JPS61191515A - Production of hydrated silicic acid - Google Patents

Production of hydrated silicic acid

Info

Publication number
JPS61191515A
JPS61191515A JP60028899A JP2889985A JPS61191515A JP S61191515 A JPS61191515 A JP S61191515A JP 60028899 A JP60028899 A JP 60028899A JP 2889985 A JP2889985 A JP 2889985A JP S61191515 A JPS61191515 A JP S61191515A
Authority
JP
Japan
Prior art keywords
raw material
acid
hydrated
phase
silicic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60028899A
Other languages
Japanese (ja)
Other versions
JPH0454618B2 (en
Inventor
Hiroyuki Tamenori
為則 裕之
Akihiko Hattori
明彦 服部
Hideyuki Kikuchi
菊地 秀幸
Mitsugi Yoshiyagawa
吉谷川 貢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP60028899A priority Critical patent/JPS61191515A/en
Priority to IT19398/86A priority patent/IT1191978B/en
Priority to DE3604732A priority patent/DE3604732C2/en
Priority to NO860560A priority patent/NO172229C/en
Publication of JPS61191515A publication Critical patent/JPS61191515A/en
Publication of JPH0454618B2 publication Critical patent/JPH0454618B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/124Preparation of adsorbing porous silica not in gel form and not finely divided, i.e. silicon skeletons, by acidic treatment of siliceous materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)

Abstract

PURPOSE:To produce high-purity porous hydrated silicic acid in large quantities by feeding a raw material of liquid hydrated silicate into a mineral acid phase and by causing a condensation reaction of silanol group to start. CONSTITUTION:The liquid raw material of hydrated silicate (example: water- glass) composed of 50-72wt% moisture content and 21-37wt% Si content is dropped from a nozzle onto the buffer solution phase (example: n-pentane) formed on a mineral acid phase, then is fed into the phase of mineral acid having the concentration of 1-36 normal at a room temp. -100 deg.C through the buffer solution phase, the condensation reaction is caused to take place from the surface of the raw material, and the porous hydrated silicide acid is formed. Thereby, the choking of a raw material-feeding port and the generation of the raw material of dumpling-like hydrated silicic acid can be prevented.

Description

【発明の詳細な説明】 r#紫 I−^3f田八軒へ 本発明は含水珪酸の製造方法に関し、特に高純度の含水
珪酸を大量生産するのに適した含水珪酸の製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing hydrated silicic acid, and more particularly to a method for producing hydrated silicic acid suitable for mass production of high-purity hydrated silicic acid.

〔従来の技術〕[Conventional technology]

現在、次計代のエネルギー資源に関し太陽エネルギーが
注目され、太陽光発電に関する研究が進められている。
Currently, solar energy is attracting attention as a next generation energy resource, and research on solar power generation is progressing.

とりわけシリコン太@電池は最も有望視されており品質
の向上および安価な製造方法の開発が急がれている。
In particular, silicon batteries are considered the most promising, and there is an urgent need to improve their quality and develop inexpensive manufacturing methods.

シリコン太陽電池に使うシリコンは高純度であることが
要求されているため、現在は半導体用に製造されたシリ
フンを用いている。したがってシリコン原料自体が非常
に高価であり、このことが太陽電池のコストを高くして
いる。
Because the silicon used in silicon solar cells must be highly pure, silicon manufactured for semiconductors is currently used. Therefore, the silicon raw material itself is very expensive, which increases the cost of solar cells.

そこで高純度の二酸化珪素を高純度の炭素を用いて汚染
なく還元し太陽電池に使用出来るシリコンを製造する試
みがなされている。この方法によれば金属シリコンを一
度トリクロルシランに換え精製後還元を行なう半導体用
シリコンの製造法に比ベエネルギー、コスト共大きく削
減できる利点を持っている。
Therefore, attempts have been made to reduce high-purity silicon dioxide using high-purity carbon without contamination to produce silicon that can be used in solar cells. This method has the advantage of greatly reducing energy and cost compared to the method of manufacturing silicon for semiconductors in which metallic silicon is first converted into trichlorosilane and then purified and then reduced.

