JPH0454618B2 - - Google Patents
Info
- Publication number
- JPH0454618B2 JPH0454618B2 JP60028899A JP2889985A JPH0454618B2 JP H0454618 B2 JPH0454618 B2 JP H0454618B2 JP 60028899 A JP60028899 A JP 60028899A JP 2889985 A JP2889985 A JP 2889985A JP H0454618 B2 JPH0454618 B2 JP H0454618B2
- Authority
- JP
- Japan
- Prior art keywords
- raw material
- hydrated
- acid
- mineral acid
- phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000002994 raw material Substances 0.000 claims description 54
- 239000002253 acid Substances 0.000 claims description 40
- 229910052500 inorganic mineral Inorganic materials 0.000 claims description 37
- 239000011707 mineral Substances 0.000 claims description 37
- 235000012239 silicon dioxide Nutrition 0.000 claims description 29
- 239000007791 liquid phase Substances 0.000 claims description 21
- 239000007788 liquid Substances 0.000 claims description 19
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 claims description 19
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 claims description 18
- 238000004519 manufacturing process Methods 0.000 claims description 13
- 239000012071 phase Substances 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 11
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical group CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 claims description 8
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 claims description 4
- 238000006482 condensation reaction Methods 0.000 claims description 3
- 125000005372 silanol group Chemical group 0.000 claims description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 29
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 20
- 239000000377 silicon dioxide Substances 0.000 description 11
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 10
- 229910052710 silicon Inorganic materials 0.000 description 10
- 239000010703 silicon Substances 0.000 description 10
- 229910004298 SiO 2 Inorganic materials 0.000 description 8
- 150000007513 acids Chemical class 0.000 description 8
- 235000019353 potassium silicate Nutrition 0.000 description 8
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 8
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- 239000000741 silica gel Substances 0.000 description 6
- 229910002027 silica gel Inorganic materials 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 229910052910 alkali metal silicate Inorganic materials 0.000 description 5
- 230000005484 gravity Effects 0.000 description 5
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 4
- 229910017604 nitric acid Inorganic materials 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 239000011521 glass Substances 0.000 description 3
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 150000001342 alkaline earth metals Chemical class 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- 229910021426 porous silicon Inorganic materials 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- ZDHXKXAHOVTTAH-UHFFFAOYSA-N trichlorosilane Chemical compound Cl[SiH](Cl)Cl ZDHXKXAHOVTTAH-UHFFFAOYSA-N 0.000 description 1
- 239000005052 trichlorosilane Substances 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/113—Silicon oxides; Hydrates thereof
- C01B33/12—Silica; Hydrates thereof, e.g. lepidoic silicic acid
- C01B33/124—Preparation of adsorbing porous silica not in gel form and not finely divided, i.e. silicon skeletons, by acidic treatment of siliceous materials
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Silicon Compounds (AREA)
Description
〔産業上の利用分野〕
本発明は含水珪酸の製造方法に関し、特に高純
度の含水珪酸を大量生産するのに適した含水珪酸
の製造方法に関する。
〔従来の技術〕
現在、次世代のエネルギー資源に関し太陽エネ
ルギーが注目され、太陽光発電に関する研究が進
められている。とりわけシリコン太陽電池は最も
有望視されており品質の向上および安価な製造方
法の開発が急がれている。
シリコン太陽電池に使うシリコンは高純度であ
ることが要求されているため、現在は半導体用に
製造されたシリコンを用いている。したがつてシ
リコン原料自体が非常に高価であり、このことが
太陽電池のコストを高くしている。
そこで高純度の二酸化珪素を高純度の炭素を用
いて汚染なく還元し太陽電池に使用出来るシリコ
ンを製造する試みがなされている。この方法によ
れば金属シリコンを一度トリクロルシランに換え
精製後還元を行なう半導体用シリコンの製造法に
比べエネルギー、コスト共大きく削減できる利点
を持つている。
しかし、この方法に用いられる天然の高純度の
二酸化珪素としては一部高級品として産出される
水晶があげられるだけであり、その資源量は限ら
れている。大量の太陽電池の製造に対し豊富に存
在するけい砂など純度の悪いけい酸塩原料を精製
し、高純度の二酸化珪素に変える技術が望まれて
いる。
一方アルカリ珪酸塩(通称水ガラス)を酸と反
応させてシリカゲルを得るという方法が知られて
いる。
〔発明が解決しようとする問題点〕
前記シリカゲルは純度の高いSiO2から出来て
おり、この様なシリカゲルを上記直接還元に使用
することも考えられるが、これらシリカゲルは通
常SiO2純度が99.5wt%程度、高純度といわれる
ものでも99.95wt%程度であり、そのままの状態
では上記直接還元による太陽電池用シリコンの製
造に使用出来なかつた。
これは通常のシリカゲルではシリカゲル中に含
まれるSiO2以外の不純物(Na+,Ca2+,Mg2+な
ど)がシリカゲルの外部洗浄液中にぬけにくく、
高純度化が難かしいことに起因していた。
本発明は純度の悪い珪酸塩原料から太陽電池用
シリコン製造などに使用することのできる高純度
含水珪酸を製造する方法、特に大量生産できる方
法を提供することをその目的とする。
〔問題点を解決するための手段〕
本発明は、上記問題点を解決するために液体状
含水珪酸塩原料を原料供給口から、鉱酸相と原料
供給口との間に設けられた緩衝液体相へ供給する
ことにより該緩衝液体相を通して鉱酸相内へ液体
状含水珪酸塩原料を供給し、鉱酸相内で該液体状
珪酸塩原料表面からシラノール基の縮合反応を起
こさせて該液体状含水珪酸塩原料を多孔質状の含
水珪酸に変える含水珪酸の製造方法を用いる。
ここで鉱酸相と原料供給口との間に設ける緩衝
液体としては鉱酸および含水珪酸塩と反応あるい
は混合しにくいものであれば使用でき、鉱酸より
も比重が小さいものであつても又大きいものであ
つてもかまわない。なかでも鉱酸よりも比重の小
さい緩衝液体が、緩衝液体相を鉱酸上部に設ける
ことにより液体状含水珪酸塩原料(以下原料と略
称する)を自重によつて該緩衝液体相から鉱酸相
へ供給できるので好ましい。
鉱酸よりも比重の小さい緩衝液体としてはn−
ペンタン、n−ヘキサンなどの有機液体が例示で
きる。
液体状含水珪酸塩原料を緩衝液体相を通して鉱
酸相へ供給する方法としては、
(a) 緩衝液体相を鉱酸相上部に設け
() 原料をノズル等から緩衝液体相へ滴下
させる。
() 原料をトイ又はノズル等で緩衝液体相
へ流し込む。
() 緩衝液体相内へノズルを浸めノズルよ
り原料を流し込む。
(b) 緩衝液体相を鉱酸相の下方又は側方に設け
() 緩衝液体相内へ浸めたノズルから原料
を噴出又は押し出す。
等の方法があげられる。
上記方法の内では(a)−()の方法が鉱酸内へ
供給する原料の形状を正確に制御できるので好ま
しい。
鉱酸内へ供給する原料の形状としては最小寸法
50μm〜10mmのもの(より好ましくは最小寸法
100μm〜2mmのもの)が高純度の二酸化珪素を効
率良く得るために好ましい。
ここで最小寸法50μm〜10mmを有する形状とは、
例えば板状体又はフレーク状であれば厚みが
50μm〜10mm、角棒又は丸棒であればその辺又は
直径が50μm〜10mm、粒形であれば粒子短辺が
50μm〜10mmなどの、その物体の中心部の表面層
からの最短距離が25μm〜5mmの物体の形状を言
う。
ここで、鉱酸中に添加して多孔質の含水珪酸の
得られる原料は水分含有量が総重量の50〜72wt
%であり、かつSiO2含有量が総重量の21〜37wt
%のものが好まれる。
水分含有量が72wt%より多くなるか又はSiO2
含有量が21wt%より少なくなると、鉱酸に含水
珪酸塩原料がとけてしまつて多孔質の二酸化珪素
が得られにくく、又水分含有量が50wt%未満で
あるか又はSiO2含有量が37wt%より多くなると、
流動性を示す液体状となりにくい。
含水珪酸塩の珪酸塩原料としては、アルカリ金
属およびアルカリ土類金属などを用いたガラス
(R2O−RO−RnOm−SiO2ガラス)が使用出来
るが、水分を多く含んだ通常水ガラスと呼ばれる
アルカリ珪酸塩が好まれて使用される。これらア
ルカリ珪酸塩は比較的洗浄のしにくいアルカリ土
類金属が少ないため99.99wt%以上の純度の含水
珪酸を得るために好ましく、又容易に手に入れら
れるので好ましい。アルカリ珪酸塩としては経済
的にナトリウム珪酸塩が好ましく、又アルカリ珪
酸塩作成の際SiO2/Na2O比が2〜3.5の範囲の
物が溶融がし易いなどの点で望ましい。
本発明に使用する鉱酸としては塩酸、硫酸、硝
酸およびこれらの混合溶液などが使用出来る。こ
こで硫酸および硝酸が含水珪酸塩原料中に含まれ
るTi,Zrの各元素を抽出除去する効果が大きい
ので好まれる。中でも硫酸は、高濃度液としても
ガスの蒸気圧が硝酸とくらべ低いため、金属製の
器具の腐蝕防止の点、作業環境の悪化防止の点で
好ましい。鉱酸の濃度は、塩酸の場合には1〜12
規定、硝酸では1〜14規定、硫酸では1〜36規
定、混合酸で1〜36規定が好まれ、内でも6〜18
規定の硫酸が望ましい。これら鉱酸は室温〜100
℃の温度として使用される。
鉱酸と鉱酸に加えられる原料との比率として
は、生成した含水珪酸と鉱酸量とを考えて原料
100重量部に対して鉱酸150重量部以上を使用する
ことが好ましい。
原料は最小寸法50μm〜10mmの形状で鉱酸に供
給されることが好ましいが、50μm未満の板状体、
粒状体、棒状体、繊維状体では作成した二酸化珪
素が小粒となるためろ過性が悪くなり10mmより大
きな板状体、粒状体、棒状体では作成した二酸化
珪素が大粒となるために洗浄に時間を要す。
〔作用〕
本発明によれば、鉱酸と原料供給口との間に緩
衝液体相があるために原料供給口を鉱酸と接触さ
せずに原料供給を行なうことができる。このた
め、原料供給口を鉱酸と接触させた状態で原料供
給を行なつていた場合に従来起こつていた
(a) 原料供給口周辺に含水珪酸が生成し、原料供
給口の有効径を減少させたり原料供給口をふさ
いでしまう現象。
(b) 原料供給口に含水珪酸が成長し、原料の流れ
を乱してだんご状原料塊を発生させてしまう現
象。
等の不都合を回避できる。
そこで本発明は上記不都合を回避するために従
来必要であつた原料の流出方向、流出速度に対し
て略同方向、1〜20倍の速度を持つた鉱酸中へ原
料をノズルから押し出す方法(特願昭59−61742
記載の方法)等の特別な操作を行なう必要がなく
なる。
〔実施例〕
細長いシリンダー状の容積5の容器に25%硫
酸4を入れ次にn−ペンタンを0.5加えた。
n−ペンタンは硫酸よりも比重が小さく又硫酸と
反応を起こさないので硫酸上に緩衝液体相を形成
した。その後直径0.794mmの穴を5mmピツチで15
個有するシヤワー状ノズルを、緩衝液体相と鉱酸
相との界面近くの緩衝液体相中へ、ノズルからの
原料流出方向がほぼ鉛直となるように挿入した。
ここでノズルからの原料流出方向をほぼ鉛直とす
ることは、ノズルから流出した原料の流れの方向
が重力により変えられて、原料同士が接触してよ
り大きな原料形状となるような不都合を防止し、
又ノズルからの噴出速度が低下した場合であつて
もだんご状原料を形成しにくいので好まれる。
上記緩衝液体相内に浸められたノズルから、
JIS規格3号水ガラス(水分含有量60〜63wt%,
SiO2含水量28〜30wt%)500gをローラーポンプ
による圧力を用いて約1分(毎分500g)かけて
緩衝液体相内へ押し出した。このときノズル出口
における流出速度は約90cm/secと推定された。
ノズルより水ガラスを有機層内へ押し出すと水
ガラスは直径約1mmの繊維状となつて鉱酸層へと
沈んで行つた。その際ノズル出口ではノズル出口
を鉱酸層へ直接沈めた場合に発生するノズル出口
のつまりや水ガラスのノズル出口周辺へのまわり
こみによるダンゴ状水ガラスの生成などの現象が
起こらず非常に安定した水ガラスの供給が行なわ
れていた。
繊維状で鉱酸中に供給された水ガラスは、その
縮合反応によつて多孔質の繊維状含水珪酸となつ
たが、得られた繊維状の含水珪酸を取り出し、新
らしい25%硫酸1中に移し、90℃に加熱し、1
時間保つた。その後放冷し硫酸を除き、新らしい
20%塩酸1を加え同様の加熱洗浄操作を2回行
なつた。
こうして得られた繊維状の含水珪酸を遠心濾過
器に移し、脱水を行ないながら、純水を加え、濾
液のPHが、4.5付近になるまで洗浄した。
固形分を取り出し150℃で6時間乾燥して、含
水率約3%の二酸化珪素150gを得た。
この含水珪酸の不純物量は、第1表に示す通り
であつた。
[Industrial Application Field] The present invention relates to a method for producing hydrated silicic acid, and particularly to a method for producing hydrated silicic acid suitable for mass production of highly purified hydrated silicic acid. [Prior Art] Currently, solar energy is attracting attention as a next-generation energy resource, and research on solar power generation is progressing. In particular, silicon solar cells are considered to be the most promising, and there is an urgent need to improve their quality and develop inexpensive manufacturing methods. The silicon used in silicon solar cells is required to be highly pure, so silicon produced for semiconductors is currently used. Therefore, the silicon raw material itself is very expensive, which increases the cost of solar cells. Therefore, attempts have been made to reduce high-purity silicon dioxide using high-purity carbon without contamination to produce silicon that can be used in solar cells. This method has the advantage of greatly reducing energy and cost compared to the method of manufacturing silicon for semiconductors in which metallic silicon is first converted into trichlorosilane and then purified and then reduced. However, as the natural high-purity silicon dioxide used in this method, there are only some quartz crystals produced as high-quality products, and the amount of resources is limited. For the production of large quantities of solar cells, there is a need for a technology that can purify the abundant silica sand and other low-purity silicate raw materials and convert them into high-purity silicon dioxide. On the other hand, a method is known in which silica gel is obtained by reacting an alkali silicate (commonly known as water glass) with an acid. [Problem to be solved by the invention] The silica gel is made of highly pure SiO 2 , and it is possible to use such silica gel for the above-mentioned direct reduction, but these silica gels usually have a SiO 2 purity of 99.5wt. %, and even those that are said to have high purity have a purity of about 99.95 wt %, and in that state, they could not be used in the production of silicon for solar cells by the above-mentioned direct reduction. This is because with ordinary silica gel, impurities other than SiO 2 contained in the silica gel (Na + , Ca 2+ , Mg 2+ , etc.) are difficult to escape into the silica gel external cleaning solution.
This was due to the difficulty of achieving high purity. An object of the present invention is to provide a method for producing high-purity hydrated silicic acid that can be used in the production of silicon for solar cells from a silicate raw material with poor purity, particularly a method that can be mass-produced. [Means for Solving the Problems] In order to solve the above problems, the present invention supplies a liquid hydrated silicate raw material from a raw material supply port to a buffer liquid provided between the mineral acid phase and the raw material supply port. A liquid hydrated silicate raw material is supplied into the mineral acid phase through the buffer liquid phase, and a condensation reaction of silanol groups is caused from the surface of the liquid silicate raw material within the mineral acid phase to form a liquid. A method for producing hydrated silicic acid is used in which a porous hydrated silicate raw material is changed into porous hydrated silicic acid. As the buffer liquid provided between the mineral acid phase and the raw material supply port, any liquid that does not easily react with or mix with mineral acids and hydrated silicate can be used, even if it has a specific gravity lower than that of mineral acids. It doesn't matter if it's big. Among them, a buffer liquid having a specific gravity smaller than that of mineral acid is used. By providing a buffer liquid phase above the mineral acid, liquid hydrated silicate raw material (hereinafter referred to as raw material) is transferred from the buffer liquid phase to the mineral acid phase by its own weight. This is preferable because it can be supplied to As a buffer liquid with a specific gravity smaller than that of mineral acids, n-
Examples include organic liquids such as pentane and n-hexane. The method of supplying the liquid hydrated silicate raw material to the mineral acid phase through the buffer liquid phase is as follows: (a) The buffer liquid phase is provided above the mineral acid phase () The raw material is dropped into the buffer liquid phase from a nozzle or the like. () Pour the raw material into the buffer liquid phase using a toy or nozzle. () Dip the nozzle into the buffer liquid phase and pour the raw material through the nozzle. (b) A buffered liquid phase is provided below or to the side of the mineral acid phase. () The raw material is ejected or forced through a nozzle immersed in the buffered liquid phase. Examples of methods include: Among the above methods, methods (a) to () are preferred because they allow accurate control of the shape of the raw material fed into the mineral acid. The smallest size for the shape of the raw material fed into the mineral acid
50μm to 10mm (more preferably minimum dimension
100 μm to 2 mm) is preferable in order to efficiently obtain high purity silicon dioxide. Here, the shape with the minimum dimension of 50 μm to 10 mm is
For example, if it is plate-like or flake-like, the thickness is
50 μm to 10 mm, if it is a square bar or round bar, the side or diameter is 50 μm to 10 mm, if it is a particle shape, the short side of the particle is
Refers to the shape of an object whose shortest distance from the surface layer of the center of the object is 25 μm to 5 mm, such as 50 μm to 10 mm. Here, the raw material from which porous hydrated silicic acid is obtained by adding it to mineral acid has a water content of 50 to 72wt of the total weight.
%, and the SiO2 content is 21~37wt of the total weight
% is preferred. Moisture content is more than 72wt% or SiO 2
If the content is less than 21 wt%, the hydrated silicate raw material will be dissolved in the mineral acid, making it difficult to obtain porous silicon dioxide, and if the water content is less than 50 wt% or the SiO 2 content is 37 wt%. When it becomes more,
It is difficult to become a liquid with fluidity. Glass containing alkali metals and alkaline earth metals (R 2 O-RO-RnOm-SiO 2 glass) can be used as a silicate raw material for hydrated silicate, but glass containing a large amount of water is usually called water glass. Alkali silicates are preferably used. These alkali silicates are preferable for obtaining hydrated silicic acid with a purity of 99.99 wt % or more because they contain less alkaline earth metals, which are relatively difficult to clean, and are also preferable because they are easily available. As the alkali silicate, sodium silicate is economically preferable, and when preparing the alkali silicate, a SiO 2 /Na 2 O ratio in the range of 2 to 3.5 is preferable because it is easy to melt. The mineral acids used in the present invention include hydrochloric acid, sulfuric acid, nitric acid, and mixed solutions thereof. Here, sulfuric acid and nitric acid are preferred because they are highly effective in extracting and removing the elements Ti and Zr contained in the hydrated silicate raw material. Among these, sulfuric acid is preferable in terms of preventing corrosion of metal instruments and preventing deterioration of the working environment, since the vapor pressure of the gas is lower than that of nitric acid even as a highly concentrated liquid. The concentration of mineral acids is 1 to 12 in the case of hydrochloric acid.
1 to 14 N for nitric acid, 1 to 36 N for sulfuric acid, 1 to 36 N for mixed acids, and 6 to 18 N for mixed acids.
Standard sulfuric acid is preferred. These mineral acids are available at room temperature to 100%
Used as temperature in °C. The ratio of mineral acid to the raw material added to the mineral acid is determined by considering the amount of hydrated silicic acid and mineral acid produced.
It is preferable to use 150 parts by weight or more of mineral acid per 100 parts by weight. The raw material is preferably supplied to the mineral acid in the form of a minimum dimension of 50 μm to 10 mm, but plate-shaped bodies of less than 50 μm,
In the case of granular, rod-shaped, and fibrous bodies, the silicon dioxide produced becomes small particles, resulting in poor filtration performance.For plates, granules, and rod-shaped bodies larger than 10 mm, the silicon dioxide produced becomes large particles, so it takes time to clean. It takes. [Function] According to the present invention, since there is a buffer liquid phase between the mineral acid and the raw material supply port, the raw material can be supplied without bringing the raw material supply port into contact with the mineral acid. For this reason, when raw materials were supplied with the raw material supply port in contact with mineral acid, (a) hydrous silicic acid was generated around the raw material supply port, reducing the effective diameter of the raw material supply port. A phenomenon that reduces the amount of raw materials or blocks the raw material supply port. (b) A phenomenon in which hydrated silicic acid grows at the raw material supply port, disrupting the flow of raw materials and generating dumpling-shaped raw material lumps. Such inconveniences can be avoided. Therefore, in order to avoid the above-mentioned disadvantages, the present invention proposes a method of extruding the raw material from a nozzle into mineral acid in a direction that is approximately the same as the flow rate of the raw material and at a speed that is 1 to 20 times the flow rate, which was conventionally required. Patent application 1986-61742
There is no need to perform special operations such as the described method. [Example] 25% sulfuric acid 4 was placed in a long and narrow cylindrical container with a volume of 5, and then 0.5 of n-pentane was added.
Since n-pentane has a lower specific gravity than sulfuric acid and does not react with sulfuric acid, a buffer liquid phase was formed on the sulfuric acid. Then, make 15 holes with a diameter of 0.794 mm at a pitch of 5 mm.
A separate shower-like nozzle was inserted into the buffer liquid phase near the interface between the buffer liquid phase and the mineral acid phase so that the raw material flow direction from the nozzle was approximately vertical.
Here, making the flow direction of the raw material from the nozzle almost vertical prevents the inconvenience that the flow direction of the raw material flowing out from the nozzle is changed by gravity and the raw materials come into contact with each other and form a larger raw material shape. ,
Further, even when the jetting speed from the nozzle is reduced, it is difficult to form a dumpling-shaped raw material, so it is preferred. from a nozzle immersed in the buffered liquid phase;
JIS standard No. 3 water glass (moisture content 60-63wt%,
500 g of SiO 2 (water content 28-30 wt%) was forced into the buffer liquid phase over approximately 1 minute (500 g/min) using pressure from a roller pump. At this time, the outflow velocity at the nozzle outlet was estimated to be approximately 90 cm/sec. When the water glass was extruded into the organic layer through the nozzle, it became fibrous with a diameter of about 1 mm and sank into the mineral acid layer. At this time, the nozzle outlet was extremely stable, as phenomena such as clogging of the nozzle outlet and the formation of lump-shaped water glass due to water glass getting around the nozzle outlet, which occur when the nozzle outlet is directly submerged in the mineral acid layer, did not occur. Water glasses were being supplied. The water glass supplied in mineral acid in fibrous form became porous fibrous hydrated silicic acid through the condensation reaction. , heat to 90℃, and
It kept time. After that, let it cool and remove the sulfuric acid.
1 portion of 20% hydrochloric acid was added and the same heating washing operation was performed twice. The fibrous hydrated silicic acid thus obtained was transferred to a centrifugal filter, and while being dehydrated, pure water was added and washed until the pH of the filtrate reached around 4.5. The solid content was taken out and dried at 150° C. for 6 hours to obtain 150 g of silicon dioxide with a water content of about 3%. The amount of impurities in this hydrated silicic acid was as shown in Table 1.
本発明によれば鉱酸相に隣接して緩衝液体相を
設け、液体状含水珪酸塩原料を該緩衝液体相内を
通して供給しているために、原料供給口のつまり
やだんご状の含水珪酸塩原料が発生しない。そこ
で原料供給口および鉱酸を静止させた状態で含水
珪酸の製造が行なえる。
According to the present invention, a buffered liquid phase is provided adjacent to the mineral acid phase, and the liquid hydrated silicate raw material is supplied through the buffered liquid phase. No raw materials are generated. Therefore, hydrous silicic acid can be produced with the raw material supply port and the mineral acid kept stationary.
