JPS6086543A - Formation of micropattern - Google Patents

Formation of micropattern

Info

Publication number
JPS6086543A
JPS6086543A JP19426883A JP19426883A JPS6086543A JP S6086543 A JPS6086543 A JP S6086543A JP 19426883 A JP19426883 A JP 19426883A JP 19426883 A JP19426883 A JP 19426883A JP S6086543 A JPS6086