しかし、この方法に用いられる天然の高純度の二酸化珪
素としては一部高級品として産出される水晶があげられ
るだけであり、その資源量は限られている。大量の太陽
電池の製造に対し豊富に存在するけい砂など純度の悪い
けい酸塩原料を精製し、高純度の二酸化珪素に変える技
術が望まれている。
However, as the natural high-purity silicon dioxide used in this method, there are only some quartz crystals produced as high-quality products, and the amount of resources is limited. For the production of large quantities of solar cells, there is a need for a technology that can purify the abundant silica sand and other low-purity silicate raw materials and convert them into high-purity silicon dioxide.

一部アルカリ珪酸塩(通称水ガラス)を酸と反応させて
シリカゲルを得るという方法が知られている。
A method is known in which silica gel is obtained by reacting a partially alkali silicate (commonly known as water glass) with an acid.

〔発明が解決しようとする間瀧点〕[The gap that the invention attempts to solve]

前記シリカゲルは純度の高いSiO2から出来ており、
この様なシリカゲルを上記直接還元に使用することも考
えられるが、これらシリカゲルは通常5i02純度が9
qJwt%程度、高純度といわれるものでもタデ、9夕
wt%程度であり、そのままの状態では上記直接還元に
よる太陽電池用シリコンの製造に使用出来なかった。
The silica gel is made of highly pure SiO2,
Although it is possible to use such silica gel for the above-mentioned direct reduction, these silica gels usually have a purity of 5i02 of 9.
Even if it is said to have a high purity, it is only about 90% by weight, and it could not be used in the production of silicon for solar cells by the above-mentioned direct reduction in its original state.

これは通常のシリカゲルではシリカゲル中に含まれる5
i02以外の不純物(Na++Cja2+yHg2+な
ど)がシリカゲルの外部洗浄液中にぬけにくく、高純度
化が難かしいことに起因していた。
This is the amount of 5 contained in silica gel in normal silica gel.
This is due to the fact that impurities other than i02 (such as Na++Cja2+yHg2+) are difficult to escape into the external cleaning solution of silica gel, making it difficult to achieve high purity.

本発明は純度の悪い珪酸塩原料がら太陽電池用シリコン
製造などに使用することのできる高純度含水珪酸を製造
する方法、特に大量生産できる方法を提供することをそ
の目的とする。
An object of the present invention is to provide a method for producing high-purity hydrated silicic acid that can be used for manufacturing silicon for solar cells, etc. from silicate raw materials with poor purity, and in particular, to provide a method that can be mass-produced.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記問題点を解決するために液体状含水珪酸
塩原料を原料供給口から、鉱酸相と原料塩原料表面から
シラノール基の綜合反応を起こさせて該液体状含水珪酸
塩原料を多孔質状の含水珪酸に変える含水珪酸の製造方
法を用いる。
In order to solve the above-mentioned problems, the present invention provides a liquid hydrated silicate raw material by causing a synthesis reaction of silanol groups from the mineral acid phase and the surface of the raw salt raw material through the raw material supply port. A method for producing hydrated silicic acid is used in which the hydrated silicic acid is changed to porous hydrated silicic acid.

ここで鉱酸相と原料供給口との間に設ける緩衝液体とし
ては鉱酸および含水珪酸塩と反応あるいは混合しにくい
ものであれば使用でき、鉱酸よりも比重が小さいもので
あっても又大きいものであってもかまわない。なかでも
鉱酸よりも比重の小さい緩衝液体が、緩衝液体相を鉱酸
上部に設けることにより液体状含水珪酸塩原料(以下原
料と略称する)を自重によって該緩衝液体相から鉱酸相
へ供給できるので好ましい。
As the buffer liquid provided between the mineral acid phase and the raw material supply port, any liquid that does not easily react with or mix with mineral acids and hydrated silicate can be used, even if it has a specific gravity lower than that of mineral acids. It doesn't matter if it's big. Among them, a buffer liquid with a specific gravity smaller than that of the mineral acid is used. By providing a buffer liquid phase above the mineral acid, liquid hydrated silicate raw material (hereinafter referred to as raw material) is supplied from the buffer liquid phase to the mineral acid phase by its own weight. This is preferable because it can be done.

鉱酸よりも比重の小さい緩衝液体としてはn −ペンタ
ン、n−ヘキサンなどの有機液体が例示できる。
Examples of buffer liquids having a specific gravity lower than that of mineral acids include organic liquids such as n-pentane and n-hexane.

液体状含水珪酸塩原料を緩衝液体相を通して鉱酸相へ供
給する方法としては、 (a)  緩衝液体相を鉱酸相上部に設け(1)原料を
ノズル等から緩衝液体相へ滴下させる。
A method for supplying a liquid hydrated silicate raw material to a mineral acid phase through a buffer liquid phase is as follows: (a) A buffer liquid phase is provided above the mineral acid phase (1) The raw material is dropped into the buffer liquid phase from a nozzle or the like.

(11)原料をトイ又はノズル等で緩衝液体相へ流し込
む。
(11) The raw material is poured into the buffer liquid phase using a toy or nozzle.

1ii1  緩衝液体相内へノズルを浸めノズルより原
料を流し込む。
1ii1 Immerse the nozzle into the buffer liquid phase and pour the raw material through the nozzle.

(bl  緩衝液体相を鉱酸相の下方又は側方に設け(
1)緩衝液体相内へ浸めたノズルから原料を噴出又は押
し出す。
(bl A buffer liquid phase is provided below or to the side of the mineral acid phase (
1) Squirt or extrude raw material from a nozzle immersed into a buffered liquid phase.

上記方法の内では((転)−(iii)の方法が鉱酸内
へ供給する原料の形状を正確に制御できるので好ましい
Among the above methods, the method ((transformation)-(iii)) is preferred because it allows accurate control of the shape of the raw material fed into the mineral acid.

鉱酸内へ供給する原料の形状としては最小寸法りOμm
〜/Qtmnのもの(より好ましくは最小寸法100μ
m〜2浦のもの)が高純度の二酸化珪素を効率良く得る
ために好ましい。
The minimum size for the shape of the raw material supplied into the mineral acid is Oμm.
~/Qtmn (more preferably minimum dimension 100μ)
m to 2 ura) is preferable in order to efficiently obtain high purity silicon dioxide.

ここで最小寸法!Qμmy/Qtfaを有する形状とは
、例えば板状体又は7レーク状であれば厚みがjOμm
〜/Qtmn、角棒又は丸棒であればその辺又は直径が
50μm〜/ Qtnyn 、粒形であれば粒子短辺が
joμm〜/Qmmなどの、その物体の中心部の表面層
からの最短距離が2jμm−% 3mmの物体の形状を
言う。
Minimum dimensions here! The shape having Qμmy/Qtfa means, for example, if it is a plate-like body or a 7-lake shape, the thickness is jOμm.
The shortest distance from the surface layer of the center of the object, such as ~/Qtmn, the side or diameter of a square or round bar is 50 μm ~/Qtnyn, and the short side of the particle is jo μm ~/Qmm if it is a grain shape. refers to the shape of an object with a diameter of 2jμm-%3mm.

ここで、鉱酸中に添加して多孔質の含水珪酸の得られる
原料は水分含有量が総重量の50〜72wt%であり、
かつ5i02含有量が総重量の21〜37’li’t、
%のものが好まれる。
Here, the raw material from which porous hydrated silicic acid is obtained by adding it to mineral acid has a water content of 50 to 72 wt% of the total weight,
and the 5i02 content is 21 to 37'li't of the total weight,
% is preferred.

水分含有量が7!wt% より多くなるか又は5i02
含有量がj/wt%より少なくなると、鉱酸に含水珪酸
塩原料がとけてしまって多孔質の二酸化珪素あるか又は
5i02含有量が、37W’t、%より多くなると、お
よびアルカリ土類金属などを用いたガラス(R20−R
O−RnOm−Si02ガラス)が使用出来ルカ、水分
を多く含んだ通常水ガラスと呼ばれるアルカリ珪酸塩が
好まれて使用される。これらアルカリ珪酸塩は比較的洗
浄のしにくいアルカリ土類金属が少ないため99.99
wt%以上の純度の含水珪酸を得るために好ましく、又
容易に手に入れられるので好ましい。アルカリ珪酸塩と
しては経済的にナトリウム珪酸塩が好ましく、又アルカ
リ珪酸塩作成の際5i02/Na2O比が2〜3Jの範
囲の物が溶融がし易いなどの点で望ましい。
Moisture content is 7! wt% or more than 5i02
When the content is less than 37 W't%, the hydrated silicate raw material is dissolved in the mineral acid, resulting in porous silicon dioxide, or when the 5i02 content is more than 37 W't%, and alkaline earth metals. Glass using such as (R20-R
O-RnOm-Si02 glass) can be used, and alkaline silicates containing a large amount of water, usually called water glass, are preferably used. These alkali silicates contain less alkaline earth metals, which are relatively difficult to clean.
It is preferable to obtain hydrated silicic acid with a purity of at least 50% by weight, and is also preferable because it is easily available. As the alkali silicate, sodium silicate is preferable from an economical point of view, and a 5i02/Na2O ratio in the range of 2 to 3 J is preferable in terms of ease of melting when preparing the alkali silicate.

本発明に使用する鉱酸としては塩酸、硫酸、硝酸および
これらの混合溶液などが使用出来る。ここで硫酸および
硝酸が含水珪酸塩原料中に含まれるTi、Zrの各元素
を抽出除去する効果が大きいので好まれる。中でも硫酸
は、高濃度液としてもガスの蒸気圧が硝酸とくらべ低い
ため、金属製の器具の腐蝕防止の点、作業環境の悪化防
止の点で好ましい。鉱酸の濃度は、塩酸の場合には/〜
/2規定、硝酸では/〜/弘規定、硫酸では1〜3乙規
定、混合酸で/〜36規定が好まれ、内でも6〜/r規
定の硫酸が望ましい。これら鉱酸は室温〜/ 00’C
の温度として使用される。
The mineral acids used in the present invention include hydrochloric acid, sulfuric acid, nitric acid, and mixed solutions thereof. Here, sulfuric acid and nitric acid are preferred because they are highly effective in extracting and removing the elements Ti and Zr contained in the hydrated silicate raw material. Among these, sulfuric acid is preferable in terms of preventing corrosion of metal instruments and preventing deterioration of the working environment, since the vapor pressure of the gas is lower than that of nitric acid even as a highly concentrated liquid. The concentration of mineral acid is /~ in the case of hydrochloric acid
/2N, nitric acid: /~/Hiroshi, sulfuric acid, 1-3N, mixed acid: /~36N, and sulfuric acid with 6~/rN is preferred. These mineral acids are kept at room temperature ~/00'C
used as the temperature of

鉱酸と鉱酸に加えられる原料との比率としては、生成し
た含水珪酸と鉱酸量とを考えて原料100重量部に対し
て鉱酸750重量部以上を使用することが好ましい。
As for the ratio of the mineral acid and the raw material added to the mineral acid, it is preferable to use 750 parts by weight or more of the mineral acid per 100 parts by weight of the raw material, taking into consideration the amount of the produced hydrous silicic acid and the mineral acid.

原料は最小寸法50μm−#)fifiの形状で鉱酸に
供給されることが好ましいが、30μm未満の板状体、
粒状体、棒状体、繊維状体では作成した二酸化珪素が小
粒となるためろ過性が悪くなり/Qmm より大きな板
状体、粒状体、棒状体では作成した二酸化珪素が大粒と
なるために洗浄に時間を要す。
The raw material is preferably supplied to the mineral acid in the form of a minimum dimension of 50 μm-fifi, but plate-like bodies of less than 30 μm,
In granular, rod-shaped, and fibrous bodies, the silicon dioxide produced becomes small particles, resulting in poor filterability/Qmm.For larger plates, granules, and rod-shaped bodies, the silicon dioxide produced becomes large particles, making it difficult to clean. It takes time.

〔作 用〕[For production]

本発明によれば、鉱酸と原料供給口との間に緩衝液体相
があるために原料供給口を鉱酸と接触させずに原料供給
を行なうことができる。このため、原料供給口を鉱酸と
接触させた状態で原料供給を行なっていた場合に従来起
こっていた (a)  原料供給口周辺に含水珪酸が生成し、原料供
給口の有効径を減少させたり原料供給口をふさいでしま
う現象。
According to the present invention, since there is a buffer liquid phase between the mineral acid and the raw material supply port, the raw material can be supplied without bringing the raw material supply port into contact with the mineral acid. For this reason, when raw materials were supplied with the raw material supply port in contact with mineral acid, (a) hydrous silicic acid was generated around the raw material supply port, reducing the effective diameter of the raw material supply port. A phenomenon that blocks the raw material supply port.

(bl  原料供給口に含水珪酸が成長し、原料の流れ
を乱してだんご状原料塊を発生させてしまう現象。
(bl) A phenomenon in which hydrated silicic acid grows at the raw material supply port, disrupting the flow of raw materials and generating dumpling-shaped raw material lumps.

等の不都合を回避できる。Such inconveniences can be avoided.

そこで本発明は上記不都合を回避するために従来必要で
あった原料の流出方向、流出速度に対して略同方向、7
〜20倍の速度を持った鉱酸中へ原料をノズルから押し
出す方法(特願昭59−6/7’12記載の方法)等の
特別な操作を行なう必要がなくなる。
Therefore, in order to avoid the above-mentioned inconvenience, the present invention provides a flow direction of the raw material that is conventionally required, a direction approximately the same as the flow rate, and a flow rate of 7.
There is no need to carry out special operations such as a method of extruding the raw material through a nozzle into a mineral acid having a speed of ~20 times (method described in Japanese Patent Application No. 1982-6/7'12).

〔実 施 例〕〔Example〕

細長いシリンダー状の容積よlの容器に2j%硫酸Il
lを入れ次Kn−ペンタンを0.3;l加えた。n−ペ
ンタンは硫酸よりも比重が小さく又硫酸と反応を起こさ
ないので硫酸上に緩衝液体相を形成した。
2j% sulfuric acid Il in a long and slender cylindrical container with a volume of 1
1 of Kn-pentane was added thereto. Since n-pentane has a lower specific gravity than sulfuric acid and does not react with sulfuric acid, a buffer liquid phase was formed on the sulfuric acid.

その後直径Q、7ql1mの穴をj;runピッチで/
!個有するシャワー状ノズルを、緩衝液体相と鉱酸層と
の界面近くの緩衝液体相中へ、ノズルからの原料流出方
向がほぼ鉛直となるように挿入した。ここでノズルから
の原料流出方向をほぼ鉛直とすることは、ノズルから流
出した原料の流れの方向が重力により変えられて、原料
同士が接触してより大きな原料形状となるような不都合
を防止し、又ノズルからの噴出速度が低下した場合であ
ってもだんご状原料を形成しにくいので好まれる。
After that, a hole of diameter Q, 7ql1m is drilled at j; run pitch /
! A separate shower-like nozzle was inserted into the buffer liquid phase near the interface between the buffer liquid phase and the mineral acid layer so that the raw material flow direction from the nozzle was approximately vertical. Here, making the flow direction of the raw material from the nozzle almost vertical prevents the inconvenience that the flow direction of the raw material flowing out from the nozzle is changed by gravity and the raw materials come into contact with each other and form a larger raw material shape. In addition, even when the jetting speed from the nozzle is reduced, it is difficult to form a dumpling-shaped raw material, so it is preferred.

上記緩衝液体相内に浸められたノズルから、JIS規格
3号水ガラス(水分含有量乙0〜4Jwt%。
From the nozzle immersed in the buffer liquid phase, JIS standard No. 3 water glass (moisture content Otsu 0 to 4 Jwt%) was used.

5i02含水量2g〜30wt%)SOOりをローラー
ポンプによる圧力を用いて約7分(毎分子oog)かけ
て緩衝液体相内へ押し出した。このときノズル出口にお
ける流出速度は約90cm/ SeCと推定された。
The 5i02 water content 2g-30wt%) was extruded into the buffered liquid phase using pressure from a roller pump for approximately 7 minutes (oog per molecule). At this time, the outflow velocity at the nozzle outlet was estimated to be approximately 90 cm/SeC.

ノズルより水ガラスを有機層内へ押し出すと水ガラスは
直径約7門の繊維状となって鉱酸層へと沈んで行った。
When the water glass was pushed out into the organic layer through the nozzle, it turned into fibers with a diameter of about 7 and sank into the mineral acid layer.

その際ノズル出口ではノズル出口な鉱酸層へ直接沈めた
場合に発生するノズル出口のつまりゃ水ガラスのノズル
出口周辺へのまわりこみによるダンゴ状水ガラスの生成
などの現象が起こらず非常に安定した水ガラスの供給が
行なわれていた。
At this time, the nozzle outlet is extremely stable, as phenomena such as clogging of the nozzle outlet and the formation of lump-shaped water glass due to water glass wrapping around the nozzle outlet, which occur when directly submerged into the mineral acid layer at the nozzle outlet, do not occur. Water glasses were being supplied.

繊維状で鉱酸中に供給された水ガラスは、その縮合反応
によって多孔質の繊維状含水珪酸となっら だが、得られたlR維状の含水珪酸を取り出し、薪7塩
酸/lを加え同様の加熱洗浄操作を2回行なった。
The water glass supplied in mineral acid in the form of fibers becomes porous fibrous hydrated silicic acid through the condensation reaction, and the obtained 1R fibrous hydrated silicic acid is taken out and 7 hydrochloric acid/l of firewood is added and treated in the same manner. The heating washing operation was performed twice.

こうして得られた繊維状の含水珪酸を遠心濾過器に移し
、脱水を行ないながら、純水を加え、濾液のpHが、ダ
、j付近になるまで洗浄した。
The fibrous hydrated silicic acid thus obtained was transferred to a centrifugal filter, and while being dehydrated, pure water was added and washed until the pH of the filtrate was around d,j.

固形分を取り出し/ j O”Cで6時間乾燥して、含
水率約3%の二酸化珪素/!09を得た。
The solid content was taken out and dried at O''C for 6 hours to obtain silicon dioxide/!09 with a water content of about 3%.

この含水珪酸の不純物量は、第1表に示す通りであった
The amount of impurities in this hydrated silicic acid was as shown in Table 1.

第   l   表      (PPM)本実施例で
得られた含水珪酸は従来法例えば液体状含水珪酸塩原料
の流出方向、流出速度に対して略同方向、7〜20倍の
速度を持った鉱酸中へ流しこむ方法で作成された含水珪
酸とほぼ同程度かまたはそれ以上の純度を有する含水珪
酸であった。
Table l (PPM) The hydrated silicic acid obtained in this example was prepared using a conventional method, for example, in a mineral acid having a flow rate approximately the same as the flow direction and flow rate of the liquid hydrated silicate raw material, and a flow rate 7 to 20 times higher. The hydrated silicic acid had a purity approximately equal to or higher than that of the hydrated silicic acid prepared by pouring into the silica.

(発明の効果〕 本発明によれば砿酸相に1lal接して緩衝液体相を設
け、液体状含水珪酸塩原料を該緩衝液体相内を通して供
給しているために、原料供給口のつまりゃだんご状の含
水珪酸塩原料が発生しない。そこで原料供給口および鉱
酸を静止させた状態で含水珪酸の製造が行なえる。
(Effects of the Invention) According to the present invention, a buffer liquid phase is provided in contact with the alkali acid phase, and the liquid hydrated silicate raw material is supplied through the buffer liquid phase. No hydrous silicate raw material is generated.Hence, the production of hydrous silicic acid can be carried out with the raw material supply port and the mineral acid kept stationary.

Claims (3)

【特許請求の範囲】[Claims] (1)液体状含水珪酸塩原料を原料供給口より鉱酸相内
へ供給し、該液体状含水珪酸塩原料表面からシラノール
基の縮合反応を起こさせて該液体状含水珪酸塩原料を多
孔質状の含水珪酸に変える含水珪酸の製造方法において
、原料供給口と鉱酸相の間に緩衝液体相を設けることを
特徴とする含水珪酸の製造方法。
(1) A liquid hydrated silicate raw material is supplied into the mineral acid phase from the raw material supply port, and a condensation reaction of silanol groups is caused from the surface of the liquid hydrated silicate raw material to make the liquid hydrated silicate raw material porous. A method for producing hydrated silicic acid, which is characterized in that a buffer liquid phase is provided between a raw material supply port and a mineral acid phase.
(2)該液体状含水珪酸塩原料を該緩衝液体相内に設け
られたノズルより押し出す特許請求の範囲第1項記載の
含水珪酸の製造方法。
(2) The method for producing hydrated silicic acid according to claim 1, wherein the liquid hydrated silicate raw material is extruded through a nozzle provided in the buffer liquid phase.
(3)該緩衝液体相がn−ペンタンおよび/またはn−
ヘキサンである特許請求の範囲第1項又は第2項記載の
含水珪酸の製造方法。
(3) the buffer liquid phase is n-pentane and/or n-
The method for producing hydrated silicic acid according to claim 1 or 2, wherein hexane is used.
JP60028899A 1985-02-16 1985-02-16 Production of hydrated silicic acid Granted JPS61191515A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP60028899A JPS61191515A (en) 1985-02-16 1985-02-16 Production of hydrated silicic acid
IT19398/86A IT1191978B (en) 1985-02-16 1986-02-13 PROCEDURE FOR PRODUCING HYDRATED SILICIC ACID
DE3604732A DE3604732C2 (en) 1985-02-16 1986-02-14 Process for the preparation of water-containing silica
NO860560A NO172229C (en) 1985-02-16 1986-02-14 PROCEDURE FOR THE PREPARATION OF Aqueous Silica

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60028899A JPS61191515A (en) 1985-02-16 1985-02-16 Production of hydrated silicic acid

Publications (2)

Publication Number Publication Date
JPS61191515A true JPS61191515A (en) 1986-08-26
JPH0454618B2 JPH0454618B2 (en) 1992-08-31

Family

ID=12261251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60028899A Granted JPS61191515A (en) 1985-02-16 1985-02-16 Production of hydrated silicic acid

Country Status (4)

Country Link
JP (1) JPS61191515A (en)
DE (1) DE3604732C2 (en)
IT (1) IT1191978B (en)
NO (1) NO172229C (en)

Also Published As

Publication number Publication date
NO172229B (en) 1993-03-15
DE3604732C2 (en) 1994-07-28
JPH0454618B2 (en) 1992-08-31
IT8619398A0 (en) 1986-02-13
NO172229C (en) 1993-06-23
IT1191978B (en) 1988-03-31
NO860560L (en) 1986-08-18
DE3604732A1 (en) 1986-08-21
IT8619398A1 (en) 1987-08-13

Similar Documents

Publication Publication Date Title
US3356450A (en) Process for the production of molecular sieve granules
JP4537379B2 (en) Process and apparatus for producing precipitated silica from rice husk ash
CN100408475C (en) Production process of solar energy grade polysilicon
CN101363135B (en) Synthesis method of potassium hexatitanate whisker
CA1093535A (en) Process for processing silicon-dioxide-containing air- borne waste fines to crystalline type-y molecular sieves having a faujasite structure
CN101177280A (en) Method for quickly synthesizing nano X-type molecular sieve by low-temperature ultrasonic crystallization process
JPS61158810A (en) Production of high-purity silica sol
KR20020066336A (en) Method for producing silica particles, synthetic quartz powder and synthetic quartz glass
CN103848436B (en) A kind of method of Template-free method two-step approach Hydrothermal Synthesis ultra micro type A zeolite
JPS61191515A (en) Production of hydrated silicic acid
CN109665534B (en) Method for preparing mesoporous silicon oxide by using fly ash acid leaching residue
JPH0457606B2 (en)
JP2000034118A (en) Production of high-purity amorphous silicic acid
US5021073A (en) Method of manufacturing synthetic silica glass
JPH03275527A (en) Porous silica glass powder
US3345132A (en) Process of preparing silicic acid in a two-dimensional structure
KR20020011820A (en) The manufacturing method of silica sol
RU2235684C2 (en) Method of preparing fine high-porous silica
CN103435063A (en) Preparation method of amorphous nano SiO2/A zeolite composite powder
JPH01270530A (en) Production of formed glass body
CN104016351B (en) A kind of efficient except boron slag former, its preparation method and the method except boron slag making
KR930002231B1 (en) Process for the production of hydrothermal waterglasses
CN104556128A (en) Preparation method of ultra-fine T type molecular sieve zeolite membrane
JP4000399B2 (en) Method for producing ultra-high purity silica powder, ultra-high purity silica powder obtained by the production method, and quartz glass crucible using the same
CN1331048A (en) Process for purifying natural 3R-type graphite ore

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees