JPS6119176A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6119176A
JPS6119176A JP13998684A JP13998684A JPS6119176A JP S6119176 A JPS6119176 A JP S6119176A JP 13998684 A JP13998684 A JP 13998684A JP 13998684 A JP13998684 A JP 13998684A JP S6119176 A JPS6119176 A JP S6119176A
Authority
JP
Japan
Prior art keywords
gate electrode
film
oxide film
polycrystalline silicon
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13998684A
Other languages
Japanese (ja)
Other versions
JPH0810726B2 (en
Inventor
Masaki Sato
正毅 佐藤
Seiichi Mori
誠一 森
Kuniyoshi Yoshikawa
吉川 邦良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59139986A priority Critical patent/JPH0810726B2/en
Publication of JPS6119176A publication Critical patent/JPS6119176A/en
Publication of JPH0810726B2 publication Critical patent/JPH0810726B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/788Field effect transistors with field effect produced by an insulated gate with floating gate
    • H01L29/7881Programmable transistors with only two possible levels of programmation

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To obtain a device with a double-layer gate electrode, at a stepped section thereof a pattern is not disconnected and which has high reliability, by forming an N type poly Si electrode on a gate oxide film in a P type Si substrate, coating only a side section with an oxide film and superposing N type poly Si again. CONSTITUTION:A field oxide film 102 and a gate oxide film 103 are formed to a P type Si substrate 101, N type poly Si 104 and Si3N4 105 are superposed, and a resist mask 106 is shaped and a gate electrode 104' is formed through etching. The resist 106 is removed, the side wall of the electrode 104' is coated with a thermal oxide film 107, and CVDSiO2 108 is deposited. B ions are implanted, etching rates are made different in response to film thickness, and SiO2 108' is left only on the side surface of the electrode 104' through etching by diluted hydrofluoric acid. Si3N4 5 is removed, the surface is coated with SiO2 109, and N type poly Si 110 and further a high melting- point metal 111 are superposed and a second layer gate electrode is shaped. According to the constitution, the oxide film can be thickened at the corner section of the gate electrode in a lower layer and sufficient dielectric withstanding voltage is obtained, an eave shape through etching is not generated at the lower edge of the electrode, and a disconnection at a stepped section of a gate electrode in an upper section is not generated, thus acquiring a device having high reliability.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は二層以上のゲート電極を有する半導体装置の製
造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method of manufacturing a semiconductor device having two or more layers of gate electrodes.

[発明の技術的背景とその問題点] 二層以上のゲート電極を有する半導体装置、例えば、7
0−ティング・ゲート型のEPROMは第2図(a)〜
(d)に示す如き工程を経て製造される。すなわち、初
めにシリコン等の半導体基板1上に島状に素子領域を分
離するフィールド酸化膜2を形成し、次に基板1の素子
領域表面にゲ−ト酸化膜3を形成する。ついで、全面に
第1の多結晶シリコン膜4を堆積する(第2図(a)図
示)。
[Technical background of the invention and its problems] A semiconductor device having two or more layers of gate electrodes, e.g.
The 0-ting gate type EPROM is shown in Figure 2(a)~
It is manufactured through the steps shown in (d). That is, first, a field oxide film 2 is formed on a semiconductor substrate 1 made of silicon or the like to separate element regions into islands, and then a gate oxide film 3 is formed on the surface of the element region of the substrate 1. Next, a first polycrystalline silicon film 4 is deposited over the entire surface (as shown in FIG. 2(a)).

次に、この多結晶シリコン膜4をバターニングして所望
形状の第1のゲート電極(フローティング・ゲート電極
)4−を形成し、次いで、全面にシリコン酸化膜(S 
i 02膜)を形成する。これにより、第1のゲート電
極4′表面に酸化膜5が形成される(第2図(b)図示
)。
Next, this polycrystalline silicon film 4 is buttered to form a first gate electrode (floating gate electrode) 4- in a desired shape, and then a silicon oxide film (S
i02 film) is formed. As a result, an oxide film 5 is formed on the surface of the first gate electrode 4' (as shown in FIG. 2(b)).

次いで、全面に第2の多結晶シリコン膜6を堆積しく第
2図(C)図示)、次に図示しないレジスト・パターン
を用いてこの第2の多結晶シリコン膜6をエツチングし
、酸化膜5を介して第1のゲート電極4′上に第2のゲ
ート電極6−(コントロール・ゲート電極)を形成する
。このとき同時に第2のゲート電極6−の配線もバター
ニング形成する。次に、全面にソース・ドレイン領域形
成予定部が開口された図示しないレジスト・パターンを
形成し、これをマスクに不純物イオンをイオン注入する
。次に、熱処理を行って注入イオンを活性化し、ソース
、ドレイン領域7.8を形成し、次いで、全面に層間絶
縁膜9を堆積する(第2図(d)図示)。ここで第3図
は第2図(d)におけるA−A断面図である。
Next, a second polycrystalline silicon film 6 is deposited on the entire surface (as shown in FIG. 2C), and then this second polycrystalline silicon film 6 is etched using a resist pattern (not shown) to form an oxide film 5. A second gate electrode 6- (control gate electrode) is formed on the first gate electrode 4' via the gate electrode 4'. At this time, the wiring of the second gate electrode 6- is also patterned. Next, a resist pattern (not shown) in which the source/drain regions are to be formed is opened over the entire surface, and impurity ions are implanted using this as a mask. Next, heat treatment is performed to activate the implanted ions to form source and drain regions 7.8, and then an interlayer insulating film 9 is deposited on the entire surface (as shown in FIG. 2(d)). Here, FIG. 3 is a sectional view taken along the line AA in FIG. 2(d).

次に周知の技術により、層間絶縁膜9のソース、ドレイ
ン領域7.8位置にコンタクト・ホールを開口し、次い
で全面にアルミニウム堆積して後、これをバターニング
し、コンタクト・ホールを介してソース、ドレイン領域
7.8に接続される配線を形成して半導体装置を完成さ
せる。
Next, using a well-known technique, contact holes are opened in the source and drain regions 7 and 8 of the interlayer insulating film 9, and then aluminum is deposited on the entire surface and then buttered to connect the source and drain regions through the contact holes. , a wiring connected to the drain region 7.8 is formed to complete the semiconductor device.

ところで、このような従来技術においては、上述したよ
うに第1のゲート電極4′を形成する場合、基板1の全
面に堆積した第1の多結晶シリコン膜4を選択的にエツ
チング除去してバターニングするので、符号aで示すよ
うに第1のゲート電極4′の端面は垂直となり、従って
、角部は急峻となる。
By the way, in such a conventional technique, when forming the first gate electrode 4' as described above, the first polycrystalline silicon film 4 deposited on the entire surface of the substrate 1 is selectively etched away and the butter is removed. Because of this, the end face of the first gate electrode 4' becomes vertical as indicated by symbol a, and therefore the corner becomes steep.

この急峻な角部は第1のゲート電極4−の表面に酸化膜
5を形成した際、酸化膜成長の性質上、第5図に示す如
く、この角部の酸化膜成長が遅くなってこの部分の膜厚
が薄くなる。しかも、形成された酸化膜の形状からゲー
ト電極4′の該部分が鋭いエツジbとなるため、ここに
電界集中が生じ、絶縁耐圧が一層悪くなる。
This steep corner is caused by the fact that when the oxide film 5 is formed on the surface of the first gate electrode 4-, the oxide film grows slowly at this corner due to the nature of oxide film growth, as shown in FIG. The film thickness in this area becomes thinner. Furthermore, because the shape of the formed oxide film forms a sharp edge b at this portion of the gate electrode 4', electric field concentration occurs there, further deteriorating the dielectric strength.

また、第1のゲート電tf+4−の上記垂直面部分は、
著しい場合は図に一点鎖線Cで示した如く、第1のゲー
ト電極4′の上部側が下部に較べ、ひさしのようにせり
出したいわゆるオーバハング状態になる。
Further, the vertical surface portion of the first gate voltage tf+4- is
In a severe case, the upper side of the first gate electrode 4' protrudes like an eaves compared to the lower part, as shown by the dashed line C in the figure, resulting in a so-called overhanging state.

そして、第1のゲート電極4−上に酸化膜5を成長させ
た後、全面に第2のゲート電極用の多結晶シリコン膜を
堆積し、これをバターニングした際、除去すべき部分に
おいて、この第1のゲート電極4−における上記オーバ
ハング部の下の多結晶シリコン膜6が除去しきれず、該
除去工程後においてこの部分に不要な多結晶シリコンが
残留する現象が生じた。そして、このような状態が生じ
ると第2のゲート電極6′に不必要な部分が付加された
かたちとなり、しかも、この残留多結晶シリコン膜がそ
の後の製造工程で剥離したりして、種々の不都合を生じ
、半導体装置の信頼性に悪影響を及ぼす。
After growing the oxide film 5 on the first gate electrode 4-, a polycrystalline silicon film for the second gate electrode is deposited on the entire surface, and when this is buttered, in the part to be removed, The polycrystalline silicon film 6 under the overhang portion of the first gate electrode 4- could not be removed completely, and unnecessary polycrystalline silicon remained in this portion after the removal step. If such a situation occurs, an unnecessary portion will be added to the second gate electrode 6', and this residual polycrystalline silicon film may peel off during the subsequent manufacturing process, resulting in various problems. This causes inconvenience and adversely affects the reliability of the semiconductor device.

また、EPROMなどにおいては素子の動作速度を向上
させるため、第2のゲート電極6′及びその配線の上層
面に高融点金属または高融点金属のシリサイドを堆積し
、低抵抗化を図ることがあるが、従来構造では第1のゲ
ート電極4′側壁面部での垂直に近い段差が素子の大き
な信頼性低下に繋がる。
Furthermore, in order to improve the operating speed of the device in EPROMs, etc., a high melting point metal or silicide of a high melting point metal may be deposited on the upper surface of the second gate electrode 6' and its wiring to lower the resistance. However, in the conventional structure, the nearly vertical step on the side wall surface of the first gate electrode 4' leads to a significant decrease in the reliability of the device.

すなわち、このような段差部では酸化膜5を形成した後
においても、その壁面は依然としてほぼ垂直状態にあり
、高融点金属材料膜はこのような急峻な段差構造部にお
いては、゛デポジション工程時に局所的に膜厚の変動す
る箇所が生じて、機械的な強度を低下させる。更に、こ
れら高融点材料は一般的には熱的に安定と言われてはい
るが、現実にはその後の工程における熱処理時に段差部
において断線を生じ易かった。したがって、この場合、
電気抵抗の低減は計れず、信頼性も悪くなる。
In other words, even after forming the oxide film 5 in such a stepped portion, the wall surface is still almost vertical, and the refractory metal material film in such a steep stepped structure is not easily removed during the deposition process. There are areas where the film thickness varies locally, reducing mechanical strength. Furthermore, although these high melting point materials are generally said to be thermally stable, in reality they tend to break at the stepped portion during heat treatment in subsequent steps. Therefore, in this case,
The reduction in electrical resistance cannot be measured, and reliability also deteriorates.

[発明の目的コ 本発明は上記の事情に鑑みて成されたもので、第1のゲ
ート電極の絶縁膜の絶縁耐圧を向上させるとともに、電
気抵抗を低減するため第2のゲート酸化膜及びその配線
上に高融点金属材料をm積した場合において第1のゲー
ト電極側部での段差による該高融点金属材料のパターン
切れを防止できるようにした半導体装置の製造方法を提
供することを目的とする。
[Purpose of the Invention] The present invention has been made in view of the above-mentioned circumstances, and in order to improve the dielectric strength voltage of the insulating film of the first gate electrode and reduce the electrical resistance, the second gate oxide film and its An object of the present invention is to provide a method for manufacturing a semiconductor device that can prevent pattern breakage of the high melting point metal material due to a step on the side of a first gate electrode when m piles of the high melting point metal material are placed on wiring. do.

[発明のl[要j すなわち、上記目的を達成するため本発明は、一導電型
半導体基板の表−に島状に素子領域を分離するフィール
ド酸化膜を形成し、該素子領域の表面に第1のゲート酸
化膜を形成する工程と、全面に第1の多結晶シリコン躾
を形成し、その全面に該第1の多結晶シリコン膜の保護
膜を形成した後、これら二層をバターニングして第1の
ゲート電極を形成する工程と、全面に酸化膜を成長させ
、これをエツチング除去して前記ゲート電極の側部にの
み酸化膜を残す工程と、前記保W!膜を除去し後、第1
のゲート電極の露出面に第2のゲート絶縁膜を形成する
工程と、全面に導電性膜を堆積するとともにこれらをバ
ターニングして第2のゲート電極を形成する工程とを具
備したことを特徴とする。かかる本発明は、多結晶シリ
゛コン膜を形成し、その上面に該多結晶シリコン膜の保
護膜を形成した後、これら二層をバターニングして、第
1のゲート電極を形成し、その後、全面に酸化膜を成長
させてこれをエツチング除去することにより、第1のゲ
ート電極の側部にのみ酸化膜を残し、これにより第1の
ゲート電極の側部の酸化膜厚を確保するとともに、第1
のゲート電極上の保護膜を除去することにより第1のゲ
ート電極の表面を露出させ、次に熱酸化を行って、第1
のゲート電極の露出面に第2のゲート絶縁膜を形成して
後、多結晶シリコン膜を堆積して第2のゲート電極を形
成することにより、第1のゲート電極の角部での酸化膜
厚を厚くして十分な絶縁耐圧を得ることができるように
し、且つ、第1のゲート電極側壁がエツチングによりオ
ーバハングとなっても、厚い側部の酸化膜により、この
オーバハング部を埋め、これによって、第2のゲート・
電極のバターニング後において第1のゲート電極側部に
不要な多結晶シリコン膜が残留することが無いようにし
、また、第2のゲート電極上に高融点金属材料を堆積し
て低抵抗化を図る場合に第1のゲート電極側部の残存酸
化膜により、該側部での段差が緩やかな斜面を呈するこ
とを利用して、上記高融点金属材料のパターン切れが生
じないようにする。
[Summary of the Invention] That is, in order to achieve the above object, the present invention forms a field oxide film separating element regions into islands on the surface of a semiconductor substrate of one conductivity type, and a field oxide film is formed on the surface of the element region. After forming a first gate oxide film, forming a first polycrystalline silicon film on the entire surface, and forming a protective film for the first polycrystalline silicon film on the entire surface, these two layers are buttered. a step of growing an oxide film over the entire surface and removing it by etching to leave the oxide film only on the sides of the gate electrode; After removing the film, the first
a step of forming a second gate insulating film on the exposed surface of the gate electrode; and a step of depositing a conductive film on the entire surface and patterning these to form a second gate electrode. shall be. According to the present invention, a polycrystalline silicon film is formed, a protective film for the polycrystalline silicon film is formed on the upper surface of the polycrystalline silicon film, and then these two layers are patterned to form a first gate electrode. By growing an oxide film on the entire surface and removing it by etching, the oxide film is left only on the sides of the first gate electrode, thereby ensuring the thickness of the oxide film on the sides of the first gate electrode. , 1st
The surface of the first gate electrode is exposed by removing the protective film on the gate electrode, and then thermal oxidation is performed to remove the protective film on the first gate electrode.
After forming a second gate insulating film on the exposed surface of the gate electrode, a polycrystalline silicon film is deposited to form the second gate electrode, thereby reducing the oxide film at the corners of the first gate electrode. The thickness is increased so that sufficient dielectric strength can be obtained, and even if the side wall of the first gate electrode overhangs due to etching, the overhang is filled with the oxide film on the thick side, thereby making it possible to , second gate
After patterning the electrode, no unnecessary polycrystalline silicon film remains on the side of the first gate electrode, and a high melting point metal material is deposited on the second gate electrode to lower the resistance. In this case, the remaining oxide film on the side of the first gate electrode causes the step on the side to have a gentle slope, so that the pattern of the high melting point metal material does not break.

[発明の実施例] 以下、不揮発性メモリ(EPROM)を例にとり、本発
明の実施例について第1図(a)〜(0)に示す製造工
程図を参照しながら説明する。
[Embodiments of the Invention] Hereinafter, embodiments of the present invention will be described using a nonvolatile memory (EPROM) as an example, with reference to manufacturing process diagrams shown in FIGS. 1(a) to (0).

まず、p型シリコン基板101上に島状に素子領域を分
離するフィールド酸化膜102を形成し、次に基板10
1の露出面に第1のゲート酸化膜103を形成した。次
に基板101の全面に第1の多結晶シリコン11104
を堆積した後、導電性を持たせるためにこの第1の多結
晶シリコン膜104に例えば不純物として砒素をドープ
した。次に全面にシリコン窒化膜105を形成した(第
1図(a)図示)。このシリコン窒化膜105は第1の
多結晶シリコン膜104をエツチングする際、第1のゲ
ート電極膜厚を保つためのストッパとなる。但し、この
ストッパはシリコン窒化膜に限定されるものではなく、
次の工程で多結晶シリコン膜104をエツチングの保護
膜としての作用がある被膜であれば何でも良いが、ここ
では該被膜の除去の容易さからシリコン窒化膜を用いて
いる。
First, a field oxide film 102 is formed on a p-type silicon substrate 101 to separate device regions into islands, and then a field oxide film 102 is formed on the substrate 101.
A first gate oxide film 103 was formed on the exposed surface of 1. Next, a first polycrystalline silicon layer 11104 is applied to the entire surface of the substrate 101.
After depositing, the first polycrystalline silicon film 104 is doped with, for example, arsenic as an impurity to make it conductive. Next, a silicon nitride film 105 was formed on the entire surface (as shown in FIG. 1(a)). This silicon nitride film 105 serves as a stopper for maintaining the thickness of the first gate electrode when etching the first polycrystalline silicon film 104. However, this stopper is not limited to silicon nitride film;
Any film may be used as long as it functions as a protective film for etching the polycrystalline silicon film 104 in the next step, but a silicon nitride film is used here because it is easy to remove.

次に、全面にレジストを塗布し、写真蝕刻法により素子
領域の第1のゲート電極形成予定部にレジスト・パター
ン106を形成した(第1図(b)図示)。続いて、レ
ジストパターン106をマスクとしてシリコン窒化膜1
05と多結晶シリコン膜104を順次エツチング除去し
、第1のゲルト電極104′を形成した(第1図(C)
図示)。
Next, a resist was applied to the entire surface, and a resist pattern 106 was formed in the area where the first gate electrode was to be formed in the element region by photolithography (as shown in FIG. 1(b)). Next, using the resist pattern 106 as a mask, the silicon nitride film 1 is
05 and the polycrystalline silicon film 104 were sequentially etched away to form a first gel electrode 104' (Fig. 1(C)).
(Illustrated).

つぎに、レジスト・パターン106を除去した後、熱酸
化を行って、第1のゲート電極104′の側壁面に酸化
膜107を形成した。次いで基板101(7)全面1.
mCVD法ニヨV)S i 02 M! 108を堆積
させた後、S+0211108の全面にポロンを、例え
ば、lX10”Cm4程度イオン注入した(第1図(d
)図示)。このイオン注入により酸化11108は速く
エツチングされるようになる。そして、段差部と平坦部
ではその膜厚を較べると、段差部の方が厚いため、段差
部では平坦部膜厚より深い領域での不純物濃度が、それ
より浅い領域より低くなることから、平坦部膜厚相当分
より深い領域ではそれより浅い領域に較べ、エツチング
・レートを低く設定できる。
Next, after removing the resist pattern 106, thermal oxidation was performed to form an oxide film 107 on the sidewall surface of the first gate electrode 104'. Next, the entire surface of the substrate 101 (7) 1.
mCVD method niyo V) S i 02 M! After depositing 108, poron was ion-implanted into the entire surface of S+0211108, for example, about 1×10”Cm4 (Fig. 1(d)
). This ion implantation allows the oxide 11108 to be etched quickly. Comparing the film thickness between the step part and the flat part, since the step part is thicker, the impurity concentration in the step part is deeper than the flat part, and the impurity concentration is lower than in the shallower area. The etching rate can be set lower in a region deeper than the equivalent film thickness than in a shallower region.

次いで、稀弗酸等を用いSiO2膜108をエツチング
除去した。この時、SiO2膜108の平坦部はボロン
の不純物濃度が高く、一方、段差部では平坦部膜厚より
深い領域での不純物濃度が低いため、平坦部の膜厚分、
5102M1108をエツチングすると第1のゲート電
極104′の側部にのみSiO2膜108′が残った(
第1図(e)図示)。この残存SiO2膜108′の側
面は曲面を呈するので、段差部は滑らかな斜面を形成す
るようになった。
Next, the SiO2 film 108 was removed by etching using dilute hydrofluoric acid or the like. At this time, the flat part of the SiO2 film 108 has a high boron impurity concentration, while in the step part, the impurity concentration is lower in a region deeper than the flat part.
When etching 5102M1108, the SiO2 film 108' remained only on the sides of the first gate electrode 104' (
(Illustrated in FIG. 1(e)). Since the side surface of the remaining SiO2 film 108' has a curved surface, the stepped portion forms a smooth slope.

次に第1のゲート電極104−上のシリコン窒化膜10
5を除去した後、熱酸化を行って、第1のゲート電極1
04−の上面に第2のゲート酸化wA109を形成した
(第1図(f)図示)。つづいて、基板101全面に第
2の多結晶シリコン膜を堆積した後、導電性を与えるた
めに、例えばリンをドープした(第1図(Q)図示)。
Next, the silicon nitride film 10 on the first gate electrode 104-
After removing the first gate electrode 1, thermal oxidation is performed to form the first gate electrode 1.
A second gate oxidation wA109 was formed on the upper surface of 04- (as shown in FIG. 1(f)). Subsequently, a second polycrystalline silicon film was deposited on the entire surface of the substrate 101, and then doped with, for example, phosphorus to provide conductivity (as shown in FIG. 1(Q)).

その後は従来技術に従い、レジスト・パターンを用いて
第2の多結晶シリコン膜をバターニングし、第2のゲー
ト電極110およびその配線を形成し、更に該レジスト
・パターンを除去して後、これをマスクにn型不純物を
イオン注入し、次いでこの注入したイオンを活性化して
ソース・ドレイン領域を形成した。次に全面に層間絶縁
膜を堆積するとともに層間絶縁膜のソース、ドレイン領
域位置にコンタクト・ホールを開口し、次いで全面にア
ルミニウム堆積して後、これをバターニングし、コンタ
クト・ホールを介してソース、ドレイン領域に接続され
る配線を形成して半導体装置を完成させた。
Thereafter, in accordance with the conventional technique, the second polycrystalline silicon film is buttered using a resist pattern to form the second gate electrode 110 and its wiring, and the resist pattern is removed. N-type impurity ions were implanted into the mask, and then the implanted ions were activated to form source/drain regions. Next, an interlayer insulating film is deposited on the entire surface, and contact holes are opened at the source and drain regions of the interlayer insulating film. Next, aluminum is deposited on the entire surface, and then this is buttered and the source is connected through the contact holes. Then, wiring connected to the drain region was formed to complete the semiconductor device.

このようにして製造された半導体装置は、第1のゲート
電極104−の側壁部分での酸化膜が厚く形成できるた
め、第1のゲート電極104′の角部での酸化膜厚を厚
く保って十分な絶縁耐圧を得ることができるようになる
他、第1のゲート電極104−の側壁部分での酸化膜が
厚いことから、この側壁酸化膜によりオーバハング部分
はこの側壁酸化膜により埋められ、該オーバハングの影
響がなくなる。しかも、前記第1のゲート電極104′
の側壁部分に残した酸化WA108−が曲面のスd−プ
を呈することから、この上に堆積された第2のゲート電
極110形成用の第2の多結晶シリコン膜が従来のよう
に第1のゲート電極104′オーバハング部下に堆積し
て、該第2の多結晶シリコン膜のエツチングに際してこ
の部分に残留しやすくなると言った欠点は無くなり、従
って、該第2の多結晶シリコン膜のエツチング加工時に
、前記残留多結晶シリコン膜除去のために要していたオ
ーバ・エッチ時間がほとんど不要になるため、第1層ゲ
ート電極104−下のフィールド酸化膜102の浸蝕を
防止できるようになる。
In the semiconductor device manufactured in this way, since the oxide film can be formed thickly on the sidewall portions of the first gate electrode 104-, the oxide film thickness at the corners of the first gate electrode 104' can be kept thick. In addition to being able to obtain a sufficient dielectric strength voltage, since the oxide film on the side wall portion of the first gate electrode 104- is thick, the overhang portion is filled with this side wall oxide film, and the overhang portion is filled with the side wall oxide film. The effect of overhang is eliminated. Moreover, the first gate electrode 104'
Since the oxidized WA 108- left on the side wall portion of the oxide exhibits a curved surface, the second polycrystalline silicon film deposited thereon for forming the second gate electrode 110 is The disadvantage of depositing under the overhang of the gate electrode 104' and easily remaining in this area during etching of the second polycrystalline silicon film is eliminated. Since the over-etching time required to remove the residual polycrystalline silicon film becomes almost unnecessary, erosion of the field oxide film 102 under the first layer gate electrode 104 can be prevented.

なお、上記実施例では第2のゲート絶縁膜材料としてS
 i 02 IIを用いたが、第1のゲート電極104
′と第2のゲート電極110との間の絶縁耐圧を考える
と、5iOz膜のみを用いるよりも、5i02膜上にシ
リコン窒化膜を形成した後、シリコン窒化膜表面を酸化
性雰囲気中で熱処理し、一部ヲs i 02 mニLり
S i 02 */シu コ>窒化!!/8102膜の
三層構造にすることが望ましい。また、第1図(d)に
おいてイオン注入を行うことにより5if2膜108の
エツチング・レートを調整し、これにより段差部にSi
O2膜を残すようにしたが、SiO2膜厚は平坦部より
段差部の方が厚いため、不純物導入によるエツチング・
レート調整を行わずに、単にRIEを用いてエツチング
のみ行っても、段差部の側壁部にのみ5102膜を残す
ことができる。
Note that in the above embodiment, S is used as the second gate insulating film material.
i 02 II was used, but the first gate electrode 104
Considering the dielectric strength between the gate electrode 110 and the second gate electrode 110, it is better to form a silicon nitride film on the 5i02 film and then heat-treat the surface of the silicon nitride film in an oxidizing atmosphere, rather than using only the 5iOz film. , Some of them are S i 02 * / Shiko > Nitriding! ! It is desirable to have a three-layer structure of /8102 film. In addition, the etching rate of the 5if2 film 108 is adjusted by performing ion implantation in FIG.
Although we tried to leave the O2 film, the thickness of the SiO2 film is thicker on the stepped parts than on the flat parts, so etching due to the introduction of impurities
Even if etching is simply performed using RIE without rate adjustment, the 5102 film can be left only on the sidewalls of the stepped portions.

実施例2 実施例1は第2のゲート電極110とその配線は多結晶
シリコン膜一層により構成したものであり、この場合、
素子の動作速度に限度がある。そこで、素子の動作速度
を向上させるため、第2の多結晶シリコン膜110a上
に高、−融点金属または高融点金属シリサイドによる高
融点金属材料111をスパッタ蒸着法により蒸着し、二
層化する。
Example 2 In Example 1, the second gate electrode 110 and its wiring are composed of a single layer of polycrystalline silicon film, and in this case,
There is a limit to the operating speed of the element. Therefore, in order to improve the operating speed of the element, a high melting point metal material 111 made of a high melting point metal or a high melting point metal silicide is deposited on the second polycrystalline silicon film 110a by sputter deposition to form a two-layer structure.

すなわち、実施例2においては、第1図(a)〜第1図
(f)に示した工程と同様な製造工程を経た後、第2の
多結晶シリコン膜110a上に高融点金属材料111を
スパッタ蒸着法により蒸着し、次いでこれら高融点金属
材料111及び第2の多結晶シリコン膜110aをパタ
ーニングして高融点金属材料111及び第2の多結晶シ
リコン膜110の二層構造の第2のゲート電極112及
びその配線を形成しく第6図図示)、この二層構造化に
より低抵抗化を図るようにした。
That is, in Example 2, after going through the same manufacturing steps as those shown in FIGS. 1(a) to 1(f), a high melting point metal material 111 is formed on the second polycrystalline silicon film 110a. The high melting point metal material 111 and the second polycrystalline silicon film 110a are deposited by sputter deposition and then patterned to form a second gate with a two-layer structure of the high melting point metal material 111 and the second polycrystalline silicon film 110. The electrode 112 and its wiring (as shown in FIG. 6) are formed into a two-layer structure to achieve low resistance.

このようにすると、従来構造では第1のゲート電極側壁
面部に垂直に近い段差があったため、第2のゲート電極
上に高融点金属材料を堆積して低抵抗化を図ろうとして
も、この段差部でパターン切れを生じることがあり、十
分な効果が得られなかったが、本発明によれば第1のゲ
ート電極104′側壁部の残存酸化膜108′により、
該側部での段差が緩やかな斜面を呈することから、高融
点金属材料はストレスが生じなくなり、従って、第2の
ゲート電極112を構成している高融点金属材料111
は該段差部でのパターン切れが生じなくなって、十分、
且つ確実に低抵抗化が計れるようになる。
In this case, in the conventional structure, there was a nearly vertical step on the side wall surface of the first gate electrode, so even if an attempt was made to deposit a high melting point metal material on the second gate electrode to lower the resistance, this step would be removed. However, according to the present invention, due to the residual oxide film 108' on the side wall of the first gate electrode 104',
Since the step at the side portion exhibits a gentle slope, stress does not occur in the high melting point metal material, and therefore, the high melting point metal material 111 constituting the second gate electrode 112
The pattern breakage at the step part no longer occurs, and it is sufficient.
Moreover, it becomes possible to reliably reduce the resistance.

[発明の効果] 以上、詳述したように本発明によれば、第1のゲート電
極の角部での酸化膜厚を厚くすることができて十分な絶
縁耐圧を得ることができるようになり、且つ、第1のゲ
ート電極下の酸化膜がエツチングされて該ゲート電極下
縁がオーバハングとなることを防止でき、また、第2の
ゲート電極上に高融点金属材料を蒸着して低抵抗化を図
る場合に第1のゲート電極側部の残存酸化膜により、該
側部での段差が緩やかな斜面となるので、上記高融点金
属材料のパターン切れが生じなくなるなど信頼性の高い
半導体装置の製造方法を提供することが出来る。
[Effects of the Invention] As detailed above, according to the present invention, it is possible to increase the thickness of the oxide film at the corners of the first gate electrode, and to obtain sufficient dielectric strength. In addition, it is possible to prevent the oxide film under the first gate electrode from being etched and the lower edge of the gate electrode becomes overhang, and to reduce the resistance by depositing a high melting point metal material on the second gate electrode. In this case, the remaining oxide film on the side of the first gate electrode causes the step on the side to become a gentle slope, which prevents pattern breakage of the high-melting point metal material, resulting in a highly reliable semiconductor device. A manufacturing method can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(g)は本発明の実施例1を説明するた
めの製造工程図、第2図(a)〜(d)は従来方法を説
明するための製造工程図、第3図は第2図(d)のA−
A断面図、第4図は従来における第1の多結晶シリコン
膜エツチング時に生じるフィールド酸化膜表面の第1の
ゲート電極付近での浸蝕の様子を説明するための図、第
5図は従来における第1のゲート電極に形成した酸化膜
の状態を示す図、第6図は本発明の実施例2の構造を示
す断面図である。 101・・・p型シリコン基板、102・・・フィール
ド酸化膜、103・・・第1のゲート酸化膜、104・
・・第1の多結晶シリコン膜、104′・・・第1のゲ
ート電極、105・・・シリコン窒化膜、106・・・
レジスト・パターン、107・・・酸化膜、108.1
08”・・・シリコン酸化膜、109・・・第2のゲー
ト酸化膜、110,112・・・第2のゲート電極、1
10a・・・第2の多結晶シリコン膜、111・・・高
融点金属材料。 第1図 第 1 図 第2図 A′第3図
FIGS. 1(a) to (g) are manufacturing process diagrams for explaining Example 1 of the present invention, FIGS. 2(a) to (d) are manufacturing process diagrams for explaining the conventional method, and FIG. The figure is A- in Figure 2(d).
A sectional view, FIG. 4 is a diagram for explaining the corrosion state of the field oxide film surface near the first gate electrode that occurs during etching of the first polycrystalline silicon film in the conventional method, and FIG. FIG. 6 is a cross-sectional view showing the structure of Example 2 of the present invention. 101...p-type silicon substrate, 102...field oxide film, 103...first gate oxide film, 104...
...First polycrystalline silicon film, 104'...First gate electrode, 105...Silicon nitride film, 106...
Resist pattern, 107... Oxide film, 108.1
08"...Silicon oxide film, 109...Second gate oxide film, 110, 112...Second gate electrode, 1
10a... Second polycrystalline silicon film, 111... High melting point metal material. Figure 1 Figure 1 Figure 2 Figure A' Figure 3

Claims (4)

【特許請求の範囲】[Claims] (1)一導電型半導体基板の表面に島状に素子領域を分
離するフィールド酸化膜を形成し、該素子領域の表面に
第1のゲート絶縁膜を形成する工程と、全面に第1の多
結晶シリコン膜を形成し、その全面に該第1の多結晶シ
リコン膜の保護膜を形成した後、これら二層をパターニ
ングして第1のゲート電極を形成する工程と、全面に酸
化膜を成長させ、これをエッチング除去して前記ゲート
電極の側部にのみ酸化膜を残す工程と、前記保護膜を除
去した後、第1のゲート電極の露出面に第2のゲート絶
縁膜を形成する工程と、全面に導電性膜を堆積し、これ
をパターニングして第2のゲート電極を形成する工程と
を具備して成る半導体装置の製造方法。
(1) A step of forming a field oxide film separating element regions into islands on the surface of a semiconductor substrate of one conductivity type, forming a first gate insulating film on the surface of the element region, and forming a first multilayer film on the entire surface. After forming a crystalline silicon film and forming a protective film of the first polycrystalline silicon film on the entire surface, patterning these two layers to form a first gate electrode, and growing an oxide film on the entire surface. a step of etching away this to leave an oxide film only on the sides of the gate electrode; and a step of forming a second gate insulating film on the exposed surface of the first gate electrode after removing the protective film. A method for manufacturing a semiconductor device, comprising the steps of: depositing a conductive film over the entire surface and patterning the conductive film to form a second gate electrode.
(2)第2のゲート電極は多結晶シリコン膜とすること
を特徴とする特許請求の範囲第1項記載の半導体装置の
製造方法。
(2) The method for manufacturing a semiconductor device according to claim 1, wherein the second gate electrode is a polycrystalline silicon film.
(3)第2のゲート電極は多結晶シリコン膜とその上面
に堆積した高融点金属材料膜の二層構造とすることを特
徴とする特許請求の範囲第1項記載の半導体装置の製造
方法。
(3) The method of manufacturing a semiconductor device according to claim 1, wherein the second gate electrode has a two-layer structure of a polycrystalline silicon film and a high melting point metal material film deposited on the upper surface of the second gate electrode.
(4)第2のゲート電極は多結晶シリコン膜とその上面
に堆積した高融点金属シリサイド膜の二層構造とするこ
とを特徴とする特許請求の範囲第1項記載の半導体装置
の製造方法。
(4) The method of manufacturing a semiconductor device according to claim 1, wherein the second gate electrode has a two-layer structure of a polycrystalline silicon film and a high melting point metal silicide film deposited on the upper surface of the second gate electrode.
JP59139986A 1984-07-06 1984-07-06 Method for manufacturing semiconductor device Expired - Lifetime JPH0810726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59139986A JPH0810726B2 (en) 1984-07-06 1984-07-06 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59139986A JPH0810726B2 (en) 1984-07-06 1984-07-06 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPS6119176A true JPS6119176A (en) 1986-01-28
JPH0810726B2 JPH0810726B2 (en) 1996-01-31

Family

ID=15258276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59139986A Expired - Lifetime JPH0810726B2 (en) 1984-07-06 1984-07-06 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH0810726B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63155769A (en) * 1986-12-04 1988-06-28 テキサス インスツルメンツ インコーポレイテッド Application of side wall oxide for reducing filament
FR2634318A1 (en) * 1988-07-13 1990-01-19 Commissariat Energie Atomique METHOD FOR MANUFACTURING INTEGRATED MEMORY CELL
JP2002509359A (en) * 1997-12-18 2002-03-26 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド Formation of control gate and floating gate of semiconductor nonvolatile memory
DE10020259B4 (en) * 1999-04-22 2009-07-02 Samsung Electronics Co., Ltd., Suwon Method for producing floating gates in a semiconductor device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5066182A (en) * 1973-10-12 1975-06-04
JPS5444482A (en) * 1977-09-14 1979-04-07 Matsushita Electric Ind Co Ltd Mos type semiconductor device and its manufacture
JPS5544742A (en) * 1978-09-26 1980-03-29 Fujitsu Ltd Manufacture of semiconductor device
JPS5737853A (en) * 1980-08-18 1982-03-02 Toshiba Corp Forming method for multilayer thin-film
JPS58121681A (en) * 1982-01-12 1983-07-20 Mitsubishi Electric Corp Nonvolatile semiconductor memory cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5066182A (en) * 1973-10-12 1975-06-04
JPS5444482A (en) * 1977-09-14 1979-04-07 Matsushita Electric Ind Co Ltd Mos type semiconductor device and its manufacture
JPS5544742A (en) * 1978-09-26 1980-03-29 Fujitsu Ltd Manufacture of semiconductor device
JPS5737853A (en) * 1980-08-18 1982-03-02 Toshiba Corp Forming method for multilayer thin-film
JPS58121681A (en) * 1982-01-12 1983-07-20 Mitsubishi Electric Corp Nonvolatile semiconductor memory cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63155769A (en) * 1986-12-04 1988-06-28 テキサス インスツルメンツ インコーポレイテッド Application of side wall oxide for reducing filament
FR2634318A1 (en) * 1988-07-13 1990-01-19 Commissariat Energie Atomique METHOD FOR MANUFACTURING INTEGRATED MEMORY CELL
JP2002509359A (en) * 1997-12-18 2002-03-26 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド Formation of control gate and floating gate of semiconductor nonvolatile memory
DE10020259B4 (en) * 1999-04-22 2009-07-02 Samsung Electronics Co., Ltd., Suwon Method for producing floating gates in a semiconductor device

Also Published As

Publication number Publication date
JPH0810726B2 (en) 1996-01-31

Similar Documents

Publication Publication Date Title
JP3382143B2 (en) Method of forming isolation region in silicon substrate and structure of isolation region
JP2760068B2 (en) Method of manufacturing MIS type semiconductor device
JPH03173480A (en) Manufacture of semiconductor device having multilayer conduction line lying on board
JPS60234372A (en) Manufacture of semiconductor device
US4085499A (en) Method of making a MOS-type semiconductor device
JPS6119176A (en) Manufacture of semiconductor device
US4400867A (en) High conductivity metallization for semiconductor integrated circuits
US4170500A (en) Process for forming field dielectric regions in semiconductor structures without encroaching on device regions
JPS5989457A (en) Manufacture of semiconductor device
JPS5923468B2 (en) Manufacturing method of semiconductor device
JP2604021B2 (en) Method for manufacturing semiconductor device
JPS60258964A (en) Manufacture of semiconductor device
JPH06196689A (en) Insulated gate field-effect semiconductor device and manufacture thereof
JPH01214142A (en) Manufacture of semiconductor device
JP2820263B2 (en) Method for manufacturing semiconductor device
JPS6124283A (en) Manufacture of semiconductor device
JP2871771B2 (en) Method for manufacturing semiconductor device
JPS5947466B2 (en) Manufacturing method of semiconductor device
JPH08236475A (en) Formation of contact window
JPH1126756A (en) Manufacture of semiconductor device
JPH02211633A (en) Semiconductor device and manufacture thereof
JPS61158173A (en) Manufacture of bipolar-type transistor
JPH0320086A (en) Manufacture of semiconductor storage device
JPS6092615A (en) Manufacture of semiconductor device
JPH04100239A (en) Manufacture of bipolar transistor