JPS6119040A - Manufacture of aperture diaphragm - Google Patents

Manufacture of aperture diaphragm

Info

Publication number
JPS6119040A
JPS6119040A JP13963884A JP13963884A JPS6119040A JP S6119040 A JPS6119040 A JP S6119040A JP 13963884 A JP13963884 A JP 13963884A JP 13963884 A JP13963884 A JP 13963884A JP S6119040 A JPS6119040 A JP S6119040A
Authority
JP
Japan
Prior art keywords
film
aperture diaphragm
resist
silicon nitride
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13963884A
Other languages
Japanese (ja)
Inventor
Toshiyuki Honda
本田 俊之
Katsumi Suzuki
克美 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP13963884A priority Critical patent/JPS6119040A/en
Publication of JPS6119040A publication Critical patent/JPS6119040A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/09Diaphragms; Shields associated with electron or ion-optical arrangements; Compensation of disturbing fields

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Beam Exposure (AREA)

Abstract

PURPOSE:To manufacture an aperture diaphragm having a rectangular opening with high dimensional accuracy by forming an etching protective mask pattern in an area corrresponding to the opening of the aperture diaphragm and then removing the thin metallic film and the silicon air film. CONSTITUTION:While only one surface of a silicon monocrystal 301 is exposed by using a silicon nitride film 302 as a protective mask, anisotropic etching is performed in a potassium hydroxide solution. Next, after a resist 305 is applied to a thin tungsten film 304, a desired aperture shape is transcribed on the resist 305 by electron beam exposeure to form a resist pattern. Next, thus formed resist pattern is used as a protective mask and the thin tungsten film 304 and a second silicon nitride film 303 are subjected to reactive plasma etching using SFe gas. After that, the resist 305 remaining on the thin tungsten film 304 is removed by O2 plasma, by the means mentioned above, it is possible to manufacture an aperture diaphragm having a rectangular opening with high dimensional accuracy.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は荷電粒子線照射装置において、荷電粒子線の断
面形状を規定するアパーチャ数少とその製造方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a number of apertures that define the cross-sectional shape of a charged particle beam in a charged particle beam irradiation device, and a method for manufacturing the same.

(従来技術とその問題点) 半導体デバイス製造プロセスにおいては、様々な荷電粒
子線照射装置が用いられておシ、荷電粒子線の断面形状
を形成する上で、アパーチャ絞りは重要な役割を果たし
ている。
(Prior art and its problems) Various charged particle beam irradiation devices are used in the semiconductor device manufacturing process, and the aperture diaphragm plays an important role in forming the cross-sectional shape of the charged particle beam. .

なかでも、電子線露光装置、特に電子線の矩形断面形状
管可変制御して露光する、いわゆる可変面積露光方式の
装置では、アパーチャ絞りの開口部分によって電子線の
矩形断面形状を規定して露光するので、アパーチャ絞り
の開口寸法に誤差があると、露光パタシンの矩形形状が
歪んだシ、矩形パターンのつなぎが悪くなったシする〇
第1図に可変面積露光方式の装置の構成を示す0矩形開
口を有する2個のアパーチャ絞り104 、107のう
ち、第1アパーチヤ絞ル104の上面に電子線を照射す
る0との第1アパーチヤ絞シ104の開口部を通シ抜け
てきた電子線のみが、第2アパーチャ絞、j 107の
上面を照射する。第1と第2のアパーチャ絞p104,
107の間に置かれた整形偏向器105によって電子線
の方向を制御すると、第2アパーチヤ絞シ107に投影
される電子綜像と、第2アパーチャ絞、り 107の開
口部分との重なり合い方が変化して、所望の面積管もっ
た矩形断面の電子線を得る。との電子縁を縮小レンズ1
08および投影レンズ109にて縮小投影した後に、位
置決め偏向器110にて材料111上の任意位置に露光
パターンを形成する。
Among these, in electron beam exposure equipment, particularly in so-called variable area exposure type equipment that performs exposure by variable control of a tube with a rectangular cross-sectional shape of the electron beam, the rectangular cross-sectional shape of the electron beam is defined by the opening of an aperture diaphragm for exposure. Therefore, if there is an error in the aperture size of the aperture diaphragm, the rectangular shape of the exposure pattern will be distorted, and the connections between the rectangular patterns will become poor. Figure 1 shows the configuration of a variable area exposure system. Of the two aperture stops 104 and 107 having openings, only the electron beam passing through the opening of the first aperture stop 104 irradiates the electron beam onto the top surface of the first aperture stop 104. , second aperture diaphragm, and illuminates the upper surface of j 107. first and second aperture diaphragm p104,
When the direction of the electron beam is controlled by the shaping deflector 105 placed between the diaphragms 107 and 107, the way the electron beam image projected onto the second aperture diaphragm 107 overlaps with the aperture of the second aperture diaphragm 107 is controlled. By changing the electron beam, an electron beam having a rectangular cross section with a desired area is obtained. Reduce the electronic edge with the lens 1
08 and the projection lens 109, an exposure pattern is formed at an arbitrary position on the material 111 using the positioning deflector 110.

とのような可変簡積鰭光方式により露光される矩形パヨ
ーンの高精度化、および矩形パターン相互間のつなぎ精
度向上のためには、アパーチャ数多の加工精度、例えば
戟形開口部分の平行度や直交度等を高精度に形成しうる
製造方法を確立する必要がある。
In order to improve the accuracy of the rectangular pattern exposed by the variable area fin light method, and to improve the accuracy of connecting rectangular patterns, it is necessary to improve the processing accuracy of the large number of apertures, for example, the parallelism of the oval-shaped opening. It is necessary to establish a manufacturing method that can form high-precision shapes and orthogonality.

特にアパーチャ絞9の矩形開口部分の直交度誤差につい
ては、電子線の矩形断面を縮小しても、直交度誤差が、
そのまま元の値に保たれるので、アパーチャ数多の加工
精度のうち、最も高精度に形成しなければならない要因
の一つである。
In particular, regarding the orthogonality error of the rectangular opening portion of the aperture diaphragm 9, even if the rectangular cross section of the electron beam is reduced, the orthogonality error will be
Since the original value is maintained as it is, it is one of the factors that must be formed with the highest accuracy among the many apertures.

一方、上記のような背景において、従来のアパーチャ数
多の構造を第2図に示す0第2図(a)、および第2図
(blに示すようなモリブデン製の2枚の刃状板201
. 202t−、それぞれの刃状部分を対向させて1対
とし、第2図(C)に示すように2対用いて上下から重
ね合わせてアパーチャ数多の開口部を形成していた。
On the other hand, in the background as described above, the conventional structure with a large number of apertures is shown in FIG.
.. 202t-, the respective blade-like portions were made into a pair so as to face each other, and as shown in FIG. 2(C), two pairs were used and overlapped from above and below to form an opening with a large number of apertures.

しかしながら、とのような構造においては、対向させた
2枚の刃状板の並べ方によって、矩形開口部の平行度に
誤差を生じやすく、また、2対の刃状板の重ね方によっ
て矩形開口部の直交度に誤差を生じやすいなどの欠点が
あった〇 (発明の目的) 本発明はとのような従来の欠点を除去して、高寸法精度
の矩形開口を有するアパーチャ数多の製造方法を提供す
ることにある。
However, in a structure like this, errors tend to occur in the parallelism of the rectangular opening depending on how the two opposing blade plates are arranged, and also, depending on how the two pairs of blade plates are stacked, the rectangular opening (Objective of the Invention) The present invention eliminates the drawbacks of the prior art and provides a method for manufacturing a large number of apertures having rectangular openings with high dimensional accuracy. It is about providing.

(発明の構成) 本発明によれば半導体単結晶基板のいずれか一方の表面
上に絶縁膜を形成した後に、との絶縁膜のうちアパーチ
ャ数多の開口部を含みかつ開口寸法より広い部分を除去
する工程と、前記基板の他方の表面上に形成されたシリ
コン窒化膜を形成し、その上に金属薄膜を形成する工程
と、前記絶縁膜のパターンを保護マスクにして、アパー
チャ数多の開口部を含む部分の前記基板を除去する工程
と、前記金属薄膜上のアパーチャ絞)の開口部に相当す
る場所にエツチングの保護マスクのパターンを形成した
後に、前記金属薄膜と前記シリコン窒化膜を除去する工
程とを含むことを特徴とするアパーチャ数多の製造方法
が得られる。
(Structure of the Invention) According to the present invention, after forming an insulating film on the surface of either one of the semiconductor single crystal substrates, a portion of the insulating film that includes an opening with a large number of apertures and is wider than the opening size is removed. forming a silicon nitride film on the other surface of the substrate and forming a metal thin film thereon; and forming a large number of apertures using the pattern of the insulating film as a protective mask. forming an etching protective mask pattern at a location corresponding to the opening of the aperture diaphragm on the metal thin film, and then removing the metal thin film and the silicon nitride film; A method for manufacturing a large number of apertures is obtained, which is characterized by including the steps of:

(実施例) 以下、本発明の実施例について図を参照しながら詳細に
説明する。
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第3図(、)〜(h)は本発明に基づくアパーチャ絞ル
の主要製造工程における断面図を工程順に示したもので
ある。
FIGS. 3(a) to 3(h) are cross-sectional views showing the main manufacturing steps of the aperture restrictor according to the present invention in the order of the steps.

第3図(、)は(100)面を表面とし、100〜50
0μmの厚みを有するシリコン単結晶基板301である
。後の工程において基板の両面とも加工するので、両面
とも鏡面研磨しておく。
Figure 3 (,) has the (100) plane as the surface, and 100 to 50
This is a silicon single crystal substrate 301 having a thickness of 0 μm. Both sides of the substrate will be processed in a later process, so both sides should be mirror polished.

第3図(b)け、シリコン単結晶基板301の一方の表
面上にCVD’法により第一のシリコン窒化膜302を
形成した後に、アパーチャ数多の開口部を含む部分の第
一のシリコン窒化膜302を除去したものである0こと
で、アパーチャ数多の開口部を含むためには矩形状開口
の一辺の長さ11とし、シリコン単結晶基板301の厚
さをdとした場合、l+1/rdと同じか、あるいはそ
れよりも長い辺をもつ矩形状に第一のシリコン窒化膜3
02を除去する必要がある。
In FIG. 3(b), after forming a first silicon nitride film 302 on one surface of a silicon single crystal substrate 301 by CVD' method, a first silicon nitride film 302 is formed on a portion including a large number of apertures. Since the film 302 is removed, the length of one side of the rectangular opening is 11 in order to include a large number of apertures, and the thickness of the silicon single crystal substrate 301 is d, then l+1/ The first silicon nitride film 3 is formed into a rectangular shape with sides equal to or longer than rd.
02 needs to be removed.

第3図(c)はシリコン単結晶基板301の他方の表面
上に、S i H4、NH,、N!ガスを用いたプラズ
マCVD法によル、第二のシリコン窒化膜303 ’i
 1μm程度の厚さ形成したものである。との第二のシ
リコン窒化膜303は適当な引張シ応力をもたせる必要
があ)、との点でプラズマCVD法は応力調整が行ない
易いという利点がある口 第3図(d+は第二のシリコン窒化膜303の上にタン
グステン薄膜304をRFスパッタリング法を用いて所
望の厚さに形成したものである口とのタングステン薄膜
304は電子線吸収層となるが、電子線の加速電圧によ
りその厚みは異逢ってくる0例えば、20kVについて
は約12μm程度の厚みが必要である。また、タングス
テン薄膜304の形成条件についても第二のシリコン窒
化膜303と同様適当な引張り応力をもつように形成さ
れる。
FIG. 3(c) shows Si H4, NH,, N! on the other surface of the silicon single crystal substrate 301. A second silicon nitride film 303'i is formed by a plasma CVD method using gas.
It is formed to have a thickness of about 1 μm. The second silicon nitride film 303 needs to have an appropriate tensile stress), and the plasma CVD method has the advantage of being easy to adjust the stress. The tungsten thin film 304 is formed on the nitride film 303 to a desired thickness using the RF sputtering method.The tungsten thin film 304 serves as an electron beam absorption layer, but its thickness is For example, for 20 kV, a thickness of about 12 μm is required. Also, the tungsten thin film 304 is formed under the same conditions as the second silicon nitride film 303 so that it has an appropriate tensile stress. .

第3図(e)はシリコン単結晶基板301の一方の表面
のみを露出させ、第一のシリコン窒化膜302を保護マ
スクにして、水酸化カリウム溶液中で異方性エツチング
したものである。基板301のタングステンパターンが
ある側は、治具で保護してエツチング液が接触しないよ
うにしておく0第3図(r)はタングステン薄膜304
上にレジスト305 tl−塗布し、所望のアパーチャ
開口形状を電子ビーム露光法で転写してレジストパター
ンを形成したものである。
In FIG. 3(e), only one surface of a silicon single crystal substrate 301 is exposed and anisotropic etching is performed in a potassium hydroxide solution using the first silicon nitride film 302 as a protective mask. The side of the substrate 301 with the tungsten pattern is protected with a jig so that the etching solution does not come into contact with it. Figure 3 (r) shows the tungsten thin film 304.
A resist 305 tl- is applied thereon, and a desired aperture shape is transferred by electron beam exposure to form a resist pattern.

ンビーム露光等一般に荷電粒子線を用いる場合に第3図
(g)はレジスト305パターンを保護マスクにして、
8F6ガスを用いてタングステン薄膜304と第二のシ
リコン窒化膜303 i反応性プラズマエツチングした
ものである。
When a charged particle beam is generally used, such as in a beam exposure, FIG. 3(g) shows a pattern of resist 305 used as a protective mask.
The tungsten thin film 304 and the second silicon nitride film 303i are reactive plasma etched using 8F6 gas.

第3図(hlはタングステン薄膜304上に残されたレ
ジスト305を02プラズマにょシ除去したものである
。とのようにして高精度なアパーチャ絞り全製造するこ
とができる。
As shown in FIG. 3 (hl is the resist 305 left on the tungsten thin film 304 removed by 02 plasma), a highly accurate aperture diaphragm can be completely manufactured.

本実施例では半導体単結晶基板としてEN基板、基板を
エツチングする際のマスクとなる絶縁膜としてシリコン
窒化膜、金属薄膜としてW膜を用いたが、それぞれGa
As基板等、シリコン酸化膜等、MO#を用いてもよい
In this example, an EN substrate was used as the semiconductor single crystal substrate, a silicon nitride film was used as the insulating film used as a mask when etching the substrate, and a W film was used as the metal thin film.
An As substrate or the like, a silicon oxide film, or MO# may also be used.

(発明の効果) 本以明によって得られた電子線露光装置用アパーチャ数
多は、従来のアパーチャ数多に比較して、寸法精度の高
い、更に具体的には直交度が1桁以上高く、平行度も改
良された開口形状を有していたO また本発明の方法は電子線露光して限らすイオ適用でき
る。
(Effects of the Invention) The large number of apertures for an electron beam exposure apparatus obtained by the present invention has higher dimensional accuracy than the conventional large number of apertures, and more specifically, the degree of orthogonality is higher by one order of magnitude or more. Also, the method of the present invention can be applied only to electron beam exposure.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は可変面積露光方式を用いた装置の構成図、第2
図(aL (bL (C)は従来のアパーチャ数多の構
造を示す斜視図、第3図(,1〜(h)は電子線露光装
置用アパーチャ数多の製造方法について、その主要工程
における断面を製造工程順に示した図である口 図において、 101・・・電子銃、102・・・ブランキング電極、
103・・・照射レンズ、104・・・第lアパーチャ
絞シ%105・・・整形偏向器、106・・・整形レン
ズ、107・・・第2アパーチヤ絞fi、108・・・
縮小レンズ、109・・・投影レンズ、110・・・位
置決め偏向器、111・・・材料、201・・・上側の
刃状板対、202・・・下側の刃状板対、3o1・・・
シリコン単結晶基板、302・・・シリコン窒化膜、3
03・・・シリコン窒化膜、304・・・タングステン
膜、305・・・レジスト 第1図 第2図 (α) (b) (C) 第3図 (α) (b) (C1 (ci) (e)
Figure 1 is a configuration diagram of an apparatus using variable area exposure method, Figure 2
Figure (aL (bL) (C) is a perspective view showing a conventional structure with multiple apertures, and Figures 3 (, 1 to (h) are cross-sectional views of the main steps of the method for manufacturing multiple apertures for electron beam exposure equipment. In the diagram showing the order of manufacturing steps, 101...electron gun, 102...blanking electrode,
103... Irradiation lens, 104... L-th aperture diaphragm % 105... Shaping deflector, 106... Shaping lens, 107... Second aperture diaphragm fi, 108...
Reduction lens, 109... Projection lens, 110... Positioning deflector, 111... Material, 201... Upper blade-like plate pair, 202... Lower blade-like plate pair, 3o1...・
Silicon single crystal substrate, 302... silicon nitride film, 3
03...Silicon nitride film, 304...Tungsten film, 305...Resist Figure 1 Figure 2 (α) (b) (C) Figure 3 (α) (b) (C1 (ci) ( e)

Claims (1)

【特許請求の範囲】[Claims] 半導体単結晶基板のいずれか一方の表面上に絶縁膜を形
成した後に、との絶縁膜のうちアパーチャ絞りの開口部
を含みかつ開口寸法より広い部分を除去する工程と、前
記基板の他方の表面上に形成されたシリコン窒化膜を形
成し、その上に金属薄膜を形成する工程と、前記絶縁膜
のパターンを保護マスクにして、アパーチャ絞りの開口
部を含む部分の前記基板を除去する工程と、前記金属薄
膜上のアパーチャ絞りの開口部に相当する場所にエッチ
ングの保護マスクのパターンを形成した後に、前記金属
薄膜と前記シリコン窒化膜を除去する工程とを含むこと
を特徴とするアパーチャ絞りの製造方法。
After forming an insulating film on one surface of the semiconductor single crystal substrate, removing a portion of the insulating film that includes the opening of the aperture diaphragm and is wider than the opening size, and the other surface of the substrate. forming a silicon nitride film thereon and forming a metal thin film thereon; and using the pattern of the insulating film as a protective mask, removing the portion of the substrate including the opening of the aperture diaphragm. , a step of forming an etching protective mask pattern on the metal thin film at a location corresponding to the opening of the aperture stop, and then removing the metal thin film and the silicon nitride film. Production method.
JP13963884A 1984-07-05 1984-07-05 Manufacture of aperture diaphragm Pending JPS6119040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13963884A JPS6119040A (en) 1984-07-05 1984-07-05 Manufacture of aperture diaphragm

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13963884A JPS6119040A (en) 1984-07-05 1984-07-05 Manufacture of aperture diaphragm

Publications (1)

Publication Number Publication Date
JPS6119040A true JPS6119040A (en) 1986-01-27

Family

ID=15249937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13963884A Pending JPS6119040A (en) 1984-07-05 1984-07-05 Manufacture of aperture diaphragm

Country Status (1)

Country Link
JP (1) JPS6119040A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0344515A2 (en) * 1988-05-31 1989-12-06 Siemens Aktiengesellschaft Process for producing a beam-forming aperture for a lithography apparatus
EP0344513A2 (en) * 1988-05-31 1989-12-06 Siemens Aktiengesellschaft Process for the manufacture of a steering plate for a lithography apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0344515A2 (en) * 1988-05-31 1989-12-06 Siemens Aktiengesellschaft Process for producing a beam-forming aperture for a lithography apparatus
EP0344513A2 (en) * 1988-05-31 1989-12-06 Siemens Aktiengesellschaft Process for the manufacture of a steering plate for a lithography apparatus

Similar Documents

Publication Publication Date Title
JPS6311657B2 (en)
JP2002252157A (en) Member for preparing mask and method for preparing the same, mask and method for preparing the same, exposure method and method for preparing semiconductor device
JPH04152512A (en) Wafer chuck
JP3553096B2 (en) Method of manufacturing micro mechanical structural member
US6051346A (en) Process for fabricating a lithographic mask
JPH10135103A (en) Manufacturing method of charged particle ray or x-ray transferring mask
JPS6119040A (en) Manufacture of aperture diaphragm
JP2003100591A (en) Exposing method in charged particle beam exposure device, method for manufacturing semiconductor device, and charged particle beam exposure device
JP2000340492A (en) Mask for electron beam exposure and manufacture of semiconductor device using the same
JP3223581B2 (en) X-ray exposure mask and method of manufacturing the same
JPS6081750A (en) Aperture diaphragm and its manufacturing method
JPS6030131A (en) Electron-beam exposure device
JP2000137319A (en) Forming method of mask and production of device
JP2687256B2 (en) X-ray mask making method
JPS63110635A (en) Aperture for electron beam lithography equipment
JP3532691B2 (en) Method of manufacturing aperture, mold for manufacturing aperture, and method of manufacturing the same
JP4720021B2 (en) Manufacturing method of charged beam projection exposure mask
JP2888228B2 (en) Structure of partial mask for charged particle beam
JPS6081751A (en) Aperture diaphragm and its manufacturing method
JPH01191416A (en) Pattern forming method
JPH08315760A (en) Beam forming aperture and its making method and charged particle beam exposing device using this
JPS62217616A (en) Manufacture of x-ray mask
JPS61164222A (en) Exposing method by electron-beam
JPH04155813A (en) Alignment mark
JPS5934632A (en) Manufacture of x-ray mask