (en) | Microstructure design for high IR sensitivity | |
EP0649517B1 (en) | Microstructure design for high ir sensitivity | |
CA2417924C (en) | Advanced high speed, multi-level uncooled bolometer and method for fabricating same | |
US6097031A (en) | Dual bandwith bolometer | |
US6144030A (en) | Advanced small pixel high fill factor uncooled focal plane array | |
KR100343869B1 (en) | Thermal type infrared ray detector with thermal separation structure for high sensitivity | |
US8513606B2 (en) | THz wave detector | |
KR0135119B1 (en) | Infrared detector | |
EP1022551A2 (en) | Thermal infrared array sensor for detecting a plurality of infrared wavelength bands | |
JP3097591B2 (en) | Thermal infrared detector | |
US7544942B2 (en) | Thermal detector for electromagnetic radiation and infrared detection device using such detectors | |
US9261411B2 (en) | Uncooled microbolometer detector and array for terahertz detection | |
JPH1090054A (en) | Infrared detector and its manufacture | |
KR20080093165A (en) | High-absorption wide-band pixel for bolometer array | |
US6489614B1 (en) | Thermal-type infrared radiation detector cell and image capture device incorporating the same | |
US6198099B1 (en) | Bolometer including a reflective layer | |
JP2003294523A (en) | Infrared detector, its manufacturing method and infrared solid imaging device | |
CA2070531C (en) | Microstructure design for high ir sensitivity (u) | |
CN106672891A (en) | Double-layer uncooled infrared detector structure and preparation method thereof | |
KR100509443B1 (en) | Bolometric infrared sensor having two-layer structure and method for manufacturing the same | |
CA2800779C (en) | Uncooled microbolometer detector and array for terahertz detection | |
KR100502577B1 (en) | Bolometric infrared sensor having two-layer structure | |
EP1131613B1 (en) | Bolometer including a reflective layer | |
US5327005A (en) | Striped contact IR detector | |
CN102393253A (en) | Spectrum micro-bolometer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |