JPS5934632A - Manufacture of x-ray mask - Google Patents

Manufacture of x-ray mask

Info

Publication number
JPS5934632A
JPS5934632A JP57144858A JP14485882A JPS5934632A JP S5934632 A JPS5934632 A JP S5934632A JP 57144858 A JP57144858 A JP 57144858A JP 14485882 A JP14485882 A JP 14485882A JP S5934632 A JPS5934632 A JP S5934632A
Authority
JP
Japan
Prior art keywords
resist
pattern
ray
film
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57144858A
Other languages
Japanese (ja)
Inventor
Katsuhiro Kawabuchi
川「淵」 勝弘
Sadao Sakurai
桜井 貞雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP57144858A priority Critical patent/JPS5934632A/en
Publication of JPS5934632A publication Critical patent/JPS5934632A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof

Abstract

PURPOSE:To form a mask pattern consisting of an X-ray absorbing member with a rectangular sectional shape easily with high accuracy by irradiating electron beams of specific acceleration voltage or more to a resist film on an X-ray mask substrate and forming a resist pattern. CONSTITUTION:A metallic thin-film 102 consisting of three layers is formed on a silicon wafer 101 in order of chromium, gold and titanium. A polyimide film 103 is formed onto the substrate. Two layers of chromium and gold are evaporated and formed as a conductive layer 104 for electroplating. A PMMA resist 105 is rotary-applied. The resist is exposed by electron beams at 50kV acceleration voltage in the quantity of a dose of 70muc/cm<2>. The resist is developed, and the resist pattern 106 is obtained. The section of the resist pattern to pattern size is approximately vertical.

Description

【発明の詳細な説明】 [発明の属する技術分野] 本発明は、X線露光に使用されるX線露光用マスクの製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to a method for manufacturing an X-ray exposure mask used for X-ray exposure.

[従来技術とその問題点] 近時、より高性能な半導体集積回路を製造するために、
1μ域いはそれ以下の寸法を有するパターンを、半導体
基板上に形成する要求が高まっている。X線(主に波長
4〜13Åの軟X線)を使用したパターン転写技術であ
るX線露光は、塵埃の影響を受けにくい、転写されたパ
ターンの精度が高い等の多くの特長があり、特にサブミ
クロンパターン形成において有力な技術とされている。
[Prior art and its problems] Recently, in order to manufacture higher performance semiconductor integrated circuits,
There is an increasing demand for forming patterns on semiconductor substrates with dimensions of 1 μm or less. X-ray exposure is a pattern transfer technology that uses X-rays (mainly soft X-rays with a wavelength of 4 to 13 Å), and has many features such as being less susceptible to dust and having high accuracy in transferred patterns. In particular, it is considered to be a powerful technology in submicron pattern formation.

第1図はX線露光用マスクで、このマスク1はX線に対
し透過率の高い材料からなる薄膜X線マスク基板2を支
持枠3に固定すると共に、薄膜X線マスク基板2の下面
にX線吸収部材、例えば厚さ0.5〜1.0μの金から
なる所望のマスクパターン4を接着して形成されている
。マスク1の下方にはレジスト5で塗布された試料6が
配置され、またマスク1の上方にはX線源7が配置され
る。そしてX線源7からマスク1にX線を照射すること
により、マスク1を透過したX線が試料6上のレジスト
5に照射され、同レジスト5にパターン4が露光される
ことになる。
FIG. 1 shows a mask for X-ray exposure. This mask 1 has a thin film X-ray mask substrate 2 made of a material with high transmittance for X-rays fixed to a support frame 3, and a It is formed by adhering a desired mask pattern 4 made of an X-ray absorbing member, for example, gold with a thickness of 0.5 to 1.0 μm. A sample 6 coated with a resist 5 is placed below the mask 1, and an X-ray source 7 is placed above the mask 1. Then, by irradiating the mask 1 with X-rays from the X-ray source 7, the X-rays transmitted through the mask 1 are irradiated onto the resist 5 on the sample 6, and the pattern 4 is exposed on the resist 5.