Claims (1)
相内へ供給し、該液体状含水珪酸塩原料表面から
シラノール基の縮合反応を起こさせて該液体状含
水珪酸塩原料を多孔質状の含水珪酸に変える含水
珪酸の製造方法において、原料供給口と鉱酸相の
間に緩衝液体相を設けることを特徴とする含水珪
酸の製造方法。 2 該液体状含水珪酸塩原料を該緩衝液体相内に
設けられたノズルより押し出す特許請求の範囲第
1項記載の含水珪酸の製造方法。 3 該緩衝液体相がn−ペンタンおよび/または
n−ヘキサンである特許請求の範囲第1項又は第
2項記載の含水珪酸の製造方法。[Claims] 1. A liquid hydrated silicate raw material is supplied into the mineral acid phase from a raw material supply port, and a condensation reaction of silanol groups is caused from the surface of the liquid hydrated silicate raw material to form the liquid hydrated silicate. 1. A method for producing hydrated silicic acid that converts a raw material into porous hydrated silicic acid, the method comprising providing a buffer liquid phase between a raw material supply port and a mineral acid phase. 2. The method for producing hydrated silicic acid according to claim 1, wherein the liquid hydrated silicate raw material is extruded through a nozzle provided in the buffer liquid phase. 3. The method for producing hydrated silicic acid according to claim 1 or 2, wherein the buffer liquid phase is n-pentane and/or n-hexane.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60028899A JPS61191515A (en) | 1985-02-16 | 1985-02-16 | Production of hydrated silicic acid |
IT19398/86A IT1191978B (en) | 1985-02-16 | 1986-02-13 | PROCEDURE FOR PRODUCING HYDRATED SILICIC ACID |
NO860560A NO172229C (en) | 1985-02-16 | 1986-02-14 | PROCEDURE FOR THE PREPARATION OF Aqueous Silica |
DE3604732A DE3604732C2 (en) | 1985-02-16 | 1986-02-14 | Process for the preparation of water-containing silica |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60028899A JPS61191515A (en) | 1985-02-16 | 1985-02-16 | Production of hydrated silicic acid |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61191515A JPS61191515A (en) | 1986-08-26 |
JPH0454618B2 true JPH0454618B2 (en) | 1992-08-31 |
Family
ID=12261251
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60028899A Granted JPS61191515A (en) | 1985-02-16 | 1985-02-16 | Production of hydrated silicic acid |
Country Status (4)
Country | Link |
---|---|
JP (1) | JPS61191515A (en) |
DE (1) | DE3604732C2 (en) |
IT (1) | IT1191978B (en) |
NO (1) | NO172229C (en) |
-
1985
- 1985-02-16 JP JP60028899A patent/JPS61191515A/en active Granted
-
1986
- 1986-02-13 IT IT19398/86A patent/IT1191978B/en active
- 1986-02-14 DE DE3604732A patent/DE3604732C2/en not_active Expired - Fee Related
- 1986-02-14 NO NO860560A patent/NO172229C/en unknown
Also Published As
Publication number | Publication date |
---|---|
NO172229C (en) | 1993-06-23 |
DE3604732A1 (en) | 1986-08-21 |
IT1191978B (en) | 1988-03-31 |
NO172229B (en) | 1993-03-15 |
JPS61191515A (en) | 1986-08-26 |
IT8619398A1 (en) | 1987-08-13 |
IT8619398A0 (en) | 1986-02-13 |
NO860560L (en) | 1986-08-18 |
DE3604732C2 (en) | 1994-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3356450A (en) | Process for the production of molecular sieve granules | |
CN110127708A (en) | A kind of SiO2Purity >=99.99% glass sand method of purification | |
JPH042606A (en) | Production of highly pure aqueous silica sol | |
CN104962991A (en) | Quartz crucible and production method thereof | |
JPS631244B2 (en) | ||
CN105837252B (en) | porous alumina ceramic and preparation method thereof | |
US7140201B2 (en) | Method for producing silica particles | |
CN201857440U (en) | Crucible for purification and ingot casting of solar-grade polysilicon | |
CN101363135B (en) | Synthesis method of potassium hexatitanate whisker | |
CN109251036A (en) | A kind of TiB2The preparation method of ceramic powder | |
JPH0454617B2 (en) | ||
CA1093535A (en) | Process for processing silicon-dioxide-containing air- borne waste fines to crystalline type-y molecular sieves having a faujasite structure | |
CN109665534B (en) | Method for preparing mesoporous silicon oxide by using fly ash acid leaching residue | |
JPH0454618B2 (en) | ||
JPH0457606B2 (en) | ||
CN104860322B (en) | A kind of preparation method of low sodium ions content high-purity silicasol | |
US4423096A (en) | Method for protecting porous ceramic building materials exposed to weathering | |
US3345132A (en) | Process of preparing silicic acid in a two-dimensional structure | |
JP2733863B2 (en) | Method for producing spherical silica | |
CN105803527A (en) | Full fusion efficient polycrystalline silicon ingot casting method | |
CN104556128A (en) | Preparation method of ultra-fine T type molecular sieve zeolite membrane | |
JPH01275438A (en) | Production of formed glass | |
CN103754882B (en) | Purifying method of slag-making agent with boron removal | |
TWI744200B (en) | Method for regenerating silicon dioxide from waste semiconductor mud | |
RU2235684C2 (en) | Method of preparing fine high-porous silica |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |