JPH0334053B2 - - Google Patents

Info

Publication number
JPH0334053B2
JPH0334053B2 JP58053673A JP5367383A JPH0334053B2 JP H0334053 B2 JPH0334053 B2 JP H0334053B2 JP 58053673 A JP58053673 A JP 58053673A JP 5367383 A JP5367383 A JP 5367383A JP H0334053 B2 JPH0334053 B2 JP H0334053B2
Authority
JP
Japan
Prior art keywords
resist
pattern
lmr
deep ultraviolet
ultraviolet rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58053673A
Other languages
Japanese (ja)
Other versions
JPS59181535A (en
Inventor
Yoshio Yamashita
Takaharu Kawazu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP58053673A priority Critical patent/JPS59181535A/en
Priority to US06/594,481 priority patent/US4609615A/en
Priority to EP84302145A priority patent/EP0124265B1/en
Priority to DE8484302145T priority patent/DE3466741D1/en
Priority to CA000450963A priority patent/CA1214679A/en
Publication of JPS59181535A publication Critical patent/JPS59181535A/en
Publication of JPH0334053B2 publication Critical patent/JPH0334053B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26

Description

【発明の詳細な説明】 (技術分野) 本発明は、半導体、磁気バルブ素子あるいは光
応用部品等の製造に好適なオーバーハング形状の
ネガレジストのパターン形成方法に関るものであ
る。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a method for forming a negative resist pattern in an overhang shape suitable for manufacturing semiconductors, magnetic valve elements, optical application parts, and the like.

(従来技術) 近年半導体集積回路に関して高集積化への要求
は益々高まつており、これに伴ないリソグラフイ
の分野では従来の光(特に紫外線)に変つて電子
線、X線又は遠紫外線等波長の短かい光源が使用
されてきた。
(Prior Art) In recent years, the demand for higher integration in semiconductor integrated circuits has been increasing, and in line with this, in the field of lithography, conventional light (particularly ultraviolet light) has been replaced with electron beams, X-rays, deep ultraviolet light, etc. Light sources with short wavelengths have been used.

特に上記遠紫外線を用いるリソグラフイは、従
来のフオトリソグラフイの延長上の技術でありな
がら容易にサブミクロンの転写を可能ならしめる
ものであり、今後の微細加工に大いに期待できる
ものとされている。
In particular, the above-mentioned lithography using deep ultraviolet rays is an extension of conventional photolithography, but it allows for easy submicron transfer, and is said to hold great promise for future microfabrication. .

上記微細加工にはエツチングによる方法と、リ
フトオフによる方法とがあり、先ずこのエツチン
グによる方法の場合、かかる遠紫外線リソグラフ
イに用いるレジストに対しては、遠紫外領域に高
感度であり、しかも解像力及び耐熱性が高くかつ
耐ドライエツチング性に優れていることが要求さ
れる。
There are two methods for the above-mentioned microfabrication: an etching method and a lift-off method.Firstly, the etching method has high sensitivity in the deep ultraviolet region for resists used in deep ultraviolet lithography, and has high resolution and high resolution. It is required to have high heat resistance and excellent dry etching resistance.

ところでポリメチルメタクリレート(以下
PMMAと略す)はかかる遠紫外線用レジストと
して良く知られたものであり、即ちコンホーマブ
ルマスクを用いた密着露光により0.2μm以下の優
れた解像力を有している。しかし他方のこの
PMMAはその感度が低くしかもドライエツチン
グ耐性も十分とは云えない。
By the way, polymethyl methacrylate (hereinafter referred to as
PMMA) is well known as such a resist for deep ultraviolet rays, and has an excellent resolution of 0.2 μm or less when exposed in close contact using a conformable mask. But this other
PMMA has low sensitivity and also has insufficient dry etching resistance.

遠紫外線用レジストとして他にメタクリル酸エ
ステル重合体やメタクリル酸エステルの共重合体
を同様に知られているが、これらも上記と同様に
ドライエツチング耐性に関して残された問題があ
る。
Methacrylic acid ester polymers and methacrylic acid ester copolymers are also known as resists for deep ultraviolet rays, but these also have the same problem with regard to dry etching resistance.

そして又、ビニルフエノールとジアジドジフエ
ニルスルフオンからなるレジスト(以下MRSと
略す)は高感度でかつドライエツチング耐性も良
好で特性を有しているが十分な耐熱性を有するも
のではないという欠点があつた。
Furthermore, a resist consisting of vinylphenol and diazidodiphenylsulfonate (hereinafter abbreviated as MRS) has the characteristics of high sensitivity and good dry etching resistance, but it has the disadvantage that it does not have sufficient heat resistance. It was hot.

また、リフトオフによる方法の場合、レジスト
膜の断面形状、耐熱性、溶解性、密着性等に関し
ての厳しい条件が要求されている。例えば、リフ
トオフにより容易にパターン形成が出来るために
はレジスト膜上に被着された被着層がレジストの
溶解と共に容易に除去出来ることが必要であり、
このためにはパターン形成されたレジスト膜の断
面形状がオーバーハング形状となつている必要が
ある。
Furthermore, in the case of the lift-off method, strict conditions are required regarding the cross-sectional shape, heat resistance, solubility, adhesion, etc. of the resist film. For example, in order to be able to easily form a pattern by lift-off, it is necessary that the adhesion layer deposited on the resist film can be easily removed as the resist dissolves.
For this purpose, it is necessary that the cross-sectional shape of the patterned resist film has an overhang shape.

現状ではこのオーバーハング形状を形成するた
めレジストを多層構造とするか又はポジ形ホトレ
ジスト、例えば、AZ−1350J(Shipley社製のホト
レジストの商品名)のクロルベンゼン処理が使用
されている。これらの処理は煩雑であり、スルー
トツプで劣り、また、再現性も必ずしも良くなか
つた。
Currently, in order to form this overhang shape, a multilayered resist is used, or a positive photoresist such as AZ-1350J (trade name of a photoresist manufactured by Shipley) treated with chlorobenzene is used. These treatments were complicated, had poor throughput, and did not necessarily have good reproducibility.

(発明の目的) 即ち遠紫外線に対して高感度かつ高解像性であ
り、更にドライエツチング耐性及び耐熱性が高
く、現像のみで上記オーバーハングを形成できる
レジスト材料、更にかかる目的に適合するレジス
トパターンの形成方法の確立が強く望まれている
のが実情である。
(Objective of the invention) That is, a resist material that is highly sensitive to deep ultraviolet rays, has high resolution, has high dry etching resistance and heat resistance, and can form the above-mentioned overhang only by development, and a resist that is suitable for such purposes. The reality is that there is a strong desire to establish a method for forming patterns.

ここに本発明者等は上記要求に応ずるべく鋭意
研究を重ねた結果、基板上に重合度10以下のオリ
ゴマのノボラツク樹脂のナフトキノンジアジドス
ルフオン酸エステルよりなる皮膜を形成し、これ
に遠紫外線を照射し、酢酸エステル又はアルキル
ケトンを主とする溶液で現像することにより、上
述の耐ドライエツチング性及び耐熱性を著しく改
善し解像力の良いレジストパターンを高感度で形
成することができ、しかもその断面状はオーバー
ハングとなつていることを見出しこの発明に到達
したのである。
As a result of extensive research in order to meet the above requirements, the inventors of the present invention formed a film made of naphthoquinonediazide sulfonic acid ester of an oligomeric novolac resin with a degree of polymerization of 10 or less on a substrate, and applied far ultraviolet rays to this film. By irradiating and developing with a solution mainly containing acetate ester or alkyl ketone, it is possible to form a resist pattern with high sensitivity, with markedly improved dry etching resistance and heat resistance, and with good resolution. They discovered that the shape has an overhang and arrived at this invention.

(発明の構成) 即ち本発明は、基板上に、重合度10以下のオリ
ゴマのノボラツク樹脂のナフトキノンジアジドス
ルフオン酸エステルよりなる皮膜を形成し、当該
皮膜に波長180〜300nmの遠紫外線を選択的に照
射し、酢酸エステル又はアルキルケトンを主とす
る溶液で現像することを特徴とするオーバーハン
グ形状のネガ型レジストのパターン形成方法であ
る。
(Structure of the Invention) That is, the present invention forms a film made of naphthoquinonediazide sulfonic acid ester of an oligomeric novolac resin with a degree of polymerization of 10 or less on a substrate, and selectively irradiates deep ultraviolet rays with a wavelength of 180 to 300 nm onto the film. This is a method for forming a pattern of a negative type resist in an overhang shape, which is characterized by irradiating the resist with irradiation and developing with a solution mainly containing an acetate or an alkyl ketone.

この発明においてレジスト材料としては特に後
記実施例にも示したように、重合度10以下のノボ
ラツク樹脂のナフトキノン−1,2−ジアジド−
5−スルフオン酸エステル(以下LMRと略す)
が好適に用いられる。そしてキノンジアジド基と
しては、ナフトキノンジアジドが知られている。
In this invention, as the resist material, naphthoquinone-1,2-diazide, a novolac resin with a degree of polymerization of 10 or less, is used, as shown in the examples below.
5-sulfonic acid ester (hereinafter abbreviated as LMR)
is preferably used. Naphthoquinonediazide is known as a quinonediazide group.

上記LMRは、遠紫外線に対してPMMAの10倍
以上の感度を有し、しかもサブミクロンの描画が
可能であり、しかもドライエツチング耐性に優れ
ており、約200℃のベーキング温度でもパターン
にダレが発生しない。しかも現像するだけでオー
バーハングの形状を得ることができ、即ち上記
LMRは遠紫外線リソグラフイによりドライエツ
チング用レジストとして又リフトオフ用レジスト
として適切に利用できるものである。
The above-mentioned LMR has more than 10 times the sensitivity of PMMA to far ultraviolet rays, is capable of submicron drawing, and has excellent dry etching resistance, and does not sag in the pattern even at baking temperatures of approximately 200°C. Does not occur. Moreover, the overhang shape can be obtained just by developing, that is, the above
LMR can be suitably used as a dry etching resist and as a lift-off resist using deep ultraviolet lithography.

このように本発明が遠紫外線によりネガのレジ
ストパターンを良好に形成できる理由としては次
の様に考えられる。LMRは後記比較例3からも
明らかなように、紫外線照射によりナフトキノン
ジアジドがインデルカルボン酸に変化し、公知の
AZ現像液でポジ型パターンが形成される。しか
しこの光照射反応では酢酸エステルを現像液とし
てもパターニング形成ができない。
The reason why the present invention can form a negative resist pattern well using deep ultraviolet rays is considered to be as follows. As is clear from Comparative Example 3 below, in LMR, naphthoquinone diazide changes to indelcarboxylic acid by ultraviolet irradiation, and the known
A positive pattern is formed using AZ developer. However, in this light irradiation reaction, patterning cannot be formed even when acetate is used as a developer.

即ちこの場合遠紫外線での反応は通常の紫外線
照射による反応とは全く異なるのである。
That is, in this case, the reaction with deep ultraviolet rays is completely different from the reaction with normal ultraviolet irradiation.

本発明における遠紫外線の照射部のレジストが
構造変化し酢酸エステル等に不溶化してパターン
化するものであり、即ちネガレジストでありなが
ら架橋反応によらないためパターンの膨潤がなく
結果的に著しい高解像力を示すものである。
In the present invention, the resist in the area irradiated with deep ultraviolet rays changes its structure and becomes insoluble in acetate ester, etc., and is patterned.In other words, although it is a negative resist, there is no cross-linking reaction, so the pattern does not swell, and as a result, the pattern is significantly increased. This indicates resolution.

LMRはオリゴマーであり、分子量が小さいこ
とも上記高解像力を示すことに効果を奏す。そし
て上記現像によりオーバーハング形状を得ること
ができるのは、該LMRは遠紫外領域に大きな吸
収をもつため光が深くまで透過せず、即ち第1図
に示した様に表面層のみが不溶化することにな
り、現像を行うと第2図の様に現像されオーバー
ハングの形状を得ることができるのである。尚図
において1はマスク、2はLMR層、3は基板、
2aは反応領域である。
LMR is an oligomer, and its small molecular weight is also effective in exhibiting the above-mentioned high resolution. The overhang shape can be obtained by the above development because the LMR has a large absorption in the far ultraviolet region, so the light does not penetrate deeply, that is, only the surface layer becomes insolubilized as shown in Figure 1. Therefore, when development is performed, it is possible to obtain an overhang shape as shown in FIG. 2. In the figure, 1 is a mask, 2 is an LMR layer, 3 is a substrate,
2a is a reaction area.

次にLMRはナフトキノンジアジドとノボラツ
クがスルフオン酸で結合されているものであり、
例えば比較例4より遠紫外線での構造変化はノボ
ラツクの反応ではなくナフトキノンジアジド基の
反応によるものと考えられる。即ち本発明で用い
うる重合体としてはナフトキノンジアジド基を有
し、しかも酢酸エステル又はアルキルケトンを主
とするものに溶解するものである必要がある。
Next, LMR is a combination of naphthoquinone diazide and novolac with sulfonic acid.
For example, from Comparative Example 4, it is thought that the structural change caused by deep ultraviolet rays is due to the reaction of the naphthoquinonediazide group rather than the reaction of novolak. That is, the polymer that can be used in the present invention must have a naphthoquinonediazide group and be soluble in a substance containing mainly acetate or alkyl ketone.

(実施例) 以下実施例によりこの発明を具体的に説明す
る。
(Example) The present invention will be specifically described below with reference to Examples.

実施例 1 LMRをメチルセルソルブアセテートに溶解し、
スピンコーテイング法によりシリコン基板上に
0.5μmの厚さに塗布した。60℃で30分ベーキング
を行つた後、500WのXe−Hgランプにより密着
露光を10秒間行つた。露光後イソアミルアセテー
トで20秒間現像したところ0.5μmのラインアンド
スペースのネガのレジストパターンが得られた。
走査型電子顕微鏡(SEMと略す)により観察し
たところレジスト断面はオーバーハング形状とな
つていた。
Example 1 Dissolving LMR in methylcellosolve acetate,
onto silicon substrate by spin coating method
It was applied to a thickness of 0.5 μm. After baking at 60°C for 30 minutes, contact exposure was performed for 10 seconds using a 500W Xe-Hg lamp. After exposure, development was performed with isoamyl acetate for 20 seconds to obtain a 0.5 μm line-and-space negative resist pattern.
When observed using a scanning electron microscope (abbreviated as SEM), the cross section of the resist had an overhang shape.

実施例 2 実施例1で得られたレジストパターンを200℃
で30分加熱して走査型電子顕微鏡(SEMと略す)
にて観察したところ、レジストパターンにはダレ
等の変形は全く見られず加熱前のパターンと同等
であつた。
Example 2 The resist pattern obtained in Example 1 was heated to 200°C.
Heat for 30 minutes and analyze with a scanning electron microscope (abbreviated as SEM).
When observed, the resist pattern showed no deformation such as sag at all and was equivalent to the pattern before heating.

実施例 3 実施例1と同様にして露光を行いイソアミルア
セテートで30秒現像した。現像したパターンを
SEMにて観察したところパターンの断面はオー
バーハング形状が実施例1より大きくなつてい
た。
Example 3 Exposure was carried out in the same manner as in Example 1, and development was carried out with isoamyl acetate for 30 seconds. The developed pattern
When observed by SEM, the overhang shape of the cross section of the pattern was larger than that of Example 1.

実施例 4 実施例1と同様にしてLMRによる皮膜を基板
上に形成し、酸素プラズマを用いた場合のドライ
エツチング耐性を検討した。エツチング装置は平
行平板型を用い、出力密度0.08W/cm2、O2ガス流
量20c.c.M、ガス圧力50Paで15分エツチングを行
つたところエツチング量は50nmであつた。比較
のためにPMMAを用いた外は同じ条件で行つた
ところエツチング量は200nmであつた。
Example 4 A film by LMR was formed on a substrate in the same manner as in Example 1, and the dry etching resistance when oxygen plasma was used was examined. A parallel plate type etching device was used, and etching was performed for 15 minutes at a power density of 0.08 W/cm 2 , an O 2 gas flow rate of 20 c.c.M, and a gas pressure of 50 Pa, and the etching amount was 50 nm. For comparison, the etching amount was 200 nm under the same conditions except that PMMA was used.

比較例 1 実施例1と同様にLMRの露光を行い、AZ−
1350J専用現像液を用いて60秒現像したところパ
ターンは形成されなかつた。
Comparative Example 1 LMR exposure was performed in the same manner as in Example 1, and AZ-
When developed for 60 seconds using a 1350J developer, no pattern was formed.

比較例 2 PMMAをシリコン基板上に0.5μm厚にてコー
テイングを行い180℃で30分プリベークした後、
実施例1と同様の装置で60秒、120秒それぞれ露
光し、MIBKで現像したところ120秒ではパター
ニングができたが60秒ではパターニングができな
かつた。
Comparative Example 2 PMMA was coated on a silicon substrate to a thickness of 0.5 μm, and after prebaking at 180°C for 30 minutes,
When exposed for 60 seconds and 120 seconds using the same apparatus as in Example 1 and developed with MIBK, patterning was possible at 120 seconds, but not at 60 seconds.

比較例 3 実施例1と同様にして形成したLMRに250Wの
水銀ランプを有するマスクアライナで30秒間露光
し、AZ−1350J現像液て現像したところポジ型の
パターンが得られた。又酢酸イソアミルで現像し
たところ全面溶解してパターニングができなかつ
た。
Comparative Example 3 An LMR formed in the same manner as in Example 1 was exposed for 30 seconds using a mask aligner equipped with a 250 W mercury lamp, and developed with an AZ-1350J developer to obtain a positive pattern. When developed with isoamyl acetate, the entire surface was dissolved and no patterning could be performed.

実施例 5 実施例1と同様にして露光したLMRをメチル
イソアミルケトンで20秒現像したところ0.5μmの
レジストパターンが得られた。
Example 5 When LMR exposed in the same manner as in Example 1 was developed with methyl isoamyl ketone for 20 seconds, a 0.5 μm resist pattern was obtained.

実施例 6 実施例1と同様にして露光したLMRをn−プ
ロピルアセテート及びシクロヘキサン5:2の混
合液で現像したところ0.5μmのレジストパターン
が得られた。
Example 6 When LMR exposed in the same manner as in Example 1 was developed with a mixture of n-propyl acetate and cyclohexane in a ratio of 5:2, a resist pattern of 0.5 μm was obtained.

実施例 7 実施例1と同様にして露光したLMRをイソプ
ロピルアセテート及びイソプロピルアルコール
5:1の混合溶液で現像したところ0.5μmのレジ
ストパターンが得られた。
Example 7 When LMR exposed in the same manner as in Example 1 was developed with a mixed solution of isopropyl acetate and isopropyl alcohol in a ratio of 5:1, a resist pattern of 0.5 μm was obtained.

比較例 4 ノボラツク樹脂をメチルセルソルブアセテート
に溶解し、これを基板上に0.5μm厚に塗布した。
100℃で30分プリベーク後実施例1と同様の装置
を用い30秒露光を行つた。その後イソアミンアセ
テートで現像したところパターンは形成されなか
つた。
Comparative Example 4 Novolak resin was dissolved in methylcellosolve acetate, and this was applied onto a substrate to a thickness of 0.5 μm.
After prebaking at 100° C. for 30 minutes, exposure was performed for 30 seconds using the same apparatus as in Example 1. Thereafter, when it was developed with isoamine acetate, no pattern was formed.

(発明の効果) 本発明は以上の記載から明らかなように重合度
10以下のオリゴマのノボラツク樹脂のナフトキノ
ンジアジドスルフオン酸エステルよりなる皮膜を
形成し、当該皮膜に波長180〜300nmの遠紫外線
を選択的に照射し、次に酢酸エステル又はアルキ
ルケトンを主とする溶液で現像することによつ
て、耐ドライエツチング性及び耐熱性に優れた解
像力のよいパターンを高感度に描画できる。そし
て上記現像によりオーバーハング形状のレジスト
パターンが形成できるので、高密度化半導体部
品、磁気バブル素子の製造に非常に好適に利用で
きるものでありその工業的価値は極めて大きい。
(Effect of the invention) As is clear from the above description, the present invention has a polymerization degree of
A film made of naphthoquinonediazide sulfonic acid ester of an oligomeric novolac resin of 10 or less is formed, the film is selectively irradiated with deep ultraviolet rays with a wavelength of 180 to 300 nm, and then a solution mainly containing acetate ester or alkyl ketone is formed. By developing with , a pattern with good resolution and excellent dry etching resistance and heat resistance can be drawn with high sensitivity. Since an overhang-shaped resist pattern can be formed by the above-mentioned development, it can be used very suitably for manufacturing high-density semiconductor components and magnetic bubble elements, and its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明における遠紫外線照射時の光の
反応領域を示す図、第2図は現像時のレジストパ
ターンを示す図である。 1……マスク、2……LMR層、3……基板。
FIG. 1 is a diagram showing a light reaction area during deep ultraviolet irradiation in the present invention, and FIG. 2 is a diagram showing a resist pattern during development. 1...Mask, 2...LMR layer, 3...Substrate.

Claims (1)

【特許請求の範囲】[Claims] 1 基板上に重合度10以下のオリゴマのノボラツ
ク樹脂のナフトキノンジアジドスルフオン酸エス
テルよりなる皮膜を形成し、当該皮膜に波長180
〜300nmの遠紫外線を選択的に照射し、次に酢酸
エステル又はアルキルケトンを主とする溶液で現
像することを特徴とするオーバーハング形状のネ
ガ型レジストのパターン形成方法。
1 A film made of naphthoquinonediazide sulfonic acid ester of oligomeric novolak resin with a degree of polymerization of 10 or less is formed on a substrate, and the film is exposed to a wavelength of 180
A method for forming a negative resist pattern in an overhang shape, which comprises selectively irradiating deep ultraviolet rays of ~300 nm and then developing with a solution mainly containing acetate or alkyl ketone.
JP58053673A 1983-03-31 1983-03-31 Pattern formation of negative resist Granted JPS59181535A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP58053673A JPS59181535A (en) 1983-03-31 1983-03-31 Pattern formation of negative resist
US06/594,481 US4609615A (en) 1983-03-31 1984-03-27 Process for forming pattern with negative resist using quinone diazide compound
EP84302145A EP0124265B1 (en) 1983-03-31 1984-03-29 Process for forming pattern with negative resist
DE8484302145T DE3466741D1 (en) 1983-03-31 1984-03-29 Process for forming pattern with negative resist
CA000450963A CA1214679A (en) 1983-03-31 1984-03-30 Process for forming pattern with negative resist

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58053673A JPS59181535A (en) 1983-03-31 1983-03-31 Pattern formation of negative resist

Publications (2)

Publication Number Publication Date
JPS59181535A JPS59181535A (en) 1984-10-16
JPH0334053B2 true JPH0334053B2 (en) 1991-05-21

Family

ID=12949343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58053673A Granted JPS59181535A (en) 1983-03-31 1983-03-31 Pattern formation of negative resist

Country Status (1)

Country Link
JP (1) JPS59181535A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6045244A (en) * 1983-08-23 1985-03-11 Oki Electric Ind Co Ltd Formation of resist pattern
JPS6045243A (en) * 1983-08-23 1985-03-11 Oki Electric Ind Co Ltd Formation of resist pattern
JPS6230322A (en) * 1985-07-31 1987-02-09 Oki Electric Ind Co Ltd Formation of photoresist pattern
JP5618625B2 (en) * 2010-05-25 2014-11-05 富士フイルム株式会社 Pattern forming method and actinic ray-sensitive or radiation-sensitive resin composition
WO2012114963A1 (en) * 2011-02-23 2012-08-30 Jsr株式会社 Negative-pattern-forming method and photoresist composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5151939A (en) * 1974-10-31 1976-05-07 Canon Kk SAISENPATAANYOHOTOREJISUTOGENZOEKI
JPS548304A (en) * 1977-06-20 1979-01-22 Toyo Tire & Rubber Co Ltd Radial tire
JPS5692536A (en) * 1979-12-27 1981-07-27 Fujitsu Ltd Pattern formation method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5151939A (en) * 1974-10-31 1976-05-07 Canon Kk SAISENPATAANYOHOTOREJISUTOGENZOEKI
JPS548304A (en) * 1977-06-20 1979-01-22 Toyo Tire & Rubber Co Ltd Radial tire
JPS5692536A (en) * 1979-12-27 1981-07-27 Fujitsu Ltd Pattern formation method

Also Published As

Publication number Publication date
JPS59181535A (en) 1984-10-16

Similar Documents

Publication Publication Date Title
TWI803344B (en) A Lithography Method Based on Double Layer Photoresist
JPH0334053B2 (en)
JPS58214148A (en) Resist material and formation of micropattern
JPH0480377B2 (en)
JPS60254036A (en) Formation of pattern
JPH0334055B2 (en)
JPH0458170B2 (en)
JPH02156244A (en) Pattern forming method
Taylor et al. Silylated positive tone resists for EUV lithography at 14 nm
JPH042183B2 (en)
JPH0477899B2 (en)
JPS62226148A (en) Process for forming pattern
JPS6156867B2 (en)
JPS61241745A (en) Negative type photoresist composition and formation of resist pattern
JPS6161153A (en) Formation of pattern of negative type resist
JPS6086543A (en) Formation of micropattern
JPS61236552A (en) Mask processing
JPH09171951A (en) Formation of resist pattern
JPS646448B2 (en)
JPH07142323A (en) Resist pattern formation method
JPH023493B2 (en)
JPS61131446A (en) Formation of resist pattern
JP2001185473A (en) Method for forming resist pattern
JPS62184451A (en) Pattern forming method
JPH0433325A (en) Photo etching for forming fine pattern