JPH01270530A - Production of formed glass body - Google Patents

Production of formed glass body

Info

Publication number
JPH01270530A
JPH01270530A JP9685088A JP9685088A JPH01270530A JP H01270530 A JPH01270530 A JP H01270530A JP 9685088 A JP9685088 A JP 9685088A JP 9685088 A JP9685088 A JP 9685088A JP H01270530 A JPH01270530 A JP H01270530A
Authority
JP
Japan
Prior art keywords
silica
slurry
average particle
acid
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9685088A
Other languages
Japanese (ja)
Other versions
JPH0776100B2 (en
Inventor
Yasumasa Yamaguchi
山口 靖正
Akira Ide
旭 井出
Yujiro Ito
伊藤 勇次郎
Iwao Oshima
大島 巌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Chemical Industry Co Ltd
Original Assignee
Nitto Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Chemical Industry Co Ltd filed Critical Nitto Chemical Industry Co Ltd
Priority to JP63096850A priority Critical patent/JPH0776100B2/en
Publication of JPH01270530A publication Critical patent/JPH01270530A/en
Publication of JPH0776100B2 publication Critical patent/JPH0776100B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/10Forming beads
    • C03B19/1005Forming solid beads
    • C03B19/106Forming solid beads by chemical vapour deposition; by liquid phase reaction
    • C03B19/1065Forming solid beads by chemical vapour deposition; by liquid phase reaction by liquid phase reactions, e.g. by means of a gel phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/12Other methods of shaping glass by liquid-phase reaction processes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/02Pure silica glass, e.g. pure fused quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/20Wet processes, e.g. sol-gel process
    • C03C2203/24Wet processes, e.g. sol-gel process using alkali silicate solutions

Abstract

PURPOSE:To reduce alkaline metal content, improve purity and simultaneously contrive increase in density and reduction in cost by pulverizing a specific pulverizing raw material silica in the presence of a liquid dispersion medium, forming and drying the resultant fine particulate silica slurry and calcining the resultant formed product. CONSTITUTION:An aqueous solution prepared by dissolving an alkaline silicate expressed by the formula M2O.nSiO2 (M is alkaline metal element; n is 0.5-5) so as to provide >=20wt.% concentration of SiO2 is reacted with an acid, such as sulfuric acid or nitric acid, to afford silica, which is then purified to provide a pulverizing raw material silica having 20mu-1mm average particle diameter, preferably >=5 ppm alkaline metal content and 20-1000m<2>/g specific surface area (measured by the BET method). The resultant silica is subsequently pulverized in the presence of a liquid dispersion medium consisting of water and/or water-soluble liquid organic compound (e.g., methanol) with a ball mill, etc. The obtained fine particulate silica slurry with <=10 ppm alkaline metal content and <20mu average particle diameter is cast into a mold, formed, dried, then heated to 800-1800 deg.C at 300-600 deg.C/hr heating rate, kept at the temperature for 0-24hr, calcined and, as necessary, heat-treated at 1800-2000 deg.C for several sec-1min.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ガラス成形体、特に石英ガラス成形体の製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing a glass molded body, particularly a quartz glass molded body.

本発明の方法は、透明、半透明、不透明、あるいは多孔
質の石英ガラス成形体あるいは、強化ガラス、ドープド
ガラスなどのガラス成形体の製造に適用することができ
る。
The method of the present invention can be applied to the production of transparent, translucent, opaque, or porous quartz glass molded bodies, or glass molded bodies such as tempered glass and doped glass.

〔従来の技術〕[Conventional technology]

従来、石英ガラスは、珪石、珪砂、水晶などを1900
〜2000°Cの高温度で溶融する方法によって製造さ
れている。しかし、溶融物の粘度が高いことから石英ガ
ラスの製造はむづかしく、また、これらの原料をそのま
ま溶融して石英ガラス成形体を直接製造することは困難
である。
Traditionally, quartz glass has been made of silica stone, silica sand, crystal, etc.
It is manufactured by a method of melting at a high temperature of ~2000°C. However, it is difficult to manufacture quartz glass due to the high viscosity of the melt, and it is also difficult to directly manufacture a quartz glass molded body by melting these raw materials as they are.

石英ガラス成形体の製法としては、石英ガラスの粉砕物
を水と混合し、鋳込み成形後、乾燥し焼成する方法が知
られているが、この方法では粉砕工程における不純物の
混入による汚染が避けられず、焼成中に結晶化する傾向
があり、得られた鋳込み溶融石英の嵩密度は、理論値の
80〜85%と低いものしか得られないという難点があ
る。
A known method for manufacturing quartz glass molded bodies is to mix pulverized quartz glass with water, cast it, dry it, and fire it, but this method avoids contamination due to impurities during the pulverization process. First, it tends to crystallize during firing, and the bulk density of the cast fused silica obtained is only 80 to 85% of the theoretical value.

(Journal of the A+nerican
 Ceramic 5ociety、 G6No、10
,683〜68B、 (1983)、)また、ケイ酸ソ
ーダを原料とする湿式法によって得られた超微粉末シリ
カとシリコンアルコキシドとを原料とするゾル−ゲル法
が提案されているが(特開昭60−131833号公報
)、ケイ酸ソーダを原料として湿式法によって得られた
市販されているシリカには、シリカに対して数目〜数千
ppm相当量のナトリウムが含有されているため、この
方法ではゲルを焼成した際にクリストハライI・化し易
く、焼成品を室温に冷却したとき無数の亀裂が生しるこ
とを避けるため低温で焼成することを要し、充分な焼結
ができないという難点がある。
(Journal of the A+nerican
Ceramic 5ocity, G6 No. 10
, 683-68B, (1983),) In addition, a sol-gel method using silicon alkoxide and ultrafine powdered silica obtained by a wet method using sodium silicate as the raw material has been proposed (Japanese Patent Application Laid-Open No. Commercially available silica obtained by a wet method using sodium silicate as a raw material contains an amount of sodium equivalent to several ppm to several thousand ppm based on the silica. However, when the gel is fired, it easily turns into Christohalai I, and in order to avoid the formation of countless cracks when the fired product is cooled to room temperature, it must be fired at a low temperature, which is a disadvantage in that sufficient sintering cannot be achieved. There is.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は従来技術の問題点を解決し、入手の容易なアル
カリ金属けい酸塩水溶液を原料として得られた微粒子シ
リカを比較的低温度で焼成し、Naなどアルカリ金属や
その他の不純物含量の少ない高純度で、かつ、密度の高
いガラス成形体、特に石英ガラス成形体を製造するもの
である。
The present invention solves the problems of the prior art by firing fine particle silica obtained from an easily available alkali metal silicate aqueous solution as a raw material at a relatively low temperature, thereby reducing the content of alkali metals such as Na and other impurities. This method produces a glass molded body with high purity and high density, especially a quartz glass molded body.

本発明の目的は、アルカリ金属けい酸塩水溶液を原ねと
して、高純度で、かっ、密度の高いガラス成形体、特に
石英ガラス成形体を製造する方法を提供することにある
An object of the present invention is to provide a method for producing a high-purity, high-density glass molded body, particularly a quartz glass molded body, using an aqueous alkali metal silicate solution as a raw material.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、アルカリ金属けい酸塩水78液と酸とを
反応させて得たシリカを精製して得られたアルカリ金属
やその他の不純物含量が少なく、平均粒径が20μm以
−トないし] mm以下の範囲であるシリカを原料とし
、これを液体分散媒体中で粉砕処理することによって、
アルカリ金属含有率が10ppm以下、更には1 pp
m以下であって、平均粒径が20μm未満、更には10
μm以下である、不純物含量の少ない高純度の微粒子シ
リカスラリーを、濃縮操作を必要と−ヒす、高濃度で得
ることがでさること、更に、得られた微粒子シリカスラ
リーをそのまま、または該スラリーを乾燥して得た微粒
子シリカ乾粉を成形し、必要により乾燥した後、焼成す
ることQこよってガラス成形体を得ることができるごと
を見出し、本発明を完成さ・Uた。
The present inventors purified silica obtained by reacting 78 aqueous alkali metal silicate solutions with an acid, and obtained a product with a low content of alkali metals and other impurities, and an average particle size of 20 μm or more.] By using silica as a raw material and pulverizing it in a liquid dispersion medium,
Alkali metal content is 10 ppm or less, even 1 ppm
m or less, and the average particle size is less than 20 μm, and even 10
It is possible to obtain a high-purity particulate silica slurry with a small impurity content of μm or less at a high concentration without requiring a concentration operation, and furthermore, the obtained particulate silica slurry can be used as it is, or the slurry can be The present invention was completed based on the discovery that a glass molded article can be obtained by molding the dried fine silica powder obtained by drying the powder, drying it if necessary, and then firing it.

以下、本発明の詳細について説明する。The details of the present invention will be explained below.

本発明の方法で用いられる粉砕用原料(以下砕料という
)ソリ力を得るための原料として用いられろアルカソリ
い酸塩水溶液は、一般式;M20・n5io□ (ただ
し、Mはアルカリ金属元素、nは5in2のモル数で0
.5〜5を示す)で表されるアルカリ金属LJい酸塩の
水溶液で、りい酸のす)〜リウム塩、カリウム塩、リチ
ウJ、塩などの水溶液を用いるごとができる。
The raw material for crushing (hereinafter referred to as crushing material) used in the method of the present invention is an aqueous solution of alkasolinate used as a raw material for obtaining the shear force, and has the general formula: M20・n5io□ (where M is an alkali metal element, n is the number of moles in 5in2 and is 0
.. An aqueous solution of an alkali metal LJ phosphate represented by 5 to 5), a lithium salt, a potassium salt, a lithium J salt, etc. of phosphoric acid can be used.

そのSiO□濃度は20重量%以」二、好ましくは25
重量%以上であることが望ましい。S+Oz!度が低い
場合には、酸と反応さ−Uで得られたソリ力がゾル状に
分散したり、あるいは反応生成物が軟質のケル状に固ま
り、ソリ力の精製が困離乙こなる傾向がある。
The SiO□ concentration is 20% by weight or more, preferably 25% by weight or more.
It is desirable that the amount is at least % by weight. S+Oz! If the strength is low, the shearing force obtained by reacting with the acid may be dispersed in the form of a sol, or the reaction product may solidify into a soft shell, making it difficult to purify the shearing force. There is.

アルカリ金属けい酸塩水)容液と反応させる酸としては
硫酸、硝酸、塩酸などの鉱酸が用いられ、硫酸、硝酸が
好ましい。
As the acid to be reacted with the aqueous alkali metal silicate solution, mineral acids such as sulfuric acid, nitric acid, and hydrochloric acid are used, with sulfuric acid and nitric acid being preferred.

鉱酸のほかに有機酸を用いることもできる。In addition to mineral acids, organic acids can also be used.

本発明の方法において用いられる砕料シリカの要件は、
平均わ5径が2011m以ヒないしI mm以下の範囲
であるごとである。
The requirements for the pulverized silica used in the method of the present invention are:
The average wafer diameter is in the range of 2011 m or more to I mm or less.

本発明の方法で用いる砕料シリカのアルカリ金属含有率
はてきるだけ少ないことが望ましく、好ましくは5pp
m以下、更に好ましくは]、ppm以下であることが望
ましい。
It is desirable that the alkali metal content of the pulverized silica used in the method of the present invention is as low as possible, preferably 5 pp.
m or less, more preferably], ppm or less.

本発明の方法で用いられる砕料シリカは、平均粒径が2
0〜300 μmの範囲であり、比表面積が20〜10
00 n? / g (BIET法による。以下、同し
)の範囲であることが好ましい。
The crushed silica used in the method of the present invention has an average particle size of 2
The range is 0 to 300 μm, and the specific surface area is 20 to 10
00n? / g (based on the BIET method; hereinafter the same applies).

アルカリ金属りい酸塩水溶液と酸とを反応さ一已て得ら
れたシリカの平均粒径が20μm以十であると精製工程
における不純物の抽出に悪影害を及ぼずことなく、洗浄
 脱水処理が容易であり不純物含量を少なくすることが
できるのに対し、シリカの平均粒径が20μm未満であ
ると精製工程におLJる洗浄・脱水処理が困難となり、
また、]、 mmを超えると精製工程における不純物の
抽出が困難となり、いづれも高純度のシリカを得ること
が困難であるので好ましくない。
If the average particle size of the silica obtained by reacting an aqueous alkali metal silicate solution with an acid is 20 μm or more, it will not have any negative effect on the extraction of impurities in the purification process and can be washed and dehydrated. On the other hand, if the average particle size of silica is less than 20 μm, it becomes difficult to perform washing and dehydration treatments during the purification process.
Moreover, if it exceeds mm, it becomes difficult to extract impurities in the purification process, and it is difficult to obtain highly pure silica, which is not preferable.

本発明の方法において砕料として用いられるシリカの」
L表面積は20rW/g以上であることが望ましい。比
表面積が小さいシリカは粉砕が困難で、粉砕装置材料の
摩耗が激しく耐用期間が短くなるとともに、得られる微
粒子シリカスラリー中に混入する不純物が増大するので
好ましくない。
of silica used as a grinding material in the method of the present invention.
It is desirable that the L surface area is 20 rW/g or more. Silica with a small specific surface area is difficult to crush, causes severe wear on the material of the crushing device, shortens its useful life, and increases the amount of impurities mixed into the resulting fine-particle silica slurry, which is not preferred.

本発明の方法で砕料として用いられるシリカの比表面積
は20〜1000m/gの範囲であることが望ましく、
好ましくは30〜]、0OOn(/gの範囲、更に好ま
しくは200〜900 rT(/ gの範囲である。
The specific surface area of the silica used as the grinding material in the method of the present invention is preferably in the range of 20 to 1000 m/g,
Preferably, it is in the range of 30 to 00n (/g), and more preferably in the range of 200 to 900 rT (/g).

本発明の方法の砕料シリカを用いると、比表面積が20
n?/g未満であるシリカを用いたときに比較して粉砕
装置の摩耗が少なく、得られる微粒子シリカスラリーに
混入する不純物量が少ない。
When using the ground silica of the method of the present invention, the specific surface area is 20
n? Compared to when using silica with a particle diameter of less than 1.5 g, the wear of the grinding device is less, and the amount of impurities mixed into the resulting fine particle silica slurry is smaller.

また、比表面積が20 rd / g未満であるシリカ
を粉砕する場合には摩耗が多い石英ガラス、溶融石英、
水晶、湧瑞または珪石などの珪酸質材料も、本発明の方
法においては摩耗が少ないので使用することできる。
In addition, when pulverizing silica with a specific surface area of less than 20 rd/g, quartz glass, fused quartz,
Siliceous materials such as quartz, quartz or silica can also be used in the process of the invention as they are less abrasive.

本発明の方法で用いられる砕料としてのシリカを得るた
めの方法としては、公知の方法の中から本発明の方法に
おける砕料としての要件を備えたシリカが得られる方法
が選ばれる。たとえば、11開昭62−3011号また
は特開昭62−283809号などの各公報に記載の方
法によって、本発明の方法で用いられる砕料シリカを得
ることができる。
As a method for obtaining silica as a granule used in the method of the present invention, a method is selected from among known methods that yields silica that meets the requirements as a granule in the method of the present invention. For example, the powder silica used in the method of the present invention can be obtained by the methods described in JP-A-62-3011 and JP-A-62-283809.

実施の態様としては、予め粘度が2〜500ボイズ、好
ましくは2〜200ポイズの範囲に調製された前記アル
カリ金属けい酸塩の水溶液を、孔径が20μm〜1 m
mの範囲、好ましくは30〜300 μmの範囲である
ノズルから、水溶性有機媒体または酸溶液からなる凝固
浴中に押し出して繊維状ないし柱状あるいは粒状に凝固
させ、得られたゲルを酸含有液で処理した後、次いで水
洗して不純物を抽出除去することによって得ることがで
きる。
In an embodiment, the aqueous solution of the alkali metal silicate prepared in advance to have a viscosity of 2 to 500 poise, preferably 2 to 200 poise, is mixed with a pore size of 20 μm to 1 m.
m, preferably in the range of 30 to 300 μm, into a coagulation bath consisting of a water-soluble organic medium or an acid solution to coagulate it into a fibrous, columnar, or granular shape, and the resulting gel is poured into an acid-containing solution. It can be obtained by treating with water and then washing with water to extract and remove impurities.

上記方法によって、内外両面に無数の亀裂を有する壁に
囲まれた中空構造を有し、しかも、アルカリ金属元素や
塩素のほか、ウランなど放射性を有する物質、更には、
AI、Fe、Tiなど各種の不純物含存率が、いずれも
1 ppm以下である高純度シリカを得ることができる
By the above method, a hollow structure surrounded by walls with countless cracks on both the inside and outside surfaces is formed, and in addition to radioactive substances such as alkali metal elements, chlorine, and uranium,
High purity silica can be obtained in which the content of various impurities such as AI, Fe, and Ti is all 1 ppm or less.

使用するノズルは、凝固浴中でゲル化したアル−= 7
− カリ金属けい酸塩がノズル面に付着するトラブルの発生
を防くために、金−白金合金など貴金属合金類製または
四弗化エチレン系樹脂製、またはノズル面を貴金属類ま
たは四弗化エチレン系樹脂で被覆したものであることが
好ましい。
The nozzle used is Al-=7 which has been gelled in a coagulation bath.
− In order to prevent problems such as potassium metal silicate adhering to the nozzle surface, the nozzle surface should be made of noble metal alloys such as gold-platinum alloy or tetrafluoroethylene resin, or the nozzle surface should be made of precious metals or tetrafluoroethylene resin. Preferably, the material is coated with a resin.

凝固浴に用いられる水溶性有機媒体としては例えば、メ
タノール、エタノール5n−プロパツール等のアルコー
ル類、酢酸メチル、酢酸エチル等のエステル類、アセト
ン、メチルエチルケトン等のケトン類、ジメチルアセト
アミド、ジメチルホルムアミドなどのアミド類、ジメチ
ルスルフオキシド等を挙、げることかできる。
Examples of the water-soluble organic medium used in the coagulation bath include alcohols such as methanol and 5n-propanol, esters such as methyl acetate and ethyl acetate, ketones such as acetone and methyl ethyl ketone, dimethylacetamide and dimethylformamide. Amides, dimethyl sulfoxide and the like can be mentioned.

また、凝固浴に用いられる酸としては、硫酸。In addition, the acid used in the coagulation bath is sulfuric acid.

硝酸、塩酸などの無機酸であって、硫酸、硝酸を用いる
のが好ましく、酸溶液としては、実用上、これらの酸の
水溶液が好ましい。酸濃度は、0.1〜4規定、好まし
くは0.5〜3規定、更に好ましくは1〜2規定の範囲
である。
Among inorganic acids such as nitric acid and hydrochloric acid, it is preferable to use sulfuric acid and nitric acid, and as the acid solution, an aqueous solution of these acids is practically preferable. The acid concentration is in the range of 0.1 to 4N, preferably 0.5 to 3N, more preferably 1 to 2N.

