JPS6224625A - Formation of pattern - Google Patents

Formation of pattern

Info

Publication number
JPS6224625A
JPS6224625A JP16368885A JP16368885A JPS6224625A JP S6224625 A JPS6224625 A JP S6224625A JP 16368885 A JP16368885 A JP 16368885A JP 16368885 A JP16368885 A JP 16368885A JP S6224625 A JPS6224625 A JP S6224625A
Authority
JP
Japan
Prior art keywords
pattern
resist
substrate
layer
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16368885A
Other languages
Japanese (ja)
Other versions
JPH0727221B2 (en
Inventor
Korehito Matsuda
松田 維人
Akiyoshi Ishii
哲好 石井
Kazunari Miyoshi
三好 一功
Kazuo Hirata
一雄 平田
Shigeru Moriya
茂 守屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP60163688A priority Critical patent/JPH0727221B2/en
Publication of JPS6224625A publication Critical patent/JPS6224625A/en
Publication of JPH0727221B2 publication Critical patent/JPH0727221B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To simplify the process and improve pattern resolution and accuracy by forming a pattern through irradiation with energy beam to a kind or several kinds of materials including a fluoride compound sequentially stacked on a substrate, forming a mask through adhesion of adhesive material only within a pattern or outside of pattern and then processing laminated material. CONSTITUTION:A silicon substrate 5 is coated with a lower layer resist 4 and then with a co-polymer of hexafuluorobutylmethacrylate and grycyzilmethacrylate as a polymer 6 including fluorine. Thereafter, it is baked. The substrate is them irradiated with electron beam as the energy beam 1 to form a latent image of pattern. Next, the substrate is placed on a rotatory coating apparatus, the adhesive material and then silicon substrate 5 are sequentially dried by high-speed rotation and thereafter etching is carried out by the reactive ion etching apparatus. By this operation, a pattern which is complementary to the original pattern is formed on the substrate 5. Thereby, the process is simplified, pattern-forming speed is improved, pattern resolution is also improved and a pattern having high dimensional accuracy may be formed.

Description

【発明の詳細な説明】 [産業上の利用分野〕 本発明は半導体製造等における微細パタン形成法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for forming fine patterns in semiconductor manufacturing and the like.

〔従来の技術〕[Conventional technology]

半導体集積回路の集積度は回路パタンの微細化とともに
向上し、現在ではミクロンからサブミクロン領域のパタ
ン形成技術が要求されるに至っている。
The degree of integration of semiconductor integrated circuits has improved with the miniaturization of circuit patterns, and pattern forming techniques in the micron to submicron range are now required.

サブミクロン領域のパタン形成法として、いくつかの方
法が従来提案されているが、実用に供し得る技術はきわ
めて少ない。その理由は、実用的には、パタンの高解像
性や高精度化と同時にパタン形成速度の高速化を満たさ
ねばならないためで、あまり繁雑な工程を経ることが許
されないためである。
Although several methods have been proposed to form patterns in the submicron region, there are very few techniques that can be put to practical use. The reason for this is that, in practical terms, it is necessary to increase the pattern formation speed at the same time as high resolution and precision of the pattern, and it is not permissible to go through a very complicated process.

従来、サブミクロン領域のパタン形成法としてよ(用い
られている方法に多層レジスト法(例えば、米国特許第
4244799号)がある。ここでは、多層レジスト法
として最も基本的な三層レジストについて述べる。
Conventionally, a multilayer resist method (for example, US Pat. No. 4,244,799) has been used as a method for forming patterns in the submicron region. Here, a three-layer resist, which is the most basic of the multilayer resist methods, will be described.

第3図に三層レジストによるパタン形成プロセスを示す
。1は光、電子線、イオン、またはX線などのエネルギ
ー線である。2はエネルギー$IK感応するレジスト(
一般的には上層レジストと呼ぶ)、3は中間層、4は下
層レジストである。
FIG. 3 shows a pattern formation process using a three-layer resist. 1 is an energy beam such as light, electron beam, ion, or X-ray. 2 is an energy $IK sensitive resist (
(generally referred to as an upper layer resist), 3 is an intermediate layer, and 4 is a lower layer resist.

3の中間層は下層レジストをエツチングする際のマスク
七なるため、耐エッチ性の高い材料、例えばスピンオン
グラスやシリコーン樹脂が用いられる。5は基板である
。上層レジスト2にエネルギーF11を照射すると、該
上層レジストは分解して低分子量のポリマーが生成され
る。これを現像液に浸漬すると照射した領域が溶解し、
上層レジスト2にパタンか形成される。該試料を灰石性
イオンエツチング装置に入れ、CF、  ガス雰!MJ
気中で該上層レジスト2をマスクにしてエツチングする
と、中間層3に上層レジストパタンか転写される。
Since the intermediate layer 3 serves as a mask when etching the lower resist layer, a material with high etch resistance, such as spin-on glass or silicone resin, is used. 5 is a substrate. When the upper resist 2 is irradiated with energy F11, the upper resist is decomposed and a low molecular weight polymer is generated. When this is immersed in a developer, the irradiated area will dissolve,
A pattern is formed on the upper resist 2. The sample was placed in a scheelite ion etching device and exposed to a CF, gas atmosphere! M.J.
When etching is performed in air using the upper resist 2 as a mask, the upper resist pattern is transferred to the intermediate layer 3.

さらに、蚊中間層3をマスクとして反応性イオンエツチ
ング装置を用いて0□ ガス雰囲気中でエツチングする
と、下層レジスト4に該中間層3のパタンが転写される
Further, when etching is performed in a 0□ gas atmosphere using a reactive ion etching device using the mosquito intermediate layer 3 as a mask, the pattern of the intermediate layer 3 is transferred to the lower resist 4.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記の方法は、現在生産ラインで用いられている単層レ
ジスト法を比較して、■基板段差のカバーリング、■蓄
板加工のエツチング耐性、■解像性などの点で優れた利
点をもつ反面、ガスの異なるドライエツチングを2度行
なわなければならず、プロセスが抄雑になる欠点があっ
た。また、一般に形成されるパインの解像性や寸法a囲
は上層レジストが薄くなるほど向上することが知られて
いるが、実際には中間層に対するドライエッチ耐性のた
め、通常0.3〜0.5μmとあまシ薄(できない欠A
があった。さらに、中間層を上層レジストパタンをマス
クにしてエツチングしている間に、上層レジストもエツ
チングが進むため、パインの寸法猜度を正確に保つこと
がかなシむず〃島しくなるという欠点もあった。また、
中間ri!I3は、下層レジスト4のマスクとなるため
、通常レジストを構成している原子(例えば、C,H,
Oなど)よシ密度の高い原子(例えば阻、 Ge 、 
MOなど)が含まれている。このため、エネルギー線と
して成子ビームを用いる場合には、中間層によシ後方散
乱された電子が上層レジストの解像性を劣化させるとい
う問題もあった。
Compared to the single-layer resist method currently used in production lines, the above method has superior advantages in terms of: ■ coverage of substrate steps, ■ etching resistance for accumulator processing, and ■ resolution. On the other hand, dry etching must be performed twice using different gases, resulting in a disadvantage that the process becomes complicated. In addition, it is known that the resolution and dimension a of the pine that is generally formed improve as the upper layer resist becomes thinner, but in reality, it is usually 0.3 to 0.0 because of the dry etch resistance of the intermediate layer. 5 μm and slightly thin (not possible)
was there. Furthermore, while the intermediate layer is being etched using the upper resist pattern as a mask, the upper resist is also etched, making it difficult to maintain accurate dimensional accuracy of the pine. Also,
Intermediate ri! Since I3 serves as a mask for the lower resist 4, atoms that normally constitute the resist (for example, C, H,
atoms with higher density (e.g. O, Ge,
MO, etc.) are included. For this reason, when using a serpentine beam as the energy beam, there is a problem in that electrons backscattered by the intermediate layer deteriorate the resolution of the upper resist layer.

本発明の目的は、パタン形成プロセスの簡略化、パタン
の解像性およびパタン精度の向上を達成することにある
An object of the present invention is to simplify the pattern formation process and improve pattern resolution and pattern accuracy.

〔問題点を解決するための手段] 本発明は、光、電子線、イオンまたはxgなどのエネル
ギー線を用いたパタン形成において、基板上に、少なく
とも一層にフッ素化合物を含む−at″!たけ複数種の
材料を順次漬層する工程と、該積層材料の少な(とも一
層にエネルギー線を照射してパタンを形成する工程と、
該パダン内もしくはパタン外のみに選択的に付着材を付
着させる工程と、付着材をマスクとして、該積層材料を
加工する工程を有することを%徴としている2上記フツ
素化会物としては、ポリへキサフルオ ゛ロブチルメタ
クリレート、またはポリ1,1ジメチル2 、2 # 
3 s 3テトラフルオaプロピルメタクリレート、ま
たはへキサフルオロプチルメIクリレートトゲリシジル
メタクリレート共重合体などのフッ素含有ポリマーを用
いることが望ましい。
[Means for Solving the Problems] The present invention provides a method for forming a pattern using energy beams such as light, electron beams, ions, or a step of sequentially dipping seed materials; a step of irradiating a small layer of the laminated material with energy rays to form a pattern;
2. The fluorinated compound is characterized by comprising a step of selectively attaching an adhesive material only inside or outside the pattern, and a step of processing the laminated material using the adhesive material as a mask. Polyhexafluorobutyl methacrylate or poly 1,1 dimethyl 2,2#
It is desirable to use fluorine-containing polymers such as 3 s 3 tetrafluor a-propyl methacrylate or hexafluoroptyl methyl acrylate togelicidyl methacrylate copolymer.

また、上記付層材としては、シリコン化合物を用いるこ
とが望ましい。
Moreover, it is desirable to use a silicon compound as the layered material.

(’J施例] 本発明は、表面エネルギーの低いフッ素化合物とシリコ
ン系樹脂はその密着性て著しく欠けるという実験事実を
利用してめるものである。
(Example 'J) The present invention utilizes the experimental fact that fluorine compounds with low surface energy and silicone resins have a marked lack of adhesion.

以下、IEl[1、第2図を参照して本発明の実施例を
でついて説明する。なお、これらの図において、塩3図
(示す構成要素と同一の要素には同一符号を付しである
Hereinafter, embodiments of the present invention will be described in detail with reference to IEl[1 and FIG. 2. In addition, in these figures, the same reference numerals are given to the same elements as those shown in Figure 3.

本発明の一実施例を第1図に示す。シリコン基板5に下
層レジスト4としてAZ1350J(シプレー社jll
l)を膜厚1.5 μm回転塗布し、200℃で3θ分
間ベークした。該試料にフッ素含有ポリマー6としてヘ
キサフルオロブチルメタクリレートとグリシジルメタク
リレート共重合体(この側斜は、FRM −G  とい
う名で文献1に開示されている。)をO,Iμm回転塗
布し、140℃で30分間ベークした。これにエネルギ
ーMlとして電子ビームを照射してパタンの幻像を形成
した。
An embodiment of the present invention is shown in FIG. AZ1350J (Shipley Co., Ltd.) was applied to the silicon substrate 5 as the lower resist 4.
1) was spin-coated to a thickness of 1.5 μm and baked at 200° C. for 3θ minutes. A hexafluorobutyl methacrylate and glycidyl methacrylate copolymer (this side slope is disclosed in Reference 1 under the name FRM-G) was spin-coated to the sample as the fluorine-containing polymer 6 to a thickness of 0,1 μm, and the mixture was coated at 140°C. Bake for 30 minutes. An phantom image of a pattern was formed by irradiating this with an electron beam as energy Ml.

(第1図(a)参照)FBM−Gは電子ビームやXII
I!に高い感応性を示すことが知られている。本実施例
では30KVの電子ビームを用い、3 ttC/cm2
の照射量でパタン形成した。これをエタノールとインブ
チルアルコールの混せ比1対1の現像液に60秒間浸漬
すると、電子ビームを照射した部分のFBM −G  
が酵解されパタンが形成できた。
(See Figure 1 (a)) FBM-G is an electron beam
I! is known to exhibit high sensitivity to In this example, an electron beam of 30KV is used, and 3 ttC/cm2
A pattern was formed with an irradiation dose of . When this is immersed for 60 seconds in a developer with a 1:1 mixing ratio of ethanol and inbutyl alcohol, the FBM-G of the part irradiated with the electron beam is
was fermented and a pattern was formed.

(F、 1 [6(b)参ff1) 下Wzvシy、 
)AZ i 350 Jは電子ビーム感度が数百μC/
譚2 と極めて吐いた齢とハードベークの効果のためF
BM −G の開口部の下層レジストは全く変化しなか
った。つぎに該試料を回転塗布装置に乗せ、高速回転(
3000rpm 〜6000 rpm )させて付着材
7としてシリコン樹脂を滴下した。この操作によ#)第
1図0に示すごと(FBM−G  の開口部にのみシリ
コン樹脂は付着し、FBM −G  には全(付着しな
かった。これは、シリコン樹脂とFBM−Gのぬれ性や
密着性がシリコン樹脂とAZ1350Jのそれらよシ著
しく劣る九めである。このような現象はボ111 、 
lジメチル2,2,3.3テトラフルオロプロビルメダ
クリレート(FPM  ; 文献2 &I伸) 、ボッ
1ヘキサフルオ口プチルメダクリレート(FBM:文献
3参照)およびテフロンなどのフッ素含有有機ポ117
−とシリコン樹脂の間で起こることを確認して^る。シ
リコン樹脂は約0.1μm厚でFBM −G  の開口
部に堆積してい友。該試料を乾燥させ、その後反応性イ
オンエツチング装置(RIE )  によシ、流量50
 sccm (7)0□ガスを用いて、パワー密K O
,3W 7cm 2の条件で約12分間エツチングした
。この操作によシ、第1図(a)に示すととぐ、基板5
上に原パタンとは相補するパタンか形成された。エツチ
ングの間、シリコン樹脂は殆んどエツチングされず形成
されタレシストパタンハ、上層レジストパ4ンt−極メ
てよく反映してお夛、高い寸法精度のパタン形成が可能
であった。
(F, 1 [see 6(b)ff1) Lower Wzvshi,
) AZ i 350 J has an electron beam sensitivity of several hundred μC/
Tan 2 F due to the extremely vomiting age and the effect of hard baking
The lower layer resist of the opening of BM-G did not change at all. Next, the sample is placed on a spin coating device and rotated at high speed (
3,000 rpm to 6,000 rpm), and silicone resin was dropped as the adhesive material 7. By this operation, as shown in Figure 1 0, silicone resin adhered only to the opening of FBM-G and did not adhere to all of FBM-G. The wettability and adhesion are significantly inferior to those of silicone resin and AZ1350J.
Fluorine-containing organic po-117 such as dimethyl 2,2,3.3 tetrafluoropropyl medacrylate (FPM; Reference 2 & Ishin), hexafluorobutyl medacrylate (FBM: see Reference 3), and Teflon.
Check what happens between - and silicone resin. The silicone resin is deposited at the opening of FBM-G to a thickness of approximately 0.1 μm. The sample was dried and then subjected to reactive ion etching (RIE) at a flow rate of 50
sccm (7) Using 0□ gas, power dense KO
, 3W and 7cm 2 for about 12 minutes. By this operation, the board 5 is cut into a shape as shown in FIG. 1(a).
A pattern complementary to the original pattern was formed on top. During the etching process, the silicone resin was hardly etched and the resist pattern was very well reflected on the upper resist pattern, making it possible to form a pattern with high dimensional accuracy.

本実施例では、エネルギー線として電子ビームを用いた
が、X線やイオンビームを用いてモ全(同様のプロセス
でパイン形成できる。また、光に感応するフッ素含有レ
ジストを用いても、全(同様のプロセスでパタン形成で
きる。、また、フッ未含有ボ11マ一層を基板に塗布し
、ポリマー上にパタン形成後シリコン樹脂を塗布して基
板上Kg接シIIコン樹脂バlンを形成し、該シリコン
樹脂をマスクして基板加工することも可能である。
In this example, an electron beam was used as the energy beam, but it is also possible to use an X-ray or an ion beam to form a full-length pine (pine) using a similar process. A pattern can be formed using a similar process.In addition, a single layer of fluorine-free polymer 11 is applied to the substrate, and after the pattern is formed on the polymer, silicone resin is applied to form a Kg contact silicon II resin balloon on the substrate. It is also possible to process the substrate using the silicone resin as a mask.

第2図KM二の実施例を示す。シリコン基板5に下層レ
ジスト4としてAZ  1350Jを1.5μm厚回転
塗布し、200℃で30分間ベークした。これに、フッ
素含有レジスト6としてFBMを回転塗布にょシ0.菖
μm厚塗布し、140℃で30分間ベータし念。さらに
この上に上層レジスト2としてAZ1350Jを0.1
μm厚回転塗布し、90℃で30分間ベータした。該試
料をgライン(波長436m)ステッパーを用いて6o
II&J/鋸2で露光し、現像液(MF 2412:)
f20= 1: 1)に約60秒間浸漬してパタン形成
しft、FBM  レジストは光に感応しないため、 
第2図(b)に示すようにパタンは上層レジストのみに
形成される。これに、前述の実施例で用いたシリコン樹
脂を付着材7として前述の手原で回転塗布した。その結
果、第2図(c)に示すとと(FBMレジストの表面が
露出しているパタン開口部には全(シリコン樹脂は堆積
されず上層レジスト2のAZ  1350J のみに0
.2μm程度、堆積された、該試料をRIEにより前述
の条件でエツチングすると、第2図(d)に示すような
原パ4ンと同一のレジストパインが基板5上に形成でき
た。
FIG. 2 shows an embodiment of KM2. AZ 1350J was spin-coated to a thickness of 1.5 μm as the lower resist 4 on the silicon substrate 5, and baked at 200° C. for 30 minutes. To this, FBM was spin-coated as a fluorine-containing resist 6. Apply the irises μm thick and heat at 140℃ for 30 minutes. Furthermore, on top of this, AZ1350J is applied at 0.1 as upper layer resist 2.
It was spin-coated to a thickness of μm and incubated at 90° C. for 30 minutes. The sample was transferred to 6o using a g-line (wavelength 436m) stepper.
Exposure with II & J/Saw 2, developer (MF 2412:)
f20 = 1: 1) for about 60 seconds to form a pattern, FBM resist is not sensitive to light, so
As shown in FIG. 2(b), the pattern is formed only on the upper resist layer. The silicone resin used in the above-mentioned example was applied as adhesive material 7 to this by spin-coating by hand as described above. As a result, as shown in FIG. 2(c), silicone resin was not deposited on all the pattern openings where the surface of the FBM resist was exposed, but only on AZ 1350J of the upper resist layer 2.
.. When the sample deposited to a thickness of about 2 μm was etched by RIE under the conditions described above, a resist pine identical to the original pattern as shown in FIG. 2(d) was formed on the substrate 5.

本実施例では、光露光によるパタン形成を示したが、上
層レジストを電子ビームレジスト、例えばポリメチルメ
タクリレート(PMMA ) 、フェニールメタクリレ
ートとメグクリル酸との共重合体(φ−MAC)、クロ
ロメチル化ポリスチレン(CMS )  など、あるい
は、X線しジストヲ用いればそれらのエネルギー線にも
適用できることは明白である。さらに本発明の主旨に従
えば、上層レジストとして第2図に示したよりなポジ形
だけでな(、ネガ形レジストを用いてもその効果は全く
変わらない。また、シリコン樹脂を上層レジストとして
用い、パタン形成後フッ素含有ポリマーを塗布するとい
う逆の工程を用いてもよい。さらに、第一、第二の実施
例を通して、下層材料としてAZI350Jレジストを
用いたが、これに限られるものでない。下層材料の役割
はあ(fで、上層く形成したパタンを転写でき、基板加
工に耐え得る材料であればよいからで、その選択範囲は
広い。−例として掲げるならば、CMS  、  φ−
MAC,0FPR800(東京応化梨)などのレジスト
やポリイミド膜カーボン膜などを用いても本発明の効果
を損なうものでないことは明らかである。また、本実施
例では、レジストの固化、乾燥に電気炉を用いたが、公
知のホットプレートやマイクロ波加熱器などを用いるこ
とも可能である。
In this example, pattern formation by light exposure was shown, but the upper layer resist was an electron beam resist, such as polymethyl methacrylate (PMMA), a copolymer of phenyl methacrylate and megacrylic acid (φ-MAC), or chloromethylated polystyrene. It is obvious that the method can be applied to energy rays such as (CMS), or by using X-rays and other energy rays. Furthermore, according to the gist of the present invention, not only the more positive resist shown in FIG. The reverse process of applying the fluorine-containing polymer after forming the pattern may also be used.Furthermore, throughout the first and second examples, AZI350J resist was used as the lower layer material, but it is not limited to this.Lower layer material The role of A(f) is that any material can be used as long as it can transfer the pattern formed in the upper layer and can withstand substrate processing, so there is a wide range of selection. - Examples include CMS, φ-
It is clear that the effects of the present invention will not be impaired even if a resist such as MAC, 0FPR800 (Tokyo Ohkari Co., Ltd.) or a polyimide film or carbon film is used. Furthermore, in this embodiment, an electric furnace was used for solidifying and drying the resist, but it is also possible to use a known hot plate, microwave heater, or the like.

また、付着材の塗布方法として回転塗布の例を示したが
、これ以外の方法例えば、スプレー塗布、浸漬塗布法等
覆々の方法を用いることが可能である。
Further, although an example of spin coating is shown as a method for applying the adhesive material, it is possible to use other methods such as spray coating and dip coating.

(参考文献:1) H,Asakawe et al、 57m1)’)、
 on VLSI’l’erhno1.、P 88 (
1982) 01eo、 Japan(参考文献:2) M、 Kakuchi et PLl、 J、 Ele
ct、rochem、 Soc、。
(References: 1) H, Asakawe et al, 57m1)'),
on VLSI'l'erhno1. , P 88 (
1982) 01eo, Japan (References: 2) M, Kakuchi et PLl, J, Ele
ct, rochem, Soc,.

124、P、  1648(1977)(参考文献:3
) Kp Murase et al、 Proc、  I
nt、 Conf。
124, P, 1648 (1977) (References: 3
) Kp Murase et al, Proc, I
nt, Conf.

Microlithograph、y、 P 261 
(1977)paris、 France 〔発明の効果〕 以上説明したように本発明では、従来の三層レジスト法
のように上層レジストをマスクとして中間層をエツチン
グする工程がなく、上層のパタン形成後に単に付着材を
回転塗布で選択的にマスクパタンを形成てきるので、プ
ロセスが簡略化すれ、パタン形成速度が向上する。また
、中間層をエツチングする必要がないことは、上層レジ
ストを十分に薄くできパタンの解像性が向上すると同時
に、上層レジストのダメージが全くなく極めて寸法精度
の良いパタン形成が可能となる。また、上層レジストに
パタンを形成した後に付着材を付着できるため、付着材
の選択範囲が広がる利点があるだけでな(、上層パタン
形成時に付着物質の影響を考慮せずに理想的条件下で高
解像パタン形成ができる利点もある。さらに、本発明で
は、必要に応じて原パタンを簡本な方法で反転状態、ま
たは層状態にすること、すなわち、ネガ、ボジバ4ンが
形成できるたぬ、本発明の適用範囲が広がる利点もある
。また、ネガパタンにっhて言及すれば、一般的に高解
像性を有するポジ形しジスbの使用が可能であるから、
群像性の高いネガパタンが形成できる、などの利点があ
る。
Microlithography, y, P 261
(1977) Paris, France [Effects of the Invention] As explained above, in the present invention, unlike the conventional three-layer resist method, there is no step of etching the intermediate layer using the upper resist as a mask, and the etching process is simply performed after patterning the upper layer. Since a mask pattern can be selectively formed by spin-coating the material, the process is simplified and the pattern formation speed is improved. Furthermore, since there is no need to etch the intermediate layer, the upper resist layer can be made sufficiently thin, improving the resolution of the pattern, and at the same time, it is possible to form a pattern with extremely high dimensional accuracy without any damage to the upper resist layer. In addition, since the adhesive material can be attached after forming the pattern on the upper layer resist, it not only has the advantage of widening the selection range of adhesive materials (but also under ideal conditions without considering the influence of the adhesive material when forming the upper layer pattern). It also has the advantage of being able to form high-resolution patterns.Furthermore, in the present invention, the original pattern can be turned into an inverted state or a layered state by a simple method as needed, that is, a negative or a positive pattern can be formed. However, there is also the advantage that the scope of application of the present invention is expanded.Furthermore, when referring to negative patterns, it is possible to use a positive pattern which generally has high resolution.
It has advantages such as being able to form a negative pattern with high grouping properties.

【図面の簡単な説明】[Brief explanation of the drawing]

sg1図(a)〜(d)は本発明の薦−の実施例のパタ
ン形成工程図、fa2図(a)〜(d)は本発明の第二
の実施例のパタン形成工程図、第3図は従来の三層レジ
スト法のパイン形成工程図である。 l・・・・・・エネルギー線、2・旧・・エネルギー線
に感応するレジスト、3・・・・・・中間層、4・・・
・・・下層レジスト、5・・・・・・基板、6・・・・
・・フッ素含有ポリマー、7・・・・・・付着材。
sg1 figures (a) to (d) are pattern forming process diagrams of the preferred embodiment of the present invention, FA2 figures (a) to (d) are pattern forming process diagrams of the second embodiment of the present invention, and The figure is a diagram of the pine forming process using the conventional three-layer resist method. l...Energy rays, 2.Old...Resist sensitive to energy rays, 3...Intermediate layer, 4...
... Lower layer resist, 5 ... Substrate, 6 ...
...Fluorine-containing polymer, 7... Adhesive material.

Claims (1)

【特許請求の範囲】 (1、)光、電子線、イオンまたはX線などのエネルギ
ー線を用いたパタン形成において、基板上に、少なくと
も一層にフッ素化合物を含む一種または複数種の材料を
順次積層する工程と、該積層材料の少なくとも一層にエ
ネルギー線を照射してパタンを形成する工程と、該パタ
ン内もしくはパタン外のみに選択的に付着材を付着させ
る工程と、付着材をマスクとして、該積層材料を加工す
る工程を有することを特徴とするパタン形成方法。 (2、)上記フッ素化合物として、ポリヘキサフルオロ
ブチルメタクリレート、またはポリ1,1ジメチル2,
2,3,3テトラフルオロプロピルメタクリレート、ま
たはヘキサフルオロブチルメタクリレートとグリシジル
メタクリレート共重合体などフッ素含有ポリマーを用い
ることを特徴とする特許請求の範囲第1項記載のパタン
形成方法。 (3、)上記付着材として、シリコン化合物を用いるこ
とを特徴とする特許請求の範囲第1項または第2項記載
のパタン形成方法。
[Claims] (1.) In pattern formation using energy beams such as light, electron beams, ions, or X-rays, one or more materials containing a fluorine compound in at least one layer are sequentially laminated on a substrate. a step of irradiating at least one layer of the laminated material with energy rays to form a pattern; a step of selectively adhering an adhesive material only within or outside the pattern; A pattern forming method comprising a step of processing a laminated material. (2.) As the fluorine compound, polyhexafluorobutyl methacrylate or poly 1,1 dimethyl 2,
The pattern forming method according to claim 1, characterized in that a fluorine-containing polymer such as 2,3,3 tetrafluoropropyl methacrylate or a copolymer of hexafluorobutyl methacrylate and glycidyl methacrylate is used. (3.) The pattern forming method according to claim 1 or 2, wherein a silicon compound is used as the adhesive material.
JP60163688A 1985-07-24 1985-07-24 Pattern formation method Expired - Lifetime JPH0727221B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60163688A JPH0727221B2 (en) 1985-07-24 1985-07-24 Pattern formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60163688A JPH0727221B2 (en) 1985-07-24 1985-07-24 Pattern formation method

Publications (2)

Publication Number Publication Date
JPS6224625A true JPS6224625A (en) 1987-02-02
JPH0727221B2 JPH0727221B2 (en) 1995-03-29

Family

ID=15778706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60163688A Expired - Lifetime JPH0727221B2 (en) 1985-07-24 1985-07-24 Pattern formation method

Country Status (1)

Country Link
JP (1) JPH0727221B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01181516A (en) * 1988-01-12 1989-07-19 Koujiyundo Kagaku Kenkyusho:Kk Formation of electrode

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5789753A (en) * 1980-10-11 1982-06-04 Daikin Ind Ltd Formation of fluoroalkyl acrylate polymer film on substrate
JPS57202533A (en) * 1981-06-09 1982-12-11 Fujitsu Ltd Formation of pattern
JPS585735A (en) * 1981-06-01 1983-01-13 Daikin Ind Ltd Manufacture of patterned resist film on substrate
JPS5844715A (en) * 1981-09-11 1983-03-15 Fujitsu Ltd Forming method for minute pattern

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5789753A (en) * 1980-10-11 1982-06-04 Daikin Ind Ltd Formation of fluoroalkyl acrylate polymer film on substrate
JPS585735A (en) * 1981-06-01 1983-01-13 Daikin Ind Ltd Manufacture of patterned resist film on substrate
JPS57202533A (en) * 1981-06-09 1982-12-11 Fujitsu Ltd Formation of pattern
JPS5844715A (en) * 1981-09-11 1983-03-15 Fujitsu Ltd Forming method for minute pattern

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01181516A (en) * 1988-01-12 1989-07-19 Koujiyundo Kagaku Kenkyusho:Kk Formation of electrode

Also Published As

Publication number Publication date
JPH0727221B2 (en) 1995-03-29

Similar Documents

Publication Publication Date Title
CA1173689A (en) Electron beam exposed positive resist mask process
US5286607A (en) Bi-layer resist process for semiconductor processing
US4599137A (en) Method of forming resist pattern
US6455227B1 (en) Multilayer resist structure, and method of manufacturing three-dimensional microstructure with use thereof
JP2532589B2 (en) Fine pattern formation method
JP2001284209A (en) Method of forming multilayered resist pattern and method of manufacturing semiconductor device
JP2901044B2 (en) Pattern formation method by three-layer resist method
JPH02252233A (en) Fine pattern forming method
JPS6239817B2 (en)
JPS6224625A (en) Formation of pattern
JPS60254035A (en) Formation of pattern
US5186788A (en) Fine pattern forming method
JPH0314172B2 (en)
JPH0334053B2 (en)
JPH03283418A (en) Resist pattern forming method
JPH02156244A (en) Pattern forming method
JP2506952B2 (en) Fine pattern formation method
JPH02252231A (en) Fine pattern forming method
JPH0422260B2 (en)
Miura et al. Comparison of Silicon Containing Resist and Silylation of Imaged Resist for Multilayer Resist Lithography on a Metal Lift‐Off Application
JPS6364771B2 (en)
WO1988009527A2 (en) Silicon-containing negative resist material, and process for its use in patterning substrates
EP0141311A2 (en) Negative working electron beam resist system to be dry-developed
JPH0793255B2 (en) Fine pattern forming method
JPS63117422A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term