JPH07142323A - Resist pattern formation method - Google Patents

Resist pattern formation method

Info

Publication number
JPH07142323A
JPH07142323A JP5148860A JP14886093A JPH07142323A JP H07142323 A JPH07142323 A JP H07142323A JP 5148860 A JP5148860 A JP 5148860A JP 14886093 A JP14886093 A JP 14886093A JP H07142323 A JPH07142323 A JP H07142323A
Authority
JP
Japan
Prior art keywords
layer
photoresist
resist pattern
pattern
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5148860A
Other languages
Japanese (ja)
Inventor
Toshihiro Okada
智弘 岡田
Takashi Kawabe
隆 川辺
Tetsuya Okai
哲也 岡井
Moriaki Fuyama
盛明 府山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5148860A priority Critical patent/JPH07142323A/en
Publication of JPH07142323A publication Critical patent/JPH07142323A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To create a mask material whose shape can be controlled easily by forming a dummy layer pattern on a substrate. applying photoresist on the pattern, applying ultraviolet rays to a photoresist layer via a photomask for development. curing the photoresist, and then eliminating only a dummy layer. CONSTITUTION:Only a photoresist layer is eliminated using acetone and a dummy layer is formed. Then, after spincoating the photoresist, prebaking is performed and a photoresist layer 4 is formed. Then, ultraviolet rays are applied via a photomask and development is made. After this, far-ultraviolet rays are applied while heating in vacuum and the photoresist layer of an upper- layer part is cured and then is insolubilized in a development liquid. Then, only polyimide layer is selectively side-etched using the development liquid. Therefore, since the photoresist at the upper-layer part is not subjected to etching, the pattern dimension and accuracy of photoresist are maintained to be the same as the initial development.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、リフトオフ用マスク材
として用いるレジストパターンの形成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a resist pattern used as a lift-off mask material.

【0002】[0002]

【従来の技術】特開平1−120832 号公報には、ダミー層
の側壁にレジスト層を形成後、光照射を行って、レジス
ト層の所定厚さを硬化層とした後、ダミー層,非硬化層
を除去してひさしパターンを形成する方法が開示されて
いる。
2. Description of the Related Art Japanese Unexamined Patent Publication (Kokai) No. 1-120832 discloses that after a resist layer is formed on the side wall of a dummy layer, light irradiation is performed to make a predetermined thickness of the resist layer a hardened layer, and then the dummy layer is uncured. A method of removing layers to form an eaves pattern is disclosed.

【0003】[0003]

【発明が解決しようとする課題】従来の特開平1−12083
2 号公報に記載の発明では、ダミー層の側壁のレジスト
層に光を照射し、レジスト層に形成される硬化層と非硬
化層との溶剤への溶解性の違いにより、リフトオフ用の
マスクを形成しているために、マスクの形状の制御が難
しい。そこで、本発明の目的は、レジストを用いて形状
の制御しやすいマスク材作製法を提供することにある。
[Patent Document 1] Japanese Patent Application Laid-Open No. 1-12083
In the invention described in Japanese Patent Publication No. 2), the resist layer on the side wall of the dummy layer is irradiated with light, and the lift-off mask is formed due to the difference in solubility in the solvent between the hardened layer and the non-hardened layer formed on the resist layer. Since it is formed, it is difficult to control the shape of the mask. Therefore, an object of the present invention is to provide a mask material manufacturing method in which the shape can be easily controlled using a resist.

【0004】[0004]

【課題を解決するための手段】本発明では、レジストパ
ターン形成は、(1)基板にダミー層パターンを形成す
る工程と、(2)前記のパターン上にフォトレジストを
塗布する工程と、(3)前記フォトレジスト層にフォトマ
スクを介して紫外線を照射し、現像する工程と、(4)
フォトレジストを硬化させる工程と、(5)ダミー層の
みを除去する工程を順次、あるいは(5)の次に(4)
の順序で行うことにより達成される。
In the present invention, the resist pattern is formed by (1) a step of forming a dummy layer pattern on a substrate, (2) a step of applying a photoresist on the pattern, and (3) ) A step of irradiating the photoresist layer with ultraviolet rays through a photomask to develop, (4)
The step of curing the photoresist and the step of (5) removing only the dummy layer are sequentially performed, or (5) is followed by (4).
It is achieved by performing in the order of.

【0005】本発明におけるレジストパターン形成は、
数nmから数十μmの膜厚で、サブミクロンから数mmの
大きさのパターンに関するものである。基板には金属,
金属酸化物および半導体等を用い、必要ならば、脱水処
理またはHMDS処理を行っておく。基板上には既に別
種のパターンが形成され段差があっても良い。ダミー層
を形成する物質はフォトレジストと混合層を形成しない
ことが必要で、樹脂を用いる場合、フォトレジストと混
合層を形成しない樹脂としては、通常のポリイミド樹脂
あるいは感光性ポリイミド樹脂,ポリジメチルグルタル
イミド(PMGI),ポリメチルメタクリレート(PMMA)
およびその誘導体,ポリメチルイソプロピルケトン(P
MIPK)がある。
The resist pattern formation in the present invention is
The present invention relates to a pattern having a film thickness of several nm to several tens of μm and a size of submicron to several mm. Metal on the board,
If necessary, dehydration treatment or HMDS treatment is performed using a metal oxide and a semiconductor. A different type of pattern may be already formed on the substrate to have a step. It is necessary that the material forming the dummy layer does not form a mixed layer with the photoresist, and when a resin is used, as the resin that does not form the mixed layer with the photoresist, an ordinary polyimide resin or a photosensitive polyimide resin, polydimethylglutar is used. Imide (PMGI), Polymethylmethacrylate (PMMA)
And its derivatives, polymethyl isopropyl ketone (P
MIPK).

【0006】ダミー層としてポリイミド樹脂を用いる場
合、基板上にポリイミド樹脂をスピンナーで塗布後ベー
クし、ポリイミド層を形成する。このポリイミド層上に
フォトレジストを塗布後、露光,現像を行い、フォトレ
ジスト層のパターン形成を行う。下層のポリイミド層
は、上層のフォトレジスト層をマスクにして、ウェット
エッチング法あるいはドライエッチング法等の公知の手
法によりパターン形成を行えば良い。またポリイミド層
をポリイミド樹脂がハーフキュアとなる温度条件でベー
クすると、レジスト用現像液でポリイミドが溶解除去で
きるため、フォトレジスト層の現像と同時に、ポリイミ
ド層のパターン形成が可能となる。次にフォトレジスト
層を剥離、あるいはそのまま剥離しない状態にして、更
にこの上にフォトレジストを塗布する。ここで再び露
光,現像を行い、フォトレジストにパターンを形成す
る。次に、ポリイミド層を除去し、マスク材のパターン
を作製する。レジスト層の硬化処理はポリイミド層除去
前でも後でもよい。除去前にレジスト層を硬化させた場
合は、ポリイミド層除去時のレジスト層の膜減りによる
パターン寸法,精度の劣化を少なくできる。レジストの
硬化は、加熱,光照射等により行うことができる。光照
射は、例えば、遠紫外線を、必要ならば真空中でベーク
しながら照射することによって達成できる。
When a polyimide resin is used as the dummy layer, the polyimide resin is applied onto the substrate by a spinner and then baked to form the polyimide layer. After coating a photoresist on the polyimide layer, exposure and development are performed to form a pattern of the photoresist layer. The lower polyimide layer may be patterned by a known method such as a wet etching method or a dry etching method using the upper photoresist layer as a mask. Further, when the polyimide layer is baked under a temperature condition in which the polyimide resin is half cured, the polyimide can be dissolved and removed by the resist developing solution, so that the pattern formation of the polyimide layer can be performed simultaneously with the development of the photoresist layer. Next, the photoresist layer is peeled off or not peeled as it is, and a photoresist is further applied thereon. Here, exposure and development are performed again to form a pattern on the photoresist. Next, the polyimide layer is removed and a pattern of the mask material is produced. The resist layer may be cured before or after the removal of the polyimide layer. When the resist layer is cured before the removal, it is possible to reduce the deterioration of the pattern dimension and accuracy due to the reduction of the resist layer film when the polyimide layer is removed. Curing of the resist can be performed by heating, light irradiation or the like. The light irradiation can be achieved, for example, by irradiating deep ultraviolet rays while baking in a vacuum if necessary.

【0007】ダミー層としてポリジメチルグルタルイミ
ド(PMGI),ポリメチルメタクリレート(PMM
A),ポリメチルイソプロピルケトン(PMIPK),
感光性ポリイミドを用いる場合もポリイミド樹脂を用い
た場合と同様の方法でレジスト層を塗布し、露光,現像
を行いパターン形成を行うことができるが、もっと簡便
には、これらのダミー層に、遠紫外線,電子線,紫外線
によって直接、描画露光,現像を行うことによって、パ
ターンを形成することもできる。特に、PMGI,PM
MA,PMIPKの3種類については、遠紫外線領域に
感光帯をもっているため、レジスト硬化をダミー層除去
前に、遠紫外線照射によって行えば、レジストの硬化と
同時にダミー層を感光させ、この分子量を減少させるこ
とにより除去を容易に行うことができる。
As a dummy layer, polydimethylglutarimide (PMGI), polymethylmethacrylate (PMM)
A), polymethyl isopropyl ketone (PMIPK),
When a photosensitive polyimide is used, a resist layer can be applied, and exposure and development can be performed to form a pattern in the same manner as in the case of using a polyimide resin. It is also possible to form a pattern by directly performing drawing exposure and development with ultraviolet rays, electron beams, or ultraviolet rays. Especially PMGI, PM
MA and PMIPK have a photosensitive band in the far-ultraviolet region, so if the resist is cured by irradiation with far-ultraviolet rays before removing the dummy layer, the dummy layer is exposed at the same time as the resist is cured, and the molecular weight is reduced. By doing so, the removal can be easily performed.

【0008】[0008]

【作用】本発明において、レジストは、通常のフォトリ
ソグラフィーによってパターンの形成を行ったのち、遠
紫外線照射によってレジストを硬化させ、良好なパター
ン精度が得られ、スループットも高く、リフトオフ用マ
スク材が形成できる。マスク材のアンダーカット量は、
通常のフォトリソグラフィーによって制御するため、任
意のアンダーカットが作製できる。大きなアンダーカッ
トをもつマスク材を使用することによって、薄膜の被着
時に用いる方法は蒸着のみならず通常のスパッタ法およ
びバイアススパッタ法も使用することが可能である。ま
た、マスク材全体のフォトレジストを硬化させ、ノボラ
ック樹脂−ジアゾナフトキノン系のレジストを用いた場
合、耐熱性が約300℃と著しく向上するため、薄膜を
被着させる工程での基板温度を高めることができ、薄膜
の向上が可能となる。
In the present invention, the resist is formed into a pattern by ordinary photolithography, and then the resist is cured by irradiation with deep ultraviolet rays to obtain good pattern accuracy, high throughput, and a lift-off mask material is formed. it can. The undercut amount of the mask material is
Since it is controlled by ordinary photolithography, any undercut can be produced. By using a mask material having a large undercut, not only vapor deposition but also ordinary sputtering method and bias sputtering method can be used as a method for depositing a thin film. Further, when the photoresist of the entire mask material is hardened and a novolac resin-diazonaphthoquinone-based resist is used, the heat resistance is remarkably improved to about 300 ° C. Therefore, the substrate temperature in the step of depositing the thin film should be increased. It is possible to improve the thin film.

【0009】[0009]

【実施例】実施例1 以下、図を用いて本実施例を説明する。図1は本発明の
工程により形成される構造の拡大断面図(但し、均一倍
率ではない)である。図1(a)において、基板1にポ
リイミドワニス(PIQ;日立化成工業社製)の2Pの
ものを5000rpm で60秒間スピンコートによって塗
布し、150℃で30分間ホットプレートでベークを行
い、0.5μm の膜厚のポリイミド層2を得、この上に
ノボラック系フォトレジスト(OFPR8600−30
cp)を3000rpm で30秒間スピンコート後、90
℃で30分間のプリベークを行い約1μmの膜厚のフォ
トレジスト層3を得たところを示す。図1(b)におい
て、この基板をフォトマスクを介して72mJ/cm2
紫外線を照射した後フォトレジスト層3およびポリイミ
ド層2をテトラメチルアンモニウムハイドロオキサイド
の2.38 重量%水溶液(NMD−3;東京応化工業社
製)で2分間現像を行ったところを示す。図1(c)に
おいて、アセトンを用いてフォトレジスト層のみを除去
し、ダミー層を形成したところを示す。次に、フォトレ
ジスト(OFPR8600−30cp)を3000rpm で
30秒間スピンコート後、90℃で30分間のプリベー
クを行い約1μmの膜厚のフォトレジスト層4を形成し
たところを示す。ここでは、あるいは、フォトレジスト
層3を除去することなく、この上にフォトレジストを塗
布しても良い。図1(e)において、フォトマスクを介
して72mJ/cm2 の紫外線を照射、NMD−3により
1分30秒の現像を行ったところを示す。この後、真空
中で100℃に加熱しながら遠紫外線を3.6J/cm2
射し、上層部のフォトレジスト層を硬化させ、現像液に
不溶化させる。図1(f)において、再び現像液を用い
てポリイミド層のみを選択的にサイドエッチングしたと
ころを示す。この工程において、上層部のフォトレジス
トはエッチングを受けないため、フォトレジストのパタ
ーン寸法および精度は、最初の現像時のままに保たれる
ため、高精度かつパターン形状および寸法の制御が容易
となる。アンダーカット量は、2度のフォトリソグラフ
ィーによるため、制御がしやすく例えば1〜10μm位
の大きなアンダーカットも容易に作製できる。
EXAMPLES Example 1 Hereinafter, this example will be described with reference to the drawings. FIG. 1 is an enlarged cross-sectional view (not to scale) of a structure formed by the process of the present invention. In FIG. 1 (a), a substrate 1 having a polyimide varnish (PIQ; made by Hitachi Chemical Co., Ltd.) of 2P was applied by spin coating at 5000 rpm for 60 seconds, and baked at 150 ° C. for 30 minutes on a hot plate to obtain a surface roughness of 0.1. A polyimide layer 2 having a thickness of 5 μm is obtained, and a novolac photoresist (OFPR8600-30) is formed on the polyimide layer 2.
cp) is spin-coated at 3000 rpm for 30 seconds, then 90
Prebaking is performed at 30 ° C. for 30 minutes to obtain a photoresist layer 3 having a thickness of about 1 μm. In FIG. 1 (b), the substrate was irradiated with 72 mJ / cm 2 of ultraviolet rays through a photomask, and then the photoresist layer 3 and the polyimide layer 2 were treated with a 2.38 wt% aqueous solution of tetramethylammonium hydroxide (NMD-3). A product developed by Tokyo Ohka Kogyo Co., Ltd.) for 2 minutes is shown. In FIG. 1C, only the photoresist layer is removed using acetone to form a dummy layer. Next, a photoresist (OFPR8600-30cp) was spin-coated at 3000 rpm for 30 seconds and prebaked at 90 ° C. for 30 minutes to form a photoresist layer 4 having a thickness of about 1 μm. Here, alternatively, the photoresist may be applied on the photoresist layer 3 without removing it. In FIG. 1 (e), ultraviolet rays of 72 mJ / cm 2 are irradiated through a photomask, and development is performed for 1 minute 30 seconds by NMD-3. Then, while being heated to 100 ° C. in a vacuum, deep ultraviolet rays are radiated at 3.6 J / cm 2 to cure the upper photoresist layer and insolubilize it in a developing solution. In FIG. 1 (f), the side surface of the polyimide layer is selectively etched again using the developing solution. In this step, since the photoresist in the upper layer is not subjected to etching, the pattern size and accuracy of the photoresist are kept as they were at the time of the first development, so that the pattern shape and size can be controlled with high accuracy. . Since the undercut amount is obtained by performing the photolithography twice, it is easy to control, and a large undercut of, for example, about 1 to 10 μm can be easily produced.

【0010】実施例2 以下、図を用いて本実施例を説明する。本実施例も実施
例1と同様の形状となるため図1を用いる。図1は本発
明の工程により形成される構造の拡大断面図(但し、均
一倍率ではない)である。図1(a)において、基板1
を150℃で20分間の脱水ベークを行った後、PMG
Iワニス〔SAL110;(発売元シプレイ社)をシン
ナーで2倍に希釈〕を2000rpm で30秒間スピンコ
ートによって塗布し、185℃で30分間ホットプレー
トでベークを行い、0.3μmの膜厚のPMGI層2を
得、この上にノボラック系フォトレジスト(OFPR8
600−30cp)を3000rpm で30秒間スピンコ
ート後、90℃で30分間のプリベークを行い約1μm
の膜厚のフォトレジスト層3を得たところを示す。図1
(b)において、この基板をフォトマスクを介して72
mJ/cm2の紫外線を照射し、フォトレジスト層3およ
びPMGI層2をテトラメチルアンモニウムハイドロオ
キサイドの2.38%水溶液(NMD−3;東京応化工業
社製)で2分間現像を行ったところを示す。図1(c)
において、アセトンを用いてフォトレジスト層のみを除
去し、ダミー層を形成したところを示す。図1(d)に
おいて、フォトレジスト(OFPR8600−30c
p)を3000rpmで30秒間スピンコート後、90℃
で30分間のプリベークを行い約1μmの膜厚のフォト
レジスト層を形成したところを示す。あるいは、フォト
レジスト層3を除去することなく、この上にフォトレジ
ストを塗布しても良い。図1(e)において、フォトマス
クを介して72mJ/cm2 の紫外線を照射、NMD−3
により1分の現像を行ったところを示す。次に、真空中
で100℃でベークしながら遠紫外線を3.6J/cm2
射し、上層部のフォトレジスト層を硬化させ、現像液に
不溶化させると同時にフォトレジスト層を通して、下層
部のPMGIを感光させ、PMGIの分子量を減少させ
た。図1(f)において、再び現像液を用いてPMGI層
のみを選択的にサイドエッチングしたところを示す。こ
の工程において、フォトレジストはエッチングを受けな
いため、フォトレジストのパターン寸法および精度は、
最初の現像時のままに保たれるため、高精度かつパター
ン形状および寸法の制御が容易となる。遠紫外線により
PMGIの分子量が減少しているため、PMGIは速や
かに現像液に溶解するため、容易にアンダーカットが形
成できる。
Embodiment 2 This embodiment will be described below with reference to the drawings. Since this embodiment also has the same shape as that of the first embodiment, FIG. 1 is used. FIG. 1 is an enlarged cross-sectional view (not to scale) of a structure formed by the process of the present invention. In FIG. 1A, the substrate 1
After dehydration baking at 150 ℃ for 20 minutes, PMG
I varnish [SAL110 (sold by Shipley Co., Ltd.) was diluted twice with thinner] was applied by spin coating at 2000 rpm for 30 seconds, baked at 185 ° C. for 30 minutes on a hot plate, and PMGI having a film thickness of 0.3 μm was applied. Layer 2 is obtained, on which a novolac-based photoresist (OFPR8
600-30 cp) was spin-coated at 3000 rpm for 30 seconds, and then prebaked at 90 ° C. for 30 minutes to about 1 μm.
The result shows that the photoresist layer 3 having the film thickness of is obtained. Figure 1
In (b), this substrate is placed through a photomask.
The photoresist layer 3 and the PMGI layer 2 were irradiated with ultraviolet rays of mJ / cm 2 and developed with a 2.38% aqueous solution of tetramethylammonium hydroxide (NMD-3; manufactured by Tokyo Ohka Kogyo Co., Ltd.) for 2 minutes. Show. Figure 1 (c)
In FIG. 3, the photo resist layer is removed using acetone to form a dummy layer. In FIG. 1D, a photoresist (OFPR8600-30c
p) is spin coated at 3000 rpm for 30 seconds and then 90 ° C.
Pre-baking is performed for 30 minutes to form a photoresist layer having a thickness of about 1 μm. Alternatively, the photoresist may be applied on the photoresist layer 3 without removing it. In FIG. 1 (e), ultraviolet rays of 72 mJ / cm 2 are irradiated through a photomask, NMD-3
Shows that the development was carried out for 1 minute. Then, while baking at 100 ° C. in a vacuum, far-ultraviolet rays are radiated at 3.6 J / cm 2 to cure the photoresist layer in the upper layer to make it insoluble in a developing solution and at the same time pass through the photoresist layer to remove PMGI in the lower layer. It was exposed to light to reduce the molecular weight of PMGI. FIG. 1 (f) shows that the developing solution is used again to selectively side-etch only the PMGI layer. Since the photoresist is not etched in this step, the pattern dimensions and accuracy of the photoresist are
Since it is kept as it is at the time of the first development, it becomes easy to control the pattern shape and dimensions with high accuracy. Since the molecular weight of PMGI is reduced by far-ultraviolet rays, PMGI is quickly dissolved in the developing solution, so that an undercut can be easily formed.

【0011】[0011]

【発明の効果】本発明によれば、アンダーカット量,パ
ターン形状および寸法の制御が容易な、高精度かつ高耐
熱性のリフトオフ用マスク材が作製できる。
According to the present invention, a highly accurate and highly heat resistant lift-off mask material can be produced in which the amount of undercut, pattern shape and dimension can be easily controlled.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例における構造の拡大断面図(但
し、拡大倍率は均一ではない)である。
FIG. 1 is an enlarged cross-sectional view of a structure according to an embodiment of the present invention (however, the magnification is not uniform).

【符号の説明】[Explanation of symbols]

1…基板、2…ポリイミド層、3…フォトレジスト層、
4…フォトレジスト層。
1 ... Substrate, 2 ... Polyimide layer, 3 ... Photoresist layer,
4 ... Photoresist layer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 府山 盛明 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Moriaki Fuyama 7-1-1 Omika-cho, Hitachi-shi, Ibaraki Hitachi Ltd. Hitachi Research Laboratory

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】基板上にダミー層のパターンを形成する工
程と,前記パターン上にレジストパターンを形成する工
程と,前記ダミー層のみを除去しレジストパターンを形
成する各工程とを含むことを特徴とするレジストパター
ン形成法。
1. A method comprising: forming a pattern of a dummy layer on a substrate; forming a resist pattern on the pattern; and forming a resist pattern by removing only the dummy layer. And a resist pattern forming method.
【請求項2】前記レジストパターンを硬化させる工程を
含むことを特徴とする請求項1記載のレジストパターン
形成法。
2. The method for forming a resist pattern according to claim 1, further comprising the step of curing the resist pattern.
【請求項3】前記レジストパターンを硬化させるため
に、光照射を用いる工程を含むことを特徴とする請求項
1又は2記載のレジストパターン形成法。
3. The method of forming a resist pattern according to claim 1, further comprising the step of using light irradiation to cure the resist pattern.
【請求項4】前記光照射に、遠紫外線を用いる工程を含
むことを特徴とする請求項1,2又は3記載のレジスト
パターン形成法。
4. The method for forming a resist pattern according to claim 1, further comprising the step of using deep ultraviolet rays for the light irradiation.
【請求項5】前記ダミー層が、フォトレジストと混合層
を形成しない物質を用いる工程を含むことを特徴とする
請求項1,2,3,4又は5記載のレジストパターン形
成法。
5. The method of forming a resist pattern according to claim 1, wherein the dummy layer includes a step of using a substance that does not form a mixed layer with a photoresist.
【請求項6】前記ダミー層が、フォトレジストと混合層
を形成しない樹脂を用いることを特徴とする請求項1,
2,3,4又は5記載のレジストパターン形成法。
6. The resin according to claim 1, wherein the dummy layer uses a resin that does not form a mixed layer with a photoresist.
A method for forming a resist pattern according to 2, 3, 4 or 5.
【請求項7】前記ダミー層が、ポリイミドイミド樹脂,
ポリジメチルグルタルイミド(PMGI),ポリメチルメタク
リレート(PMMA)ポリメチルイソプロピルケトン
(PMIPK)のうち少なくとも一つからなることを特
徴とする請求項1,2,3,4,5又は6記載のレジス
トパターン形成法。
7. The dummy layer comprises a polyimide-imide resin,
7. The resist pattern according to claim 1, comprising at least one of polydimethylglutarimide (PMGI) and polymethylmethacrylate (PMMA) polymethylisopropylketone (PMIPK). Forming method.
JP5148860A 1993-06-21 1993-06-21 Resist pattern formation method Pending JPH07142323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5148860A JPH07142323A (en) 1993-06-21 1993-06-21 Resist pattern formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5148860A JPH07142323A (en) 1993-06-21 1993-06-21 Resist pattern formation method

Publications (1)

Publication Number Publication Date
JPH07142323A true JPH07142323A (en) 1995-06-02

Family

ID=15462364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5148860A Pending JPH07142323A (en) 1993-06-21 1993-06-21 Resist pattern formation method

Country Status (1)

Country Link
JP (1) JPH07142323A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111856888A (en) * 2020-07-03 2020-10-30 儒芯微电子材料(上海)有限公司 Method for enhancing photoetching resolution of dense pattern

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111856888A (en) * 2020-07-03 2020-10-30 儒芯微电子材料(上海)有限公司 Method for enhancing photoetching resolution of dense pattern
CN111856888B (en) * 2020-07-03 2023-06-23 儒芯微电子材料(上海)有限公司 Method for enhancing photoetching resolution of dense graph

Similar Documents

Publication Publication Date Title
US5858620A (en) Semiconductor device and method for manufacturing the same
US4568631A (en) Process for delineating photoresist lines at pattern edges only using image reversal composition with diazoquinone
JPH06267843A (en) Pattern forming method
US5304453A (en) Method for preparing resist patterns through image layer transfer to a receiver substrate, via a photo-hardening organic liquid adhesive, with subsequent oxygen reactive ion etching
JP2994501B2 (en) Pattern formation method
JPH07142323A (en) Resist pattern formation method
JP3330214B2 (en) Method of forming multilayer resist pattern and method of manufacturing semiconductor device
JPH0334053B2 (en)
JPH02156244A (en) Pattern forming method
US5275913A (en) Method for preparing resist patterns utilizing solvent development with subsequent resist pattern transfer, via a photo-hardening liquid adhesive, to a receiver substrate and oxygen reactive ion etching
JPH11204414A (en) Pattern formation method
JPH02181910A (en) Formation of resist pattern
JPS6156867B2 (en)
JPH07310169A (en) Pattern forming method
KR100928513B1 (en) Manufacturing method of semiconductor device
JPH0385544A (en) Resist pattern forming method
JPH0458170B2 (en)
JPH10333340A (en) Forming method of resist pattern
JP2713061B2 (en) Method of forming resist pattern
JPH03101218A (en) Formation of resist pattern
JPS6040184B2 (en) Manufacturing method of semiconductor device
JPS6119128A (en) Pattern forming process
CN116931390A (en) Stripping method
JP3185933B2 (en) Forming resist layer for processing
JPS646448B2 (en)