凝固浴温度は、25°C以上、好ましくは40〜80“
Cの範囲に保持するのがよい。
The coagulation bath temperature is 25°C or higher, preferably 40-80°C.
It is best to keep it within the range of C.

アルカリ金属けい酸塩水溶液と酸とを反応ざ−Uて得ら
れたシリカの精製には、硫酸、硝酸、塩酸などの鉱酸、
過酸化水素などの過酸化物および−1−レート剤などか
ら選ばれた物質を含む水溶液による洗浄など公知の方法
を用いることができる。
To purify the silica obtained by reacting an aqueous alkali metal silicate solution with an acid, mineral acids such as sulfuric acid, nitric acid, and hydrochloric acid,
Known methods such as cleaning with an aqueous solution containing a substance selected from peroxides such as hydrogen peroxide and -1-rate agents can be used.

砕料シリカの「平均粒径Jの測定は、ふるい分は法によ
る。また、砕料シリカの形状が繊維状ないし柱状など球
形からのずれが大きい場合には光学顕微鏡によって求め
られた粒子の太さ (短径)の算術平均値を「平均粒径
」とみなした。
The average particle size J of crushed silica is measured using the sieve method.In addition, if the shape of the crushed silica is fibrous or columnar, and has a large deviation from a spherical shape, the particle diameter determined by an optical microscope is used. The arithmetic mean value of the diameter (minor diameter) was regarded as the "average particle diameter."

粉砕処理によって得られたシリカ粒子の「平均粒径」は
、遠心沈降光透過法により測定した。
The "average particle size" of the silica particles obtained by the pulverization treatment was measured by a centrifugal sedimentation light transmission method.

本発明の方法においては、湿式粉砕に用いらり。In the method of the present invention, the powder is used for wet grinding.

る通常の粉砕装置を用いることができる。たとえば、ボ
ットミル、チューブミル、コニカルボールミルまたはコ
ンパートメントミルなどの転勤ボールミル、振動ボール
ミル、または塔式粉砕機、撹拌槽型ミルなどの媒体撹拌
ミルなどが用いられ、好ましくは、転勤ボールミル、振
動ボールミルが用いられる。
Conventional grinding equipment can be used. For example, a transfer ball mill such as a bot mill, a tube mill, a conical ball mill, or a compartment mill, a vibrating ball mill, or a media stirring mill such as a tower type crusher or a stirred tank type mill is used. Preferably, a transfer ball mill or a vibrating ball mill is used. It will be done.

砕料と接触する粉砕装置要部または必要によって用いら
れる粉砕媒体の材質は、アルミナ、ジルコニア、炭化ケ
イ素、窒化ケイ素または石英ガラス、溶融石英、水晶1
現丁昌または珪石などの珪酸質H料の中から適宜選択し
て用いる。
The material of the main part of the crushing device that comes into contact with the crushed material or the crushing media used as necessary may be alumina, zirconia, silicon carbide, silicon nitride, quartz glass, fused quartz, or crystal 1.
The material is appropriately selected from among silicic acid H materials such as silica or silica stone.

本発明の方法によって透明石英ガラスを製造する場合に
用いられる微粒子シリカスラリーを得る場合には、粉砕
装置要部および粉砕媒体の材質は石英ガラス1?8融石
英などの非晶質の珪酸質材料が適し、特に高純度の石英
ガラスが好ましい。
When obtaining the particulate silica slurry used in producing transparent quartz glass by the method of the present invention, the main parts of the crushing device and the crushing media are made of an amorphous silicic acid material such as fused silica glass 1-8. is suitable, and high-purity quartz glass is particularly preferred.

結晶質の珪酸質材料からなる粉砕装置を用いて粉砕した
シリカを焼成すると、シリカの結晶化が促進されるので
好ましくない。
Calcining pulverized silica using a pulverizer made of a crystalline siliceous material is undesirable because crystallization of the silica is promoted.

本発明の方法において用いられるボール、ロソI・など
の剛体からなる粉砕媒体の大きさは、直径が0.5−2
5mm、好ましくは1〜10mmの範囲で、特に、平均
粒径が1. // rn以下である超微粒子シリカを得
ようとする場合に用いられる粉砕媒体は、直径が1〜5
 mmの範囲であるものが好ましい。
The size of the grinding medium made of a rigid body such as a ball or Roso I used in the method of the present invention is 0.5-2 mm in diameter.
5 mm, preferably in the range from 1 to 10 mm, especially when the average particle size is 1.5 mm. // The grinding media used when trying to obtain ultrafine silica particles with a particle size of rn or less has a diameter of 1 to 5.
Preferably, it is in the range of mm.

本発明の方法において、砕料シリカの粉砕処理は液体分
散媒体の存在下で行い、液体分散媒体としては水性媒体
が好適に用いられる。
In the method of the present invention, the pulverization treatment of pulverized silica is performed in the presence of a liquid dispersion medium, and an aqueous medium is preferably used as the liquid dispersion medium.

また、分散媒体として水溶性液体有機化合物を用いるこ
とができ、その具体例として、メタノール、エタノール
などのアルコール類、ボルムア)ド、ジメチルホルムア
ミ1−.ジメチルアセトアミ1′などのアミド類、アセ
トン、ノヂルエヂルケ]ンなどのケ1−ン類などを挙げ
ることができる。
In addition, a water-soluble liquid organic compound can be used as the dispersion medium, and specific examples thereof include alcohols such as methanol and ethanol, volumado, dimethylformamide 1-. Examples include amides such as dimethylacetamide 1', and carbons such as acetone and nodyl ether carbon.

水と水溶性有機化合物との混合物を分散媒体として用い
ることもでき、得られた微粒子シリカスラリーを型に流
し込んで成形し、これを乾燥する際に乾燥成形体の割れ
を防くことができる。
A mixture of water and a water-soluble organic compound can also be used as a dispersion medium, and the obtained fine particle silica slurry can be poured into a mold and molded, and when it is dried, cracking of the dried molded product can be prevented.

水性媒体を用いたときの粉砕系のpl+は2〜11、好
ましくは2〜5または7〜11の範囲がよい。
The pl+ of the grinding system when using an aqueous medium is preferably in the range of 2 to 11, preferably 2 to 5 or 7 to 11.

粉砕系のpHが2未満では酸の含有率が高まり、また、
11を超えると媒体へのシリカの溶解度が高まるので好
ましくない。5を超え7未満の範囲Qはシリカの粉砕は
進むが、シリカ濃度が25重量%を超える場合には、得
られた微粒子シリカスラリーがペースト状となって流動
性が低トし、使用した粉砕媒体との分離が困難となる傾
向がある。
If the pH of the grinding system is less than 2, the acid content will increase, and
If it exceeds 11, the solubility of silica in the medium increases, which is not preferable. In the range Q of more than 5 and less than 7, silica pulverization progresses, but when the silica concentration exceeds 25% by weight, the obtained fine particle silica slurry becomes paste-like and has low fluidity, and the pulverization used Separation from the medium tends to be difficult.

シリカ濃度が25〜50重景%の範囲であるスラリーの
場合には、得られたスラリーのpl+を7〜11の範囲
に調製することが好ましい。このように調製されたシリ
カスラリーば、シリカ濃度が高いにもかかわらず意外に
も保存安定性が良好であり、沈澱するシリカの量が少な
い。静置した状態で1ケ月経過後におけるノリ力沈陣率
は、スラリー中のシリカ重量の10%ないしそれ以下で
あった。
In the case of a slurry having a silica concentration in the range of 25 to 50%, it is preferable to adjust the pl+ of the obtained slurry to a range of 7 to 11. The silica slurry prepared in this way has surprisingly good storage stability despite its high silica concentration, and the amount of precipitated silica is small. The rate of glue force settling after one month of standing was 10% or less of the weight of silica in the slurry.

pH調節には、酸としては硫酸、塩酸、リン酸。Acids used for pH adjustment include sulfuric acid, hydrochloric acid, and phosphoric acid.

ホウ酸などの無機酸が用いられる。これらにはシリカ乾
燥成形体の割れを防く作用がある。
Inorganic acids such as boric acid are used. These have the effect of preventing the dry molded silica from cracking.

また、アルカリとしてはアンモニア、メチルアミンなど
のアミン類を用いることができる。
Further, as the alkali, amines such as ammonia and methylamine can be used.

pl+の調整し1粉砕前に行うが、必要により粉砕処理
の途中またば粉砕後に行うこともできる。
Adjustment of pl+ is carried out before the first pulverization, but it can also be carried out during the pulverization process or after the pulverization process, if necessary.

粉砕処理時の温度は’))4こ限定しないが、通常、2
0〜100°Cの範囲で行う。耐圧性の装置を用いて】
00°C以上、更に高温−たとえば、150〜200°
Cの範囲一で行うこともできる。
The temperature during the crushing process is not limited to 4, but is usually 2
It is carried out in the range of 0 to 100°C. Using pressure-resistant equipment]
00°C or higher, even higher temperatures - e.g. 150-200°
It can also be done in the range of C.

粉砕所要時間は粉砕条(1により異なるが、05分〜9
6時間の範囲、好ましくは0.2時間から24時間の範
囲である。
The time required for crushing varies depending on the crushing column (1, 05 to 90 minutes).
It is in the range of 6 hours, preferably in the range of 0.2 hours to 24 hours.