X線露光用マスクに対する要求として、薄膜基板上に形
成されたX線吸収部材から成るマスクパターンの断面形
状は短形でなければならない。前記第1図に示した如く
X線源7から発生したX線束は、薄膜基板3上二形成さ
れたマスクパターン4、例えば厚さ0.5μの金パター
ン4a,4bの像を、ウェーハ6上に塗布したレジスト
5に形成する。そして、マスクパターン4が金パターン
4aの如く台形状の断面形状を有する場合、れじすと5
中に転写される像は、■の幅だけ端部がぼけてしまう。
As a requirement for an X-ray exposure mask, the cross-sectional shape of a mask pattern made of an X-ray absorbing member formed on a thin film substrate must be rectangular. As shown in FIG. 1, the X-ray flux generated from the X-ray source 7 images the image of the mask pattern 4 formed on the thin film substrate 3, for example, the gold patterns 4a and 4b with a thickness of 0.5μ, onto the wafer 6. It is formed on the resist 5 coated on the substrate. When the mask pattern 4 has a trapezoidal cross-sectional shape like the gold pattern 4a, the edges are 5
The edges of the image transferred inside are blurred by the width of ■.

このため、マスクパターン4の断面は、金パターン4b
の様に短形でなければならない。
Therefore, the cross section of the mask pattern 4 is similar to the gold pattern 4b.
It must be rectangular like .

金パターンを形成する方法として、X線マスク基板上に
レジストパターンを形成し、レジストパターンの溝に金
を電気メッキする方法がある。ところが電子ビーム露光
でレジストパターンを形成するようにした場合、ある寸
法のパターンに関しては短形のレジストパターンが得ら
れても他の寸法のパターンに対しては断面形状が台形や
逆台形になる等、高精度のX線露光を実現できる様な金
パターンを形成する事は困難であった。
As a method for forming a gold pattern, there is a method of forming a resist pattern on an X-ray mask substrate and electroplating gold into the grooves of the resist pattern. However, when a resist pattern is formed by electron beam exposure, although a rectangular resist pattern may be obtained for a pattern of a certain size, the cross-sectional shape of a pattern of other dimensions becomes a trapezoid or an inverted trapezoid. However, it has been difficult to form a gold pattern that allows high-precision X-ray exposure.

従って、従来、短形な金パターンを形成する方法は次の
様に極めて複雑な方法を取らざるを得なかった。
Therefore, conventional methods for forming rectangular gold patterns have had to be extremely complicated as described below.

まず第2図(a)に示す如く基板(ガラス等)11上に
、金メッキのための厚さ200Å程度の金の薄膜12及
び反応性イオンエッチングの停止膜となる厚さ1000
Å程度のチタン層13でそれぞれ蒸着により形成する。
First, as shown in FIG. 2(a), a thin gold film 12 with a thickness of about 200 Å for gold plating and a thin gold film 12 with a thickness of 1000 Å as a stop film for reactive ion etching are placed on a substrate (glass etc.) 11.
A titanium layer 13 having a thickness of about Å is formed by vapor deposition.

さらに、チタン層13上にたとえばポリイミド樹脂から
なる厚さ1μ程度の被膜14を回転塗布により形成し、
この被膜14上にレジスト15を塗布する。次に、電子
線描写装置を用い、現像後のレジスト断面形状が第2図
(b)に示す如く逆台形状になる様描写し現像をおこな
う。現像後、厚さ1000Åのチタン層16を真空蒸着
で形成すると第2図(c)に示す状態となる。第2図(
d)示す如くレジスト15を除去し、さらに酸素ガスを
含む反応性イオンエッチングでポリイミド被膜14をエ
ッチングすると、残されたポリイミド被膜14の側壁は
同図(e)に示す如く垂直に切り立ったものとなる。こ
こで、チタン層13を、希釈した弗酸により除去した後
、金の電気メッキをおこなう(第2図f)。続いて、第
2図(g)に示す如くポリイミド被膜14を、ヒドラジ
ン等によって除去する。最後に希釈した弗酸を用いてチ
タン層13で除去し、希釈した王水で金の薄膜12の一
部を除去すると、第2図(h)に示す垂直な側壁を有す
る金パターン17が得られる。
Further, a coating 14 of about 1 μm thick made of polyimide resin, for example, is formed on the titanium layer 13 by spin coating,
A resist 15 is applied onto this film 14. Next, using an electron beam drawing device, development is performed so that the cross-sectional shape of the resist after development becomes an inverted trapezoidal shape as shown in FIG. 2(b). After development, a titanium layer 16 having a thickness of 1000 Å is formed by vacuum evaporation, resulting in the state shown in FIG. 2(c). Figure 2 (
d) When the resist 15 is removed as shown and the polyimide film 14 is etched by reactive ion etching containing oxygen gas, the side walls of the remaining polyimide film 14 become vertical as shown in FIG. Become. Here, after removing the titanium layer 13 with diluted hydrofluoric acid, electroplating with gold is performed (FIG. 2f). Subsequently, as shown in FIG. 2(g), the polyimide film 14 is removed using hydrazine or the like. Finally, by removing the titanium layer 13 using diluted hydrofluoric acid and removing a portion of the gold thin film 12 using diluted aqua regia, a gold pattern 17 having vertical sidewalls as shown in FIG. 2(h) is obtained. It will be done.

このようにすれば、垂直な側壁を持つ金パターンが得ら
れるが次の様な問題があった。すなわちリフトオフ技術
とパターントランスファ技術を用いるため工程数が著し
く多く、又、第2図(b)に示した工程でレジスト15
の断面形状を逆台形状にしなくてはならないが、レジス
ト断面形状を逆台形状に形成するには露光量を極めて多
くしなければならず、実用的ではなかった。また、レジ
スト中に形成される図形の横方向の寸法と厚さ方向の形
状とを同時に判御することは極めて難しく、このため、
マスクパターンを精度良く形成することは困難であった
In this way, a gold pattern with vertical sidewalls can be obtained, but there are the following problems. In other words, since lift-off technology and pattern transfer technology are used, the number of steps is extremely large, and the resist 15
The cross-sectional shape of the resist must be made into an inverted trapezoidal shape, but in order to form the resist cross-sectional shape into an inverted trapezoidal shape, the amount of exposure must be extremely large, which is not practical. Furthermore, it is extremely difficult to simultaneously control the lateral dimension and thickness direction of the figure formed in the resist.
It has been difficult to form mask patterns with high precision.

[発明の目的] 本発明は上記事情を考慮してなされたもので、その目的
とするところは、短形の断面形状を有するX線吸収部材
からなるマスクパターンを容易かつ高精度に形成するこ
とができるX線露光用マスクの製造方法を提供すること
にある。
[Object of the Invention] The present invention has been made in consideration of the above circumstances, and its purpose is to easily and highly accurately form a mask pattern made of an X-ray absorbing member having a rectangular cross-sectional shape. It is an object of the present invention to provide a method for manufacturing an X-ray exposure mask that can perform the following steps.

[発明の概要] 本発明は、支持枠用基板表面にX線マスク基板を形成す
る工程と、このX線マスク基板上にレジスト膜を形成す
る工程と、加速電圧50KV以上の電子ビームを照射し
てレジスト膜を露光する工程と、このレジスト膜を現像
してレジストパターンを形成する工程と、レジストパタ
ーンの溝にX線吸収部材を形成する工程と、前記支持枠
用基板のX線マスク領域を裏面から除去する工程とを具
備した事を特徴とするX線マスクの製造方法を提供する
ものである。
[Summary of the Invention] The present invention comprises the steps of forming an X-ray mask substrate on the surface of the support frame substrate, forming a resist film on the X-ray mask substrate, and irradiating an electron beam with an acceleration voltage of 50 KV or more. a step of exposing the resist film to light, a step of developing the resist film to form a resist pattern, a step of forming an X-ray absorbing member in the groove of the resist pattern, and a step of exposing the X-ray mask area of the support frame substrate to light. The present invention provides a method for manufacturing an X-ray mask characterized by comprising a step of removing it from the back side.

[発明の効果] 本発明は、Siウェハーやガラス基板等の厚版上に形成
したレジストパターン形状のばらつきは、加速電圧を5
0kV以上にした電子ビームを用いる事によりなくすこ
とができる事を思い出して為されたものであり、かかる
加速電圧の電位ビームを用いて種々のパターン巾を有す
るX線露光マスクを製作する事により容易かつ高精度に
X線露光マスクを得ることができるようになる。
[Effects of the Invention] According to the present invention, variations in the shape of a resist pattern formed on a thick plate such as a Si wafer or a glass substrate can be reduced by increasing the accelerating voltage to 50%.
This was done by remembering that this can be eliminated by using an electron beam with an acceleration voltage of 0 kV or more, and it is easier to manufacture X-ray exposure masks with various pattern widths using a potential beam with such an accelerating voltage. Moreover, it becomes possible to obtain an X-ray exposure mask with high precision.

[発明の実施例] 以下、本発明の実施例を第3図(a)〜(e)を参照し
ながら詳逑する。
[Embodiments of the Invention] Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS. 3(a) to (e).

先ず、第3図(a)に示す如く、4インチ径、厚さ20
0μ〜例えば300μのシリコンウェハ101上にクロ
ム、金、チタンの順に3層からなる計1000Å厚の金
■薄膜102を形成する。次いで、この基板上に厚さ2
μのポリイミド膜103を回転塗布後熱処理して形成す
る。次に、電気メッキの導電層104としてクロム、金
の2層を計200Å程度蒸着形成する(第3図a)。そ
して厚さ1μのPMMAレジスト105を回転塗布する
(第3図b)。次に加速電圧50KV,ドーズ量70μ
c/cm2で電子ビームで露光する。露光は電子ビーム
を走査しておこなったが形状可変のビームでパターンに
応じて露光するようにしてもよい。次にこのレジストを
現像して第3図(c)に示すようにレジストパターン1
06を得た。第4図は、パターン寸法に対するレジスト
パターン断面の傾斜角の関係を示したものでである。図
中、a〜dは、夫々加速電圧が20,30,40,50
KVの場合を示したものであり、夫々適正露光を与えて
いる。同図から判る様に加速電圧が50KVの場合、各
パターン寸法に対して、ほぼ垂直なレジスト断面形状を
得た。
First, as shown in Fig. 3(a), a diameter of 4 inches and a thickness of 20
A thin gold film 102 having a total thickness of 1000 Å and consisting of three layers of chromium, gold, and titanium in this order is formed on a silicon wafer 101 having a thickness of 0 μm to, for example, 300 μm. Then, on this substrate, a thickness of 2
A polyimide film 103 of μ is formed by spin coating and then heat treatment. Next, as a conductive layer 104 for electroplating, two layers of chromium and gold are deposited to a total thickness of about 200 Å (FIG. 3a). Then, a PMMA resist 105 having a thickness of 1 μm is applied by spin coating (FIG. 3b). Next, the acceleration voltage is 50KV and the dose is 70μ.
Exposure to electron beam at c/cm2. Exposure was performed by scanning an electron beam, but exposure may be performed using a shape-variable beam according to a pattern. Next, this resist is developed to form a resist pattern 1 as shown in FIG. 3(c).
I got 06. FIG. 4 shows the relationship between the inclination angle of the resist pattern cross section and the pattern dimension. In the figure, a to d indicate acceleration voltages of 20, 30, 40, and 50, respectively.
This shows the case of KV, and appropriate exposure is given to each. As can be seen from the figure, when the accelerating voltage was 50 KV, a cross-sectional shape of the resist almost perpendicular to each pattern dimension was obtained.

これは、電子の後方散乱が減少して所謂■接効果が抑え
られたことによるものと考えられる。PMMAの他、E
BR−9,AZレジスト等の電子ビームレジストでも同
様の結果を得た。
This is considered to be due to the fact that backscattering of electrons is reduced and the so-called contact effect is suppressed. In addition to PMMA, E
Similar results were obtained with electron beam resists such as BR-9 and AZ resists.

次いで第3図(c)の工程後、レジストパターンの溝部
に金属107を0.7μ電気メッキにより形成した。し
かる後、レジストパターン106を除去し(第3図d)
、枠となる部分を残してSiウェハー101、金属薄膜
102を裏面からエッチング除去した(第3図e)。
After the step shown in FIG. 3(c), metal 107 was formed in the grooves of the resist pattern by 0.7μ electroplating. After that, the resist pattern 106 is removed (FIG. 3d).
Then, the Si wafer 101 and the metal thin film 102 were removed by etching from the back side, leaving a portion that would become a frame (FIG. 3e).

かくして得られたX線露光マスクを用いて0.5〜10
μ巾のパターンをシリコンウェハー上に形成した結果、
極めて高精度にパターンを得ることができた。
Using the thus obtained X-ray exposure mask,
As a result of forming μ-wide patterns on silicon wafers,
We were able to obtain patterns with extremely high precision.

又、上記ポリイミド樹脂を用いた場合におけるPMMA
レジストのドーズ量とレジストパターン断面の傾斜角の
関係を実験した結果、種々のパターン巾に対して垂直な
レジスト断面形状を得るドーズ量は70μc/cm2以
上必要であった。
In addition, PMMA when using the above polyimide resin
As a result of experiments on the relationship between the dose of the resist and the inclination angle of the cross section of the resist pattern, it was found that a dose of 70 μc/cm 2 or more was required to obtain resist cross-sectional shapes perpendicular to various pattern widths.

上記実施例では支持枠用基板としてシリコンウェハーを
用いたが、ガラス等を用いてもよい。又、ポリイミド樹
脂の代わりに酸化シリコン(SiO2)、窒化シリコン
(Si,N4)及びそれらの積層膜、或いは多結晶シリ
コン、窒化硼素等の無機膜を用いることができる。
In the above embodiment, a silicon wafer was used as the support frame substrate, but glass or the like may also be used. Furthermore, instead of polyimide resin, silicon oxide (SiO2), silicon nitride (Si, N4), or a laminated film thereof, or an inorganic film such as polycrystalline silicon or boron nitride can be used.

以上説明した様に、本発明によれば容易かつ高精度にX
線露光マスクを得ることができる。
As explained above, according to the present invention, the X
A line exposure mask can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はX線露光の原理を示す模式図、第2図(a)〜
(h)は従来のX線露光用マスクの製造工程を示す断面
図、第3図(a)〜(e)は本発明の実施例の断面図、
第4図は本発明を説明するための特性図である。 図において、 101・・シリコンウェハー、102・・金属薄膜、1
03・・ポリイミド樹脂膜、104・・導電層、105
・・PMMAレジスト、106・・レジストパターン、
107・・・金層■
Figure 1 is a schematic diagram showing the principle of X-ray exposure, Figure 2 (a) -
(h) is a sectional view showing the manufacturing process of a conventional X-ray exposure mask, FIGS. 3(a) to (e) are sectional views of an embodiment of the present invention,
FIG. 4 is a characteristic diagram for explaining the present invention. In the figure, 101... silicon wafer, 102... metal thin film, 1
03... Polyimide resin film, 104... Conductive layer, 105
...PMMA resist, 106...resist pattern,
107...Gold layer■

Claims (3)

【特許請求の範囲】[Claims] (1)支持枠用基板表面にX線マスク基板を形成する工
程と、このX線マスク基板上にレジスト膜を形成する工
程を、加速電圧50KV以上の電子ビームを照射してレ
ジスト膜を露光する工程と、このレジスト膜を現像して
レジストパターンを形成する工程と、レジストパターン
の溝にX線吸収部材を形成する工程と、前記支持枠用基
板のX線マスク領域を裏面から除去する工程とを見備し
た事で特徴とするX線マスクの製造方法。
(1) The step of forming an X-ray mask substrate on the surface of the support frame substrate and the step of forming a resist film on the X-ray mask substrate are performed by irradiating the resist film with an electron beam with an acceleration voltage of 50 KV or higher to expose the resist film. a step of developing this resist film to form a resist pattern; a step of forming an X-ray absorbing member in the groove of the resist pattern; and a step of removing the X-ray mask area of the support frame substrate from the back surface. A manufacturing method for an X-ray mask characterized by the following.
(2)X線マスク基板としてポリイミド膜、レジストと
してPMMAレジストを用い、電子ビームのドーズ量を
70MC/cm2以上とした事を特徴とする前記特許請
求の範囲第1項記載のX線マスクの製造方法。
(2) Manufacturing the X-ray mask according to claim 1, characterized in that a polyimide film is used as the X-ray mask substrate, a PMMA resist is used as the resist, and the dose of the electron beam is set to 70 MC/cm2 or more. Method.
(3)電気メッキによりX線吸収部材を設ける事を特徴
とする前記特許請求の範囲第1項記載のX線マスクの製
造方法。
(3) The method for manufacturing an X-ray mask according to claim 1, characterized in that the X-ray absorbing member is provided by electroplating.
JP57144858A 1982-08-23 1982-08-23 Manufacture of x-ray mask Pending JPS5934632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57144858A JPS5934632A (en) 1982-08-23 1982-08-23 Manufacture of x-ray mask

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57144858A JPS5934632A (en) 1982-08-23 1982-08-23 Manufacture of x-ray mask

Publications (1)

Publication Number Publication Date
JPS5934632A true JPS5934632A (en) 1984-02-25

Family

ID=15372037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57144858A Pending JPS5934632A (en) 1982-08-23 1982-08-23 Manufacture of x-ray mask

Country Status (1)

Country Link
JP (1) JPS5934632A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4606803A (en) * 1983-11-02 1986-08-19 U.S. Philips Corporation Method of manufacturing a mask for the production of patterns in lacquer layers by means of X-ray lithography
JPS6246523A (en) * 1985-08-22 1987-02-28 ケルンフオルシユングスツエントルム・カ−ルスル−エ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Manufacture of mask for x-rays deep lithography

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5317075A (en) * 1976-07-30 1978-02-16 Nec Corp Production of silicon mask for x-ray exposure

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5317075A (en) * 1976-07-30 1978-02-16 Nec Corp Production of silicon mask for x-ray exposure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4606803A (en) * 1983-11-02 1986-08-19 U.S. Philips Corporation Method of manufacturing a mask for the production of patterns in lacquer layers by means of X-ray lithography
JPS6246523A (en) * 1985-08-22 1987-02-28 ケルンフオルシユングスツエントルム・カ−ルスル−エ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Manufacture of mask for x-rays deep lithography

Similar Documents

Publication Publication Date Title
JPS6323657B2 (en)
JPS6219054B2 (en)
JPS6246523A (en) Manufacture of mask for x-rays deep lithography
JPS62142323A (en) Manufacture of mask for x-ray photo-lithography and mask obtained by the manufacture
JP5343378B2 (en) Stencil mask and manufacturing method thereof
JPH0219970B2 (en)
JPH0466345B2 (en)
JPS5934632A (en) Manufacture of x-ray mask
JP2874683B2 (en) Mask for electronic beam apparatus and method of manufacturing the same
JP3395102B2 (en) Stencil mask for electron beam drawing
WO1983003485A1 (en) Electron beam-optical hybrid lithographic resist process
JP2607460B2 (en) Exposure method
JP3222531B2 (en) Method for manufacturing photomask having phase shift layer
JPH02252229A (en) X-ray exposure mask and its manufacture
JPH0795509B2 (en) Method of forming resist pattern
JPS61204933A (en) Manufacture of semiconductor device
JPH01185632A (en) Mask for transfer and exposing transfer method using said mask for transfer
JPH0562888A (en) X-ray mask and transferring method for pattern using the same
JPS6279622A (en) Formation of pattern
JPS6181626A (en) Manufacture of mask for exposure
JPS62106626A (en) Manufacture of exposure mask
JP2004273689A (en) Exposure mask, method for manufacturing the same and method for manufacturing semiconductor device
JPS63296342A (en) Pattern forming method
JPH07325385A (en) Forming method of photoresist film and photoplate
JPS58153326A (en) Mask for x-ray lithography