JPS58153326A - Mask for x-ray lithography - Google Patents

Mask for x-ray lithography

Info

Publication number
JPS58153326A
JPS58153326A JP57035146A JP3514682A JPS58153326A JP S58153326 A JPS58153326 A JP S58153326A JP 57035146 A JP57035146 A JP 57035146A JP 3514682 A JP3514682 A JP 3514682A JP S58153326 A JPS58153326 A JP S58153326A
Authority
JP
Japan
Prior art keywords
mask
film
organic polymer
ray
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57035146A
Other languages
Japanese (ja)
Inventor
Hidehito Obayashi
大林 秀仁
Takeshi Kimura
剛 木村
Kozo Mochiji
広造 持地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57035146A priority Critical patent/JPS58153326A/en
Publication of JPS58153326A publication Critical patent/JPS58153326A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To stabilize an organic polymer film and to obtain an organic polymer mask for highly accurate X-ray by implanting ions of light element such as H<+>, He<+> or Be<+> on the film. CONSTITUTION:When ions of light metal such as H<+>, He<+> or Be<+> or the like are implanted to an organic polymer film such as polyimide, the flying stroke of ions can be extended as compared by the implantation of relatively heavy element such as P<+>, B<+>, Ne<+>, Ar<+> or the like in the conventional method. In this manner, the entire film can be stabilized, mask dimensions can be stabilized at the X-ray emitting time or during retention, thereby obtaining an organic polymer mask having excellent positioning accuracy.

Description

【発明の詳細な説明】 本発明は半導体装置の製造等に用いられるX線リソグラ
フィ用マスクに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an X-ray lithography mask used for manufacturing semiconductor devices and the like.

半導体装置の製造にはホ) IJソグラフィ、電子線リ
ソグラフィ、X線リソグラフィ等の各種リソグラフィ方
式が用いられているが、近年、半導体装置の微細化にと
もない、1μm以下のいわゆるサブミクロンパターン加
工に対する要求が高く々ってきた。
Various lithography methods such as IJ lithography, electron beam lithography, and X-ray lithography are used to manufacture semiconductor devices, but in recent years, with the miniaturization of semiconductor devices, there has been a demand for so-called submicron pattern processing of 1 μm or less. has become expensive.

ホトリソグラフィでは、露光に用いる紫外又は遠紫外光
の回折効果等により実用的には1μmが解像限界とされ
ている。これに対し、X 、)リングラフィは露光に用
いるX線の波長が数A〜数十八へ、光の波長に比較して
2桁ないし6桁短かく、回折効果も小さいので、サブミ
クロンパターンの解像が容易に行えるという特徴を有し
、高スルーブツトに対する期待と相俟って最近とくにク
ローズアップされつつある。
In photolithography, the practical resolution limit is 1 μm due to the diffraction effect of ultraviolet or far ultraviolet light used for exposure. On the other hand, in X,) phosphorography, the wavelength of the X-rays used for exposure is from several A to several 18, which is two to six orders of magnitude shorter than the wavelength of light, and the diffraction effect is small, so it is possible to create submicron patterns. It has the characteristic of being able to easily perform high-throughput resolution, and has recently been attracting attention in particular due to expectations for high throughput.

X線リングラフィの基本的な構成は、スピャースとスミ
ス(D、 L、 5pears and H,I、 S
m1th、 ”X−ray Lithography 
−A New High Re5olution Re
pli。
The basic configuration of X-ray phosphorography was developed by Spears and Smith (D, L, 5pears and H, I, S
m1th, “X-ray Lithography
-A New High Re5solution Re
pli.

cation Process ” 5olid 5t
ate Technology、 15 (7)21 
(1972) )によって示されているように、X線源
と、X線透過性の薄膜にX線吸収体のパターンを形成し
たマスクと、マスクに密着又は近接して配置されたレジ
スト膜を塗布された半導体ウェーハとからなる。
cation Process” 5olid 5t
ate Technology, 15 (7) 21
(1972), an X-ray source, a mask with an X-ray absorber pattern formed on an X-ray transparent thin film, and a resist film placed in close contact with or close to the mask are coated. It consists of a semiconductor wafer.

実用的に′X線リソグラフィを確立するためには高輝度
X線源、高感度レジストの他、寸法安定性や位置精度が
すぐれたX線透過性の良いマスク基体と、この上に微細
に形成されたX線吸収体とからなるX線リソグラフィ用
マスクの開発が必須である。
In order to establish X-ray lithography in practice, in addition to a high-brightness X-ray source and a highly sensitive resist, a mask base with good X-ray transparency with excellent dimensional stability and positional accuracy, and a finely formed mask on this base are required. It is essential to develop a mask for X-ray lithography consisting of an X-ray absorber.

X線リングラフィ用マスクの基体材料としては、8i、
 8i N   8i0   SiC,Ti  hト(
D無’a材341     2.1 料、ポリイミド、ポリエチレンテレフタートなどの有機
ポリマ材料、および、これらの材料を組み合せた複合膜
材料がある。これらのうち、有機ポリマ材料は膜形成か
らマスク作成までの工程が比較釣部・単なため賞月され
ているが、X線照射時又は保存中に寸法変化が起り、マ
スクの寸法安定性位置精度に難点があった。
The base material for the X-ray phosphorography mask is 8i,
8i N 8i0 SiC, Ti h (
There are organic polymer materials such as D-free materials 341 2.1 materials, polyimide, and polyethylene tereftate, and composite film materials that are combinations of these materials. Among these, organic polymer materials have been praised because the process from film formation to mask creation is comparatively simple, but dimensional changes occur during X-ray irradiation or storage, resulting in the dimensional stability of the mask. There was a problem with accuracy.

本発明は、この有機ポリママスクにおける上記のような
欠点を解消するためになされたもので、有機ポリマ膜に
)r’ 、 He++’ Be+ のような軽元素イオ
ンを打込むようにしたものである。
The present invention was made in order to eliminate the above-mentioned drawbacks of this organic polymer mask, and is made by implanting light element ions such as )r', He++'Be+, etc. into an organic polymer film.

従来、イオン打込みによる有機ポリママスクの安定化の
ためには、P”、 B+、 Ne  、 Ar  等の
比較的重元素の打込みをしていた(例えば、特開昭53
−146625号参照)。通常のイオン加速装置では加
速電圧が高々200kVであるので、この場合には、有
機ポリマ膜中のイオンの飛程は高々数千人なので、通常
、膜厚が1〜5μm程度である有機ポリマ膜全体の安定
化は困難であり、このだめ十分な位置精度を有する有機
ポリママスクは得られていない。これに対して、本発明
では、B+。
Conventionally, in order to stabilize organic polymer masks by ion implantation, relatively heavy elements such as P'', B+, Ne, Ar, etc. were implanted (for example, in Japanese Patent Application Laid-open No. 1983
-146625). In a normal ion accelerator, the accelerating voltage is at most 200 kV, so in this case, the range of ions in the organic polymer film is several thousand at most, so the organic polymer film with a film thickness of about 1 to 5 μm is usually used. Overall stabilization is difficult, and as a result, an organic polymer mask with sufficient positional accuracy has not been obtained. In contrast, in the present invention, B+.

He+、Be  のような軽元素の打込みを用いてイオ
ンの飛程をのばすことにより膜全体の安定化を図り、位
置精度のすぐれた有機ポリママスクを得ることを可能に
したものである。
By extending the range of ions by implanting light elements such as He+ and Be, the entire film is stabilized, making it possible to obtain an organic polymer mask with excellent positional accuracy.

以下実施例により本発明の詳細な説明する。The present invention will be explained in detail below with reference to Examples.

実施例 シリコン・ウーー・・上に厚さ200AのSi3N4膜
を通常の方法(例えば、気相蒸着法)で形成した後、さ
らに、その上に厚さ2μmのポリイミド膜を通常の方法
で形成した。このポリイミド膜の全面にB+イオンを加
速電圧200kVで打込んだ。
Example After forming a Si3N4 film with a thickness of 200A on silicon wool by a conventional method (e.g., vapor phase deposition method), a polyimide film with a thickness of 2 μm was further formed thereon by a conventional method. . B+ ions were implanted into the entire surface of this polyimide film at an accelerating voltage of 200 kV.

この時のドーズ量は10 cm とした。この後、ポリ
イミド膜全表面に厚さ1ooA程度のTi膜、さらに、
その上に厚さ5000AのAu膜を蒸着により形成した
。ついで、このAu膜の上に電子ビームレジストを塗布
し、電子ビーム露光装置により所望のレジスト・パター
ンを形成し、これをマスクとしてAu膜をエツチングし
、所望のAuパターンを形成した。その後、レジスト膜
を除去し、裏面からシリコン・ウェーハをHF−HNO
3−CH5C00H液を用いて、周辺部に環状のシリコ
ンを残すようにエツチングし、ポリイミド膜を基体とす
るX線リソグラフィ用マスクを得た。
The dose amount at this time was 10 cm. After this, a Ti film with a thickness of about 10A is applied to the entire surface of the polyimide film, and
An Au film having a thickness of 5000 Å was formed thereon by vapor deposition. Next, an electron beam resist was applied onto this Au film, a desired resist pattern was formed using an electron beam exposure device, and the Au film was etched using this as a mask to form a desired Au pattern. After that, the resist film was removed and the silicon wafer was exposed to HF-HNO from the back side.
Etching was performed using a 3-CH5C00H solution so as to leave an annular silicon layer on the periphery, thereby obtaining an X-ray lithography mask having a polyimide film as a base.

さらに、上記と同様な方法で、He およびBe+をそ
れぞれ10 cm 打込んだX線リングラフィ用マスク
を作製した。
Furthermore, an X-ray phosphorography mask in which 10 cm of He and Be+ were each implanted was prepared in the same manner as above.

以上のようにして得られた6種のイオン打込みしたマス
クの位置精度をイオン打込みをしないポリイミドマスク
と比較した結果を第1図に示す。
FIG. 1 shows the results of comparing the positional accuracy of the six types of ion-implanted masks obtained as described above with a polyimide mask without ion implantation.

位置精度は、空気中、室温で保存したときの寸法変化を
直径53mmの円形マスク上に置かれたマークの位置の
環状シリコン部に置かれた基準マークに対するずれ量で
示した。同図の結果から明らかなように、軽元素イオン
の打込みによって有機ポリママスクの安定性が著るしく
向上していることがわかる。
The positional accuracy was expressed as the amount of deviation of the dimensional change when stored in air at room temperature from the reference mark placed on the annular silicon portion at the position of the mark placed on the circular mask with a diameter of 53 mm. As is clear from the results shown in the figure, the stability of the organic polymer mask is significantly improved by implanting light element ions.

上記実施例はポリイミドを例として説明したが、他の有
機ポリマ、例えば、ポリエチレンテレフタレート等にお
いても同様な効果が得られた。筐だ、イオン加速エネル
ギーも200に■に限定されることはなく、例えば、H
の場合には100に■以上で十分有効な結果を与える。
Although the above embodiments were explained using polyimide as an example, similar effects were obtained with other organic polymers such as polyethylene terephthalate. However, the ion acceleration energy is not limited to 200, for example, H
In the case of 100, ■ or above gives a sufficiently effective result.

【図面の簡単な説明】 第1図は3種のイオン打込みをしたマスクの位置精度を
示す図表である。 代理人弁理士 中 村 純之助
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a chart showing the positional accuracy of masks with three types of ion implantation. Representative Patent Attorney Junnosuke Nakamura

Claims (1)

【特許請求の範囲】[Claims] (1)全面にH、He及びBe0群から選ばれた少なく
とも一元素のイオンの照射を行なった有機皮膜をX線透
過用基体として有することを特徴とするX線リングラフ
ィ用マスク。
(1) A mask for X-ray phosphorography, characterized in that it has an organic film as an X-ray transmitting substrate, the entire surface of which is irradiated with ions of at least one element selected from the group of H, He, and Be0.
JP57035146A 1982-03-08 1982-03-08 Mask for x-ray lithography Pending JPS58153326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57035146A JPS58153326A (en) 1982-03-08 1982-03-08 Mask for x-ray lithography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57035146A JPS58153326A (en) 1982-03-08 1982-03-08 Mask for x-ray lithography

Publications (1)

Publication Number Publication Date
JPS58153326A true JPS58153326A (en) 1983-09-12

Family

ID=12433758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57035146A Pending JPS58153326A (en) 1982-03-08 1982-03-08 Mask for x-ray lithography

Country Status (1)

Country Link
JP (1) JPS58153326A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6455233B1 (en) 1996-11-07 2002-09-24 National University Of Singapore Micromachining using high energy light ions
US7364674B1 (en) * 2002-07-23 2008-04-29 Advanced Optical Technologies, Inc. Corneal implants produced by irradiation of polymer films

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6455233B1 (en) 1996-11-07 2002-09-24 National University Of Singapore Micromachining using high energy light ions
US7364674B1 (en) * 2002-07-23 2008-04-29 Advanced Optical Technologies, Inc. Corneal implants produced by irradiation of polymer films

Similar Documents

Publication Publication Date Title
US7419764B2 (en) Method of fabricating nanoimprint mold
JPH025010B2 (en)
Schattenburg et al. Fabrication of high-energy x-ray transmission gratings for the Advanced X-ray Astrophysics Facility (AXAF)
US10705427B2 (en) Method for making a grating
JP2532589B2 (en) Fine pattern formation method
JP2004534969A (en) How to Use Top Thin Film for Photoresist
US4101782A (en) Process for making patterns in resist and for making ion absorption masks useful therewith
JPS58153326A (en) Mask for x-ray lithography
JP5343378B2 (en) Stencil mask and manufacturing method thereof
Okino et al. Investigation of proximity effect correction in electron projection lithography (EPL)
US4368215A (en) High resolution masking process for minimizing scattering and lateral deflection in collimated ion beams
WATTS et al. X-ray lithography
JPH04276618A (en) X-ray mask with high resolution including absorber pattern having high aspect ratio
US6156480A (en) Low defect thin resist processing for deep submicron lithography
JPH04249311A (en) Method of forming fine pattern of limit resolution or less of photolithography
JPS6013432B2 (en) Method for forming Al or Al alloy pattern
Fetter et al. Patterning of membrane masks for projection e-beam lithography
JPH03283418A (en) Resist pattern forming method
Watts Advanced lithography
JPS5934632A (en) Manufacture of x-ray mask
Katsumata et al. Chemically amplified resist process for 0.25-um generation photomasks
JP2966127B2 (en) Method of forming resist pattern
JPS6224625A (en) Formation of pattern
Nozue et al. Recent progress of LEEPL mask technology
JPS6289053A (en) Photomask