本発明の方法によれば、a縮操作を施すことなく湿式粉
砕処理のみで、5iO7濃度15〜50重量%と高濃度
であって、アルカリ金属含有率がlQppm以下、更に
は11”pm以下であり、平均粒径が20μIn未満、
更には10μm以下である、不純物含量の少ない高純度
の微粒子シリカスラリーを得ることができる。
According to the method of the present invention, the 5iO7 concentration is as high as 15 to 50% by weight, and the alkali metal content is 1Qppm or less, furthermore, 11"pm or less, by only wet pulverization without performing an a-condensation operation. Yes, average particle size is less than 20μIn,
Furthermore, it is possible to obtain a highly purified fine particle silica slurry with a small impurity content, which is 10 μm or less.

前記粉砕処理で得られた微粒子シリカスラリーからガラ
ス成形体を得るには 微粒子シリカスラリーまたは、ご
れを乾燥して得た微粒子シリカベ・2粉を適宜な方法に
よって成形し、得られた乾燥成形体を焼成する。
To obtain a glass molded body from the fine-particle silica slurry obtained in the above-mentioned pulverization process: A dry molded body obtained by molding the fine-particle silica slurry or the fine-particle silica powder obtained by drying the dirt by an appropriate method. to be fired.

成形法としては、流し込み成形、押出し成形。Molding methods include pour molding and extrusion molding.

押型成形、カレンダー法・ドクターブレード法などのテ
ープ鋳込み成形、プレス成形、射出成形などの各種の方
法が挙げられる。
Examples include various methods such as push molding, tape casting such as calendar method and doctor blade method, press molding, and injection molding.

微粒子シリカスラリーをそのまま用いる場合には、流し
込み成形法が好ましい。
When using the fine particle silica slurry as it is, a casting method is preferred.

流し込み成形法では、成形型に微粒子シリカスラリーを
流し込み、10〜100°Cの範囲に保持して固化させ
る。成形型としては、ポリエヂレン、ポリプロピレン、
ポリスチレン、弗素樹脂、フェノール樹脂、エポキシ樹
脂、シリコーンゴム、ポリウレタンなど各種の合成樹脂
または合成ゴム、石膏などの吸水性材料、ポリエチレン
・ポリプロピレンなどの樹脂焼結体または骨材を含む樹
脂焼結体などの水や水蒸気の透過性を有する多孔質材料
などよりなる型を用いることができる。
In the casting method, fine-particle silica slurry is poured into a mold and kept at a temperature of 10 to 100°C to solidify. Molding molds include polyethylene, polypropylene,
Various synthetic resins or synthetic rubbers such as polystyrene, fluororesin, phenolic resin, epoxy resin, silicone rubber, polyurethane, water-absorbing materials such as plaster, resin sintered bodies such as polyethylene and polypropylene, or resin sintered bodies containing aggregate, etc. A mold made of a porous material that is permeable to water or water vapor can be used.

流し込み成形に用いる微粒子シリカスラリーは固化前に
減圧下で脱気する。なお、pH調整前の粘度の低い状態
で減圧下で脱気した後、pl−15〜7の範囲に調整し
て固化させると、その後に行う乾燥処理の際に、乾燥成
形体が割れ難く好ましい。
The particulate silica slurry used for casting is degassed under reduced pressure before solidification. In addition, it is preferable to degas under reduced pressure in a state with a low viscosity before adjusting the pH, and then adjust the PL to a range of 15 to 7 and solidify it, since the dried molded product will not be easily cracked during the subsequent drying process. .

流し込み成形に用いられる微粒子シリカスラリーについ
ては、微粒子シリカの粒径は1μmを超え10μm以下
であることが好ましい。粒径が1μm以下であると成形
体を乾燥する際に割れが生ずることがあり、一方、粒径
が10μmを超えると成形体の焼成に際して高温度を要
する。
Regarding the particulate silica slurry used for casting, the particle size of the particulate silica is preferably greater than 1 μm and not more than 10 μm. If the particle size is 1 μm or less, cracks may occur when drying the molded product, while if the particle size exceeds 10 μm, high temperatures are required when firing the molded product.

微粒子シリカスラリーを通常用いられる方法−好ましく
は噴霧乾燥法によって脱水・乾燥させて得た微粒子シリ
カの乾粉あるいは顆粒を用いる場合には、金型プレス成
形、ラバープレス成形、アイソスタチンクプレス成形、
ホットプレス成形。
When using a dry powder or granules of fine silica obtained by dehydrating and drying fine silica slurry by a method normally used, preferably a spray drying method, mold press molding, rubber press molding, isostatic press molding,
Hot press molding.

射出成形などの各種のプレス成形法によって成形する。Molded by various press molding methods such as injection molding.

成形時の圧力は、10〜5000 kg / afl、
好ましくは100〜2000 kg / c+flの範
囲である。
The pressure during molding is 10-5000 kg/afl,
Preferably it is in the range of 100 to 2000 kg/c+fl.

また、本発明の方法においては、微粒子シリカスラリー
に更にシリカ粉末を添加し、SiO□濃度を高めてから
成形することができる。たとえば、押出し成形、押型成
形あるいはドクターブレード法などでは、5ro2f4
度が35%ないし85%のスラリーまたはペースト状と
して成形を行なう。
Furthermore, in the method of the present invention, silica powder can be further added to the fine-particle silica slurry to increase the SiO□ concentration before molding. For example, in extrusion molding, die molding, or doctor blade method, 5ro2f4
Molding is carried out as a slurry or paste with a content of 35% to 85%.

本発明で用いられる微粒子シリカスラリー添JJII用
シリカ粉末としては、アルカリ金属けい酸塩水溶液と酸
を反応させて得たシリカを精製して得られた高純度ソリ
力を乾式粉砕して得られたものが好ましく、その平均粒
径が100μm以下、好ましくは50μm以下、更に好
ましくは20μm以下であるものが用いられる。
The fine-particle silica slurry-added silica powder for JJII used in the present invention is obtained by dry-pulverizing high-purity warp obtained by refining silica obtained by reacting an aqueous alkali metal silicate solution with an acid. Those having an average particle diameter of 100 μm or less, preferably 50 μm or less, and more preferably 20 μm or less are used.

なお、乾式粉砕に先立って、50〜300°C1好まし
くは100〜200°Cの範囲で乾燥した後、乾式粉砕
して得られたシリカ粉末を、微粒子シリカスラリーに加
えて成形すると、得られた成形体を乾燥する際に割れが
生し難く好ましい。また、前記条件で乾燥した後、80
0〜1800°C1好ましくは1100〜1800°C
の範囲で焼成した後、乾式粉砕して得られたシリカ焼成
粉末を微粒子シリカスラリーに加えて成形すると、得ら
れた成形体を乾燥・焼成した際の成形体の収縮が少なく
好ましい。
In addition, prior to dry pulverization, after drying at a temperature of 50 to 300°C, preferably 100 to 200°C, the silica powder obtained by dry pulverization is added to a fine particle silica slurry and molded. This is preferable because cracks are less likely to occur when drying the molded product. In addition, after drying under the above conditions, 80
0~1800°C1 Preferably 1100~1800°C
It is preferable to add the sintered silica powder obtained by dry pulverization to the microparticle silica slurry after sintering in the range of 1,000 ml and then mold the resulting molded object, since the resulting molded object shrinks less when dried and fired.

なお、微粒子シリカスラリーには、上記シリカ粉末のほ
かに、公知の方法で製造された不純物の少ないシリカ粉
末、シリカゾルを添加することもできる。
In addition to the above-mentioned silica powder, silica powder or silica sol with few impurities produced by a known method can also be added to the fine-particle silica slurry.

また、本発明においては砕料シリカ、または、粉砕して
得られた乾燥前または成形前の微粒子シリカスラリーに
対して、シリカあたりの重量比で0,002〜3%、好
ましくは0.01〜1%の範囲の凝膠剤、または、0.
1〜10%、好ましくは0.2〜3%の範囲のバインダ
ーを添加することによって成形体の割れを減らずことが
できる。
In addition, in the present invention, the weight ratio per silica is 0,002 to 3%, preferably 0.01 to Flocculant in the range of 1% or 0.
By adding a binder in the range of 1 to 10%, preferably 0.2 to 3%, it is possible to avoid cracking of the molded body without reducing it.

凝膠剤としては、タンニン酸、塩化アンモニウム、弗化
アンモニウム、硝酸アンモニウム、硫酸アンモニウム、
燐酸アンモニウム、蓚酸アンモニウムなどを、また、バ
インダーとしては、デキストリン、カゼイン、ゼラチン
、ポリビニルアルコール、メチルセルロース、メチルエ
チルセルロース、アルギン酸アンモニウム、オレイン酸
、ワックスエマルジョンなどを挙げることができる。
As flocculants, tannic acid, ammonium chloride, ammonium fluoride, ammonium nitrate, ammonium sulfate,
Examples of binders include dextrin, casein, gelatin, polyvinyl alcohol, methyl cellulose, methyl ethyl cellulose, ammonium alginate, oleic acid, and wax emulsion.

本発明において、微粒子シリカスラリーを型に流し込ん
だ後に行う乾燥処理の好ましい態様は次の通りである。
In the present invention, a preferred embodiment of the drying treatment performed after pouring the particulate silica slurry into a mold is as follows.

乾燥温度は、20〜200°Cの範囲とし、乾燥の初期
では30〜90°Cの範囲とするのが好ましい。
The drying temperature is preferably in the range of 20 to 200°C, and preferably in the range of 30 to 90°C at the initial stage of drying.

成形体中の水分が多い場合には、乾燥時の成形体の割れ
を防くため乾燥速度を調節することが好ましい。成形体
を収納し7た容器の気相部の開孔・1′Xを変えたり、
あるいは乾燥器内の温度と湿度を調節することによって
、乾燥速度を調節することができる。乾燥処理の時間は
、成形体の大きさ、厚み、水分の含有率などにより異な
り、3分〜3ケ月である。
When the molded article contains a large amount of water, it is preferable to adjust the drying rate in order to prevent the molded article from cracking during drying. By changing the opening and 1'X of the gas phase part of the container containing the molded body,
Alternatively, the drying speed can be adjusted by adjusting the temperature and humidity inside the dryer. The drying time varies depending on the size, thickness, moisture content, etc. of the molded body, and is from 3 minutes to 3 months.

次に、得られた乾燥成形体の焼成処理の好ましい態様は
次の通りである。
Next, a preferred embodiment of the firing treatment of the obtained dry molded body is as follows.

焼成温度は、800〜1800°C1好ましくは110
0〜1800°Cの範囲である。
The firing temperature is 800 to 1800°C, preferably 110°C.
It is in the range of 0 to 1800°C.

シリカの粒度と比表面積により必要な焼成温度が変化し
、シリカ粒子の平均粒径が大きくなるにつれて焼結に要
する温度は高くなる。シリカ粒子の平均粒径が1μm程
度であるときは1000〜1250°Cにおいて焼結が
進むが、平均粒径が10μm以上では、焼結に1400
°C以」二の温度が必要である。
The required sintering temperature changes depending on the particle size and specific surface area of the silica, and the larger the average particle size of the silica particles, the higher the temperature required for sintering. When the average particle size of silica particles is about 1 μm, sintering progresses at 1000 to 1250°C, but when the average particle size is 10 μm or more, sintering progresses at 1400°C.
Temperatures above 10°C are required.

焼成時の昇温速度は1時間あたり30〜600°C1好
ましくは100〜500°Cの範囲である。
The temperature increase rate during firing is in the range of 30 to 600°C per hour, preferably 100 to 500°C.

焼成時間は、高温では短時間でよく、低温では長時間を
要する。焼成時に一定温度に保持する時間は0〜24時
間、好ましくは0.1〜5時間の範囲である。
The firing time may be short at high temperatures, but requires a long time at low temperatures. The time for maintaining a constant temperature during firing is in the range of 0 to 24 hours, preferably 0.1 to 5 hours.

なお、前記の温度範囲で焼成して得られたガラス成形体
に、必要により1800°Cを超え2200°C程度の
温度で更に数秒ないし1分程度の短時間の加クツ5処理
を行うことによって微細結晶・気泡などの欠陥を除去す
ることができる。
In addition, if necessary, the glass molded body obtained by firing in the above-mentioned temperature range may be further subjected to a short-time treatment 5 of about several seconds to about 1 minute at a temperature exceeding 1800 ° C and about 2200 ° C. Defects such as microcrystals and bubbles can be removed.

焼成時の炉内雰囲気は、空気、窒素、水素、−・リウム
1 アルゴンなどの存在下でよく、真空下で焼成するこ
ともできる。
The atmosphere in the furnace during firing may be in the presence of air, nitrogen, hydrogen, -.lium 1 argon, etc., and firing may also be performed under vacuum.

透明ガラスや透明石英ガラスを製造する場合るこは、ヘ
リウム雰囲気で焼成することが好ましい。
When manufacturing transparent glass or transparent quartz glass, it is preferable to fire the glass in a helium atmosphere.

また、真空下で焼成した後、空気雰囲気で焼成する方法
も好ましい。
Furthermore, a method of firing in a vacuum and then firing in an air atmosphere is also preferable.

〔発明の効果〕〔Effect of the invention〕

本発明の方法により、アルカリ金属けい酸塩水溶液を原
料として、アルカリ金属含有率がlQppm以下と不純
分が少なく高純度で、かつ平均粒径が20μm以下であ
る微粒子シリカスラリーを得、これを成形した後、比較
的低い温度で焼成して、低アルカリで高純度の、かつ、
高密度の石英ガラス成形体を製造することができる。
By the method of the present invention, using an aqueous alkali metal silicate solution as a raw material, a fine particle silica slurry having a high purity with few impurities and an alkali metal content of 1Q ppm or less and an average particle size of 20 μm or less is obtained, and this is molded. After that, it is fired at a relatively low temperature to produce a low alkali, high purity and
A high-density quartz glass molded body can be manufactured.

シリカの粉砕条件と焼成条件を適宜に変えることにより
、透明・半透明・不透明または多孔質の石英ガラスを製
造することができる。
Transparent, translucent, opaque, or porous quartz glass can be produced by appropriately changing the silica crushing conditions and firing conditions.

本発明の方法心J、使用する原料が入手し易く、また、
省エネルギー化が可能で従来法より経済的であるという
利点を併せ持っている。
The method of the present invention J, the raw materials used are easily available, and
It has the advantage of being energy efficient and more economical than conventional methods.

〔実施例〕〔Example〕

以下、本発明の方法を実施例および比較例により具体的
に説明する。
The method of the present invention will be specifically explained below using Examples and Comparative Examples.

なお、1%」は「重量%Jを意味する。Note that "1%" means "wt% J.

実施例−1 りい酸ソーダ#3号(JIS K1408.3号相当品
、以下間し)(SiOz: 28%、Na2O: 9%
)20kgを減圧下で5゜°Cに加温して脱水濃縮し、
5in2: 30%、NazO: 9.8%の処理用原
液を得た。木原液の粘度は、20’Cで41ボイズであ
った。
Example-1 Sodium phosphate #3 (equivalent to JIS K1408.3, hereafter) (SiOz: 28%, Na2O: 9%
) 20kg was heated to 5°C under reduced pressure, dehydrated and concentrated,
A processing stock solution containing 5in2: 30% and NazO: 9.8% was obtained. The viscosity of the wood solution was 41 voids at 20'C.

この原液をろ過した後、押し出し機を用いて孔径が36
μmφ、孔数600個の金−白金合金製ノズルを通して
、50°Cに保持した凝固浴−硫酸2規定水溶液中へ6
m/分の速度で押し出し、透明な繊維状ゲルを得た。
After filtering this stock solution, the pore size is reduced to 36 mm using an extruder.
Pass through a gold-platinum alloy nozzle with μmφ and 600 holes into a coagulation bath-2N sulfuric acid aqueous solution maintained at 50°C.
A transparent fibrous gel was obtained by extrusion at a speed of m/min.

得られた繊維状のゲル(含液率二67%、湿量基準)1
0kgを、酸処理液−硫酸2規定水溶液30℃中に浸漬
し撹拌しなから100°Cで1時間処理し、ヌンチェを
用いて脱酸した。同様の処理を更に2回旋した後、得ら
れた短繊維状シリカをイオン交換水3ONを用いて洗滌
・濾過を5回繰り返した後、ヌソチェを用いて脱酸・脱
水し、含水率58%の湿シリカを得た。
Obtained fibrous gel (liquid content: 267%, wet basis) 1
0 kg was immersed in an acid treatment liquid-sulfuric acid 2N aqueous solution at 30°C, treated at 100°C for 1 hour without stirring, and deoxidized using a Nunche. After repeating the same process two more times, the obtained short fibrous silica was washed and filtered five times using 3ON ion-exchanged water, and then deoxidized and dehydrated using Nusoche to reduce the water content to 58%. Wet silica was obtained.

得られたシリカ粒子の平均粒径は40μm、比表面積は
800ポ/ g (BET法による)で、5iOz (
乾量基準)あたりの不純物含有率は、Na: 0.2p
pm。
The average particle size of the obtained silica particles was 40 μm, the specific surface area was 800 po/g (by BET method), and 5 iOz (
The impurity content per dry weight basis is Na: 0.2p
p.m.

八l: 0.4ppm、 Zr: 0.lppmであっ
た。
8l: 0.4ppm, Zr: 0. It was lppm.

得られた湿シリカ65gを砕料とし、分散媒体として水
1.6gおよび0.1規定塩酸水溶液:L4mlと共に
、石英ガラス (Na含有率: 0.05ppm)製5
 mmφボール200gを粉砕媒体としてボールミル内
に仕込み、回転数1100rpで12時間粉砕処理した
65 g of the obtained wet silica was used as a granule, and 1.6 g of water and 4 ml of 0.1N hydrochloric acid aqueous solution were used as a dispersion medium in a quartz glass (Na content: 0.05 ppm) 5
200 g of mmφ balls were placed in a ball mill as a grinding medium, and pulverized at a rotational speed of 1100 rpm for 12 hours.

ボールミルは転勤式で石英ガラス (Na含有率。The ball mill is a transfer type and uses quartz glass (Na content.

0.05ppm)類ボット (容量0.4N)  を使
用した。
0.05ppm) type bot (capacity 0.4N) was used.

上記の粉砕処理によって得られた微粒子シリカスラリー
は、スラリー中のシリカ粒子の平均粒径が3 u m 
、 S+C1z1度;40%、 pH:  3であり、
そして、Sin□あたりの不純物含有率は、Na: 0
.2ppm+Al: 0.4ppm、 Zr: 0.l
ppmであった。
The fine particle silica slurry obtained by the above pulverization treatment has an average particle size of 3 μm of silica particles in the slurry.
, S+C1z1 degree; 40%, pH: 3,
And the impurity content per Sin□ is Na: 0
.. 2ppm+Al: 0.4ppm, Zr: 0. l
It was ppm.

得られた微粒子シリカスラリーの35gを、マグネチッ
クスクーラーで撹拌しつつ、40Torrの圧力下で1
0分間脱気した。脱気後の微粒子シリカスラリーに0.
3%アンモニア水を加え、pHを5.0に調整した。こ
れを再度、40Torrの圧力下で10分間脱気した。
35 g of the obtained fine particle silica slurry was stirred with a magnetic cooler and heated under a pressure of 40 Torr.
Degassed for 0 minutes. 0.0% to the fine particle silica slurry after degassing.
3% aqueous ammonia was added to adjust the pH to 5.0. This was again degassed for 10 minutes under a pressure of 40 Torr.

処理した微粒子シリカスラリーをテフロン製シャーレ 
(内径80mmφ)に流し込め、蓋をして50°Cの恒
温器内で静置し固化させた。1日経過後、シャーレの蓋
を開孔率1%の孔をあけた蓋に換え、50°Cの恒温器
内で6日間乾燥した後、得られた円板状シリカ成形体を
乾燥機に入れ、150°Cにおいて10時間乾燥した。
The treated fine particle silica slurry is placed in a Teflon petri dish.
(inner diameter 80 mmφ), covered with a lid, and left standing in a thermostat at 50°C to solidify. After one day, the lid of the petri dish was replaced with a lid with holes with a porosity of 1%, and after drying in a thermostat at 50 °C for 6 days, the obtained disc-shaped silica molded body was placed in a dryer. , and dried at 150°C for 10 hours.

得られた乾燥成形体を電気炉に入れ、ヘリウム雰囲気下
で1時間あたり200°Cの速度で1300°Cに昇温
してこの温度に1.5時間保持した後、更に1時間かけ
て1500°Cに昇温してこの温度に1時間保持した後
、冷却した。
The obtained dry compact was placed in an electric furnace, heated to 1300°C at a rate of 200°C per hour in a helium atmosphere, maintained at this temperature for 1.5 hours, and heated to 1500°C over an additional hour. The temperature was raised to °C, maintained at this temperature for 1 hour, and then cooled.

このようにして得られた円板状石英ガラス成形体(50
mmφX3mm)5枚はいづれも、失透や気泡がなく、
透明であった。また、いづれも、嵩密度が2.2 g 
/ cfflで、X線回折(以下、XRD という)に
よる測定の結果、アモルファスであった。
The disc-shaped quartz glass molded body thus obtained (50
mmφX3mm) None of the five sheets had devitrification or air bubbles.
It was transparent. In addition, the bulk density of both is 2.2 g.
/cffl, and as a result of measurement by X-ray diffraction (hereinafter referred to as XRD), it was found to be amorphous.

砕料の平均粒径および比表面積;粉砕処理条件(砕料お
よび分散媒体の仕込み量、粉砕系のp1!。
Average particle size and specific surface area of the pulverized material; pulverization processing conditions (amounts of pulverized material and dispersion medium, p1 of the pulverization system).

装置要部の材質1回転数ならびに処理時間); 得られ
た微粒子シリカスラリー(SiOzfi度、スラリー中
のシリカ粒子平均粒径ならびに不純物含有率(対5i(
h)) ;  固化前に行った調整後の微粒子シリカス
ラリーのpl+、乾燥成形体の焼成条件(雰囲気、温度
および保持時間); 得られた焼成成形体の密度および
状態について、各実施例ならびに比較例の結果を表−1
に示す。
Material of the main parts of the device, number of rotations per revolution and processing time); Obtained fine particle silica slurry (SiOzfi degree, average particle diameter of silica particles in the slurry and impurity content (vs. 5i);
h)) ; PL+ of the fine particle silica slurry after adjustment performed before solidification, firing conditions for the dry molded body (atmosphere, temperature, and holding time); Regarding the density and state of the obtained fired molded body, each example and comparison Table 1 shows the results of the example.
Shown below.

−23一 実施例−2゜ 実施例−1で用いたと同しロットの湿シリカについて、
分散媒体として塩酸水溶液を加えず水のみを用いたほか
は実施例−1に準じて湿式粉砕処理を行い、得られた微
粒子シリカスラリーを用いて実施例−1と同様にして脱
気ならびにp II gJil整を行った(本例では塩
化アンモニウムは生成していない)後、流し込み成形・
乾燥・焼成を行った。
-23 Example-2゜About the same lot of wet silica used in Example-1,
Wet pulverization was carried out in the same manner as in Example 1, except that only water was used as the dispersion medium without adding an aqueous hydrochloric acid solution, and the resulting fine particle silica slurry was degassed and p II in the same manner as in Example 1. After gJil preparation (ammonium chloride is not generated in this example), pour molding and
Drying and firing were performed.

このようにして得られた円板状石英ガラス成形体(50
mmφX3mm)5枚はいづれも、失透や気泡がなく透
明であった。(なお、成形体5枚の内、2枚にはひび割
れが認められた。) 得られた石英ガラス成形体はいづれも、嵩密度が2.2
g/cntであり、XR[l測定の結果、アモルファス
であった。
The disc-shaped quartz glass molded body thus obtained (50
All five pieces (mmφ×3mm) were transparent with no devitrification or bubbles. (Cracks were observed in two of the five molded bodies.) All of the obtained quartz glass molded bodies had a bulk density of 2.2.
g/cnt, and as a result of XR [l measurement, it was found to be amorphous.

実施例−3゜ 実施例−1に準じた方法で得た湿シリカを砕料とし、表
−1に示すように処理時間を24時間としたほかは実施
例−1に準して湿式粉砕処理を行い、表−1に示すよう
に平均粒径が1.1μmであるシリカ粒= 24− 子40%を含む微粒子シリカスラリーを得た。
Example-3゜The wet silica obtained in the same manner as in Example-1 was used as a pulverizer, and the wet pulverization treatment was carried out in the same manner as in Example-1, except that the treatment time was 24 hours as shown in Table-1. As shown in Table 1, a fine particle silica slurry containing 40% of silica particles having an average particle diameter of 1.1 μm was obtained.

得られた微粒子シリカスラリーを用い、実施例−1に準
じて脱気ならびにpH調整(3→5.5)を行った後、
流し込み成形・乾燥を行った。
Using the obtained fine particle silica slurry, deaeration and pH adjustment (3 → 5.5) were performed according to Example-1, and then
Cast molding and drying were performed.

得られた乾燥成形体を電気炉で空気雰囲気下に1時間あ
たり200”Cの速度で1200°Cに昇温し、この温
度に1.5時間保持した後、冷却した。
The temperature of the obtained dried molded body was raised to 1200° C. at a rate of 200”C per hour in an electric furnace in an air atmosphere, maintained at this temperature for 1.5 hours, and then cooled.

このようにして得られた円板状石英ガラス成形体(50
mmφX3mm’)5枚は半透明であったが、高密度が
2.2g/cJであり、XRD測定の結果、アモルファ
スであった。
The disc-shaped quartz glass molded body thus obtained (50
The five sheets (mmφX3mm') were translucent, but had a high density of 2.2 g/cJ, and as a result of XRD measurement, they were amorphous.

実施例−4゜ 押出機のノズルとして孔径が200μmφのものを用い
たほかは、実施例−1に準じた処理を行い、含水率54
%の湿シリカを得た。
Example-4 The process was carried out in accordance with Example-1, except that a nozzle with a pore diameter of 200 μm was used as the nozzle of the extruder, and the moisture content was 54.
% wet silica was obtained.

得られたシリカ粒子の平均粒径は220μm、比表面積
は700rf/gで、SiO□(乾量基準)あたりの不
純物含有率は、Na: 0.2ppm+八I: 0.5
ppm。
The average particle diameter of the obtained silica particles was 220 μm, the specific surface area was 700 rf/g, and the impurity content per SiO□ (dry weight basis) was Na: 0.2 ppm + 8I: 0.5
ppm.

Zr: 0.lppmであった・ 得られた湿シリカ1020 gを砕料とし、分散媒体と
して水155gと共に、アルミナ製(Na含イj率=O
622%)ボール(5mmφ)5000gを粉砕媒体と
してボールミル内に仕込め、回転数60rpmで24時
間粉砕処理した。
Zr: 0. 1020 g of the obtained wet silica was used as a grinding material, and with 155 g of water as a dispersion medium, alumina (Na content = O
622%) balls (5 mmφ) were placed in a ball mill as a grinding medium, and pulverized at a rotation speed of 60 rpm for 24 hours.

ホールミルミJ転%j+式でアルミナ製(Na含有率・
022%)ボット(容量: 7℃)を使用した。
Made of alumina (Na content,
022%) Bot (volume: 7°C) was used.

上記の粉砕処理によって得られた微粒子シリカスラリー
は、スラリー中のシリカ粒子の平均粒径が0.7 μm
 、 Sin□濃度・40%、 ptl:  4であり
、そして、5iO7あたりの不純物含有率は、Na: 
 1 ppm。
The fine particle silica slurry obtained by the above pulverization treatment has an average particle size of silica particles in the slurry of 0.7 μm.
, Sin□ concentration 40%, ptl: 4, and impurity content per 5iO7 is Na:
1 ppm.

八I: 220ppm、  Zr: 0.lppmであ
った。
Eight I: 220ppm, Zr: 0. It was lppm.

得られた微粒子ンリカスラリーを用い、実施例−1に準
して脱気ならびにpH調整(4→6.0)を行った後、
流し込み成形 乾燥を行った。
Using the obtained particulate liquid slurry, deaeration and pH adjustment (4 → 6.0) were performed according to Example-1, and then
Cast molding and drying were performed.

得られた乾燥成形体を電気がiで空気雰囲気下に1時間
あたり200°Cの速度で1200”CにM温し、ごの
温度に15時間保持した後、冷却した。
The obtained dried molded body was heated to 1200''C at a rate of 200°C per hour in an air atmosphere with electricity at i, kept at that temperature for 15 hours, and then cooled.

このようにして得られた円板状石英ガラス成形体(51
mmφx3mm)5枚は半透明であったが、嵩密度が2
.1 、、、 / c硲で、χRD測定の結果、アモル
ファスであった。(なお、成形体5枚の内、2枚Gごは
ひび割れが認1められた。) 実施例−5 実施例−4で用いたと同じロットの湿シリカについて、
表−1に示す条件で実施例−1に準して湿式粉砕処理し
、得られた微粒子シリカスラリーを用いて実施例−1と
同様にして脱気ならびにpl+調整した後、流し込み成
形・乾燥・焼成を行った。
The disc-shaped quartz glass molded body thus obtained (51
mmφx3mm) 5 sheets were translucent, but the bulk density was 2.
.. As a result of χRD measurement, it was found to be amorphous. (Cracks were observed in 2 of the 5 molded bodies.) Example 5 Regarding wet silica of the same lot as used in Example 4,
Wet pulverization was carried out according to Example 1 under the conditions shown in Table 1, and the resulting fine particle silica slurry was deaerated and PL+ adjusted in the same manner as in Example 1, followed by casting, drying, and Firing was performed.

このようにして得られた円板状石英ガラス成形体(50
mmφx3mm)  は失透や気泡がなく透明で、その
嵩密度は2.2g/cr?lで、XRD測定の結果、ア
モルファスであった。
The disc-shaped quartz glass molded body thus obtained (50
mmφx3mm) is transparent without devitrification or bubbles, and its bulk density is 2.2g/cr? As a result of XRD measurement, it was found to be amorphous.

実施例−6 実施例−4で用いたと同じ四ノ1−の湿シリカを砕料と
し、処理時間を6時間とし表−1に示す条件で実施例−
1に準して湿式粉砕処理を行い、表暑に示すように平均
粒径が10μmであるシリカ粒子40%を自む微粒子シ
リカスラリーを得た。
Example 6 Example 1 was carried out under the conditions shown in Table 1, using the same Shino 1 wet silica as used in Example 4 as the crushing material, and setting the treatment time to 6 hours.
A wet pulverization treatment was performed according to 1, to obtain a fine particle silica slurry containing 40% of silica particles with an average particle size of 10 μm as shown in the table.

得られた微粒子シリカスラリーを用い、実施測用と同様
にして脱気ならびにpH調整を行った後、流し込み成形
・乾燥を行った。
Using the obtained fine-particle silica slurry, deaeration and pH adjustment were performed in the same manner as in the actual measurement, followed by casting and drying.

得られた乾燥成形体を電気炉で空気雰囲気下に1時間あ
たり 400°Cの速度で1500°Cに昇温し、この
温度に1時間保持した後、冷却した。
The resulting dry compact was heated to 1500°C at a rate of 400°C per hour in an electric furnace in an air atmosphere, maintained at this temperature for 1 hour, and then cooled.

このようにして得られた円板状石英ガラス成形体(50
mmφx3mm) は、気泡を含み半透明であったが、
その層密度は2.2g/cmであり、χRD測定の結果
、アモルファスであった。
The disc-shaped quartz glass molded body thus obtained (50
mmφx3mm) was translucent with bubbles, but
The layer density was 2.2 g/cm, and as a result of χRD measurement, it was found to be amorphous.

実施例−7 処理時間を4時間としたほかは、実施例6と同様にして
湿式粉砕処理を行い、表−1に示すように平均粒径が1
5μmであるシリカ粒子40%を含む微粒子シリカスラ
リーを得た。
Example 7 Wet pulverization was carried out in the same manner as in Example 6, except that the treatment time was 4 hours, and as shown in Table 1, the average particle size was 1.
A particulate silica slurry containing 40% of silica particles having a diameter of 5 μm was obtained.

得られた微粒子シリカスラリーを用い、実施例−1と同
様にして脱気ならびにpl+調整を行った後、流し込み
成形・乾燥を行った。
Using the obtained fine particle silica slurry, deaeration and PL+ adjustment were performed in the same manner as in Example 1, followed by casting and drying.

得られた乾燥成形体を電気炉で空気雰囲気下に1時間あ
たり 400°Cの速度で1400°Cに昇温し、この
温度に 185時間保持した後、冷却した。
The resulting dry compact was heated to 1400°C at a rate of 400°C per hour in an electric furnace in an air atmosphere, maintained at this temperature for 185 hours, and then cooled.

このようにして得られた円板状石英ガラス成形体(51
mmφx3n+m) は、白色で不透明であった。
The disc-shaped quartz glass molded body thus obtained (51
mmφx3n+m) was white and opaque.

その嵩密度は2.1g/cr?lであり、XRD測定の
結果、アモルファスであった。
Its bulk density is 2.1g/cr? As a result of XRD measurement, it was found to be amorphous.

実施例−8゜ 実施例−4で用いたと同じロットの湿シリカについて、
表−1に示す条件で実施例−1に準して湿式粉砕処理し
、微粒子シリカスラリーを得た。
Example-8゜About the same lot of wet silica used in Example-4,
A wet pulverization treatment was carried out according to Example 1 under the conditions shown in Table 1 to obtain a fine particle silica slurry.

ごの微粒子シリカスラリーを150°Cで10時間加熱
し、得られた乾燥体をメノウ製乳鉢で軽く粉砕して微粒
子シリカ乾粉を得た。
The fine particle silica slurry was heated at 150° C. for 10 hours, and the resulting dried product was lightly ground in an agate mortar to obtain a fine particle dry powder.

得られた微粒子シリカ乾粉1gを、金型ブレス(内径1
3mmφのシリンダー)に充填して上1ζ両方向から圧
力1000kg / cMで20分間プレスし、微粒子
シリカ成形体を得た。
1 g of the obtained fine particle silica dry powder was placed in a mold press (inner diameter 1
The mixture was filled into a cylinder (3 mmφ) and pressed from both upper 1ζ directions at a pressure of 1000 kg/cM for 20 minutes to obtain a fine particle silica molded body.

該成形体を電気炉で空気雰囲気下に1時間あたり 40
0°Cの速度で1300°Cに昇温し、この温度に3時
間保持した後、冷却した。
The molded body is heated in an electric furnace under an air atmosphere at a rate of 40% per hour.
The temperature was raised to 1300°C at a rate of 0°C, maintained at this temperature for 3 hours, and then cooled.

このようにして得られた円板状石英ガラス成形体(]、
 OmmφX6mm)  は、白色で不透明であった。
The disc-shaped quartz glass molded body obtained in this way (],
OmmφX6mm) was white and opaque.

その嵩密度は2.0g/cJであり、XRD i’1t
ll定の結果、アモルファスであった。
Its bulk density is 2.0 g/cJ, and XRD i'1t
As a result of determination, it was found to be amorphous.

実施例−9゜ 実施例−8と同様にして得られた微粒子シリカ乾粉3.
3gを、金型プレス (内径40mmφのシリンダー)
に充填し、上下両方向から圧力1000 kg / c
fで20分間プレスして微粒子シリカ成形体を得た。
Example-9゜Dry fine particle silica powder obtained in the same manner as Example-83.
3g in a mold press (inner diameter 40mmφ cylinder)
Fill with pressure 1000 kg/c from both top and bottom directions.
A fine particle silica molded body was obtained by pressing at f for 20 minutes.

(同様の処理を5回行って得られた5枚のプレス成形体
の内、2枚には劃れが生じた。)該成形体を電気炉で真
空下で1時間あたり200°Cの速度で1400°Cに
昇温してこの温度に1.5時間保持し、ついで、アルゴ
ン雰囲気として1時間あたり 200°Cの速度で17
50°Cに昇温してこの温度に0.5時間保持した後、
冷却した。
(Two of the five press-formed bodies obtained by performing the same treatment five times had cracking.) The molded bodies were heated in an electric furnace under vacuum at a rate of 200°C per hour. The temperature was increased to 1400°C and held at this temperature for 1.5 hours, then heated at a rate of 200°C per hour under an argon atmosphere for 17 hours.
After increasing the temperature to 50 °C and maintaining this temperature for 0.5 hours,
Cooled.

このようにして得られた円板状石英ガラス成形体(25
mmφx3mm) は失透や気泡がなく透明で、その嵩
密度は2.2g/cfflで、XRD測定の結果、アモ
ルファスであった。
The disc-shaped quartz glass molded body thus obtained (25
mmφ x 3 mm) was transparent without devitrification or bubbles, had a bulk density of 2.2 g/cffl, and was amorphous as a result of XRD measurement.

実施例−10゜ 実施例−8と同様にして得られた微粒子シリカ乾粉を、
10%相当量のポリビニルアルコール10%水溶液と混
合して得られたシリカあたり1%相当量のポリビニルア
ルコールを含む微粒子シリカ3゜7gを、実施例−9と
同様にしてプレスし、微粒子シリカ成形体を得た。
Example-10゜The dry fine particle silica powder obtained in the same manner as in Example-8 was
3.7 g of fine particle silica containing 1% polyvinyl alcohol per silica obtained by mixing with 10% polyvinyl alcohol 10% aqueous solution was pressed in the same manner as in Example 9 to obtain a fine particle silica molded body. I got it.

同様の処理を5回行って得た5枚のプレス成形体には、
いづれも割れがなかった。
Five press molded bodies obtained by performing the same treatment five times had the following properties:
There were no cracks in any of them.

該成形体を150°Cで10時間加熱乾燥した後、電気
炉で、空気雰囲気下で1時間あたり200’Cの速度で
950°Cに昇温してこの温度に18時間保持し、つい
で、真空として1時間あたり 200’Cの速度で14
00″Cに昇温してこの温度に1.5時間保持した。
After heating and drying the molded body at 150°C for 10 hours, the temperature was raised to 950°C at a rate of 200°C per hour in an air atmosphere in an electric furnace and maintained at this temperature for 18 hours, and then, 14 at a rate of 200'C per hour as vacuum
The temperature was raised to 00''C and held at this temperature for 1.5 hours.

ついで、アルゴン雰囲気として1時間あたり200°C
の速度で1750°Cに昇温してこの温度に0.5時間
保持した後、冷却した。
Then, the temperature was increased to 200°C per hour as an argon atmosphere.
The temperature was raised to 1750°C at a rate of 1,750°C, maintained at this temperature for 0.5 hour, and then cooled.

このようにして得られた円板状石英ガラス成形体(25
肝φX3mm)は失透や気泡がなく透明で、その嵩密度
は2.2g/cJで、XRD測定の結果、アモルファス
であった。
The disc-shaped quartz glass molded body thus obtained (25
The liver (φX 3 mm) was transparent without devitrification or bubbles, had a bulk density of 2.2 g/cJ, and was amorphous as a result of XRD measurement.

比較例−1゜ 実施例−1で用いたと同じロフトの湿シリカ35gを粉
砕処理することなく、そのまま石英ガラス製シャーレ(
内径80mmφ)に入れ、実施例−1に準して乾燥を行
い、ついで、電気炉で空気雰囲気下に1時間あたり20
0°Cの速度で1200°Cに昇温し、この温度に1.
5時間保持した後、冷却した。
Comparative Example-1゜35g of wet silica of the same loft as used in Example-1 was placed in a quartz glass Petri dish (
(inner diameter 80 mmφ), dried according to Example-1, and then heated in an electric furnace under an air atmosphere at 20°C per hour.
The temperature was increased to 1200°C at a rate of 0°C, and 1.
After holding for 5 hours, it was cooled.

焼成品は粒体状で成形体が得られなかった。The fired product was granular and no molded product was obtained.

比較例−2゜ 実施例−4で用いたと同じロットの湿シリカ35gを粉
砕処理することなく、そのまま石英ガラス製シャーレ(
内径80mmφ)に入れ、実施例−1に準して乾燥を行
い、ついで、電気炉で空気雰囲気下に1時間あたり20
0°Cの速度で1400°Cに昇温し、この温度に1.
5時間保持した後、冷却した。
Comparative Example-2゜35g of wet silica from the same lot used in Example-4 was placed in a quartz glass Petri dish (
(inner diameter 80 mmφ), dried according to Example-1, and then heated in an electric furnace under an air atmosphere at 20°C per hour.
The temperature was increased to 1400°C at a rate of 0°C, and 1.
After holding for 5 hours, it was cooled.

焼成品は粒体状で成形体が得られなかった。The fired product was granular and no molded product was obtained.

比較例−3゜ 実施例−4で用いたと同じロットの湿シリカを、粉砕処
理することなくそのまま、150°Cで10時間加熱し
乾燥シリカを得た。
Comparative Example 3 The same lot of wet silica as used in Example 4 was heated as it was at 150° C. for 10 hours without being pulverized to obtain dry silica.

得られた乾燥シリカ1gを、実施例−8と同様にしてプ
レス処理した。
1 g of the obtained dry silica was pressed in the same manner as in Example-8.

プレス体を金型から取り出したところ、プレス体は脆く
て割れてしまい焼成することができず、目的とする成形
体が得られなかった。
When the pressed body was taken out from the mold, it was brittle and cracked, and could not be fired, so that the desired molded body could not be obtained.

Claims (1)

【特許請求の範囲】 1)アルカリ金属けい酸水溶液と酸とを反応させて得た
シリカを精製して得られた平均粒径が20μm以上ない
し1mm以下の範囲であるシリカを、液体分散媒体の存
在下で粉砕することによって得たアルカリ金属含有率が
10ppm以下であり、かつ、平均粒径が20μm未満
である微粒子シリカスラリーを成形し、乾燥した後、焼
成することを特徴とするガラス成形体の製造方法。 2)請求項1記載の微粒子シリカスラリーを乾燥し、得
られた微粒子シリカ乾粉を成形し、焼成することを特徴
とするガラス成形体の製造方法。
[Claims] 1) Silica obtained by refining silica obtained by reacting an aqueous alkali metal silicate solution with an acid and having an average particle size in the range of 20 μm or more and 1 mm or less is used as a liquid dispersion medium. A glass molded article characterized in that a fine-particle silica slurry having an alkali metal content of 10 ppm or less and an average particle size of less than 20 μm obtained by pulverization in the presence of silica particles is molded, dried, and then fired. manufacturing method. 2) A method for manufacturing a glass molded body, which comprises drying the particulate silica slurry according to claim 1, molding the obtained particulate silica dry powder, and firing.
JP63096850A 1988-04-21 1988-04-21 Method for manufacturing glass molded body Expired - Fee Related JPH0776100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63096850A JPH0776100B2 (en) 1988-04-21 1988-04-21 Method for manufacturing glass molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63096850A JPH0776100B2 (en) 1988-04-21 1988-04-21 Method for manufacturing glass molded body

Publications (2)

Publication Number Publication Date
JPH01270530A true JPH01270530A (en) 1989-10-27
JPH0776100B2 JPH0776100B2 (en) 1995-08-16

Family

ID=14175969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63096850A Expired - Fee Related JPH0776100B2 (en) 1988-04-21 1988-04-21 Method for manufacturing glass molded body

Country Status (1)

Country Link
JP (1) JPH0776100B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0647600A1 (en) * 1993-10-08 1995-04-12 Tosoh Corporation High-purity, opaque quartz glass, method for producing same and use thereof
EP0711736A1 (en) * 1994-10-14 1996-05-15 Tosoh Corporation Pure transparent quartz glass and process for production thereof
JP2002179421A (en) * 2000-12-07 2002-06-26 Hakuyoo Kogyo Kk Method for manufacturing silica fine powder, silica fine powder and resin composition containing silica fine powder

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4836214A (en) * 1971-09-11 1973-05-28
JPS5825070A (en) * 1982-07-23 1983-02-15 Hitachi Ltd Low pressure vapor discharge lamp
JPS5954632A (en) * 1982-09-21 1984-03-29 Mitsubishi Metal Corp Preparation of quartz glass powder
JPS6060932A (en) * 1983-08-18 1985-04-08 コーニング グラス ワークス Manufacture of glass or ceramic product
JPS62216959A (en) * 1986-03-18 1987-09-24 三菱電機株式会社 Manufacture of fused silica formed body

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4836214A (en) * 1971-09-11 1973-05-28
JPS5825070A (en) * 1982-07-23 1983-02-15 Hitachi Ltd Low pressure vapor discharge lamp
JPS5954632A (en) * 1982-09-21 1984-03-29 Mitsubishi Metal Corp Preparation of quartz glass powder
JPS6060932A (en) * 1983-08-18 1985-04-08 コーニング グラス ワークス Manufacture of glass or ceramic product
JPS62216959A (en) * 1986-03-18 1987-09-24 三菱電機株式会社 Manufacture of fused silica formed body

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0647600A1 (en) * 1993-10-08 1995-04-12 Tosoh Corporation High-purity, opaque quartz glass, method for producing same and use thereof
US5585173A (en) * 1993-10-08 1996-12-17 Tosoh Corporation High-purity, opaque quartz glass, method for producing same and use thereof
EP0711736A1 (en) * 1994-10-14 1996-05-15 Tosoh Corporation Pure transparent quartz glass and process for production thereof
JP2002179421A (en) * 2000-12-07 2002-06-26 Hakuyoo Kogyo Kk Method for manufacturing silica fine powder, silica fine powder and resin composition containing silica fine powder

Also Published As

Publication number Publication date
JPH0776100B2 (en) 1995-08-16

Similar Documents

Publication Publication Date Title
JP3751326B2 (en) Manufacturing method of high purity transparent quartz glass
JP2545282B2 (en) Method for producing spherical silica particles
CN102652109A (en) Synthetic amorphous silica powder and method for producing same
JPH03257010A (en) Silica particle and its production
CN107417071B (en) Method for producing opaque quartz glass containing pores
WO2017004776A1 (en) Porous alumina ceramic ware and preparation method thereof
WO2001053225A1 (en) Sol-gel process for producing synthetic silica glass
JP2004131378A (en) Process for manufacturing opaque quartz glass material
US5643347A (en) Process for manufacture of silica granules
JP4417679B2 (en) Method for producing opaque quartz glass composite material, composite material by the above method, and use thereof
JP2617822B2 (en) Method for producing non-sintered cristobalite particles
JPS62176928A (en) Production of quartz glass powder
JPH01270530A (en) Production of formed glass body
JP2012116708A (en) Method for manufacturing granulated silica, and method for manufacturing silica glass crucible
JP4484748B2 (en) Method for producing silica glass product
JPH01270531A (en) Production of formed glass body
JPH01275438A (en) Production of formed glass
JPH03275527A (en) Porous silica glass powder
JP5436553B2 (en) Unsintered compact based on silicon
JP2733860B2 (en) Manufacturing method of wear-resistant silica media
JP2586973B2 (en) Cristobalite manufacturing method
JPH0457606B2 (en)
JP2003520181A (en) Sol-gel method for producing synthetic silica glass
EP0175423A1 (en) Process for producing lithium silicate
JPH01224215A (en) Fine particulate silica slurry and production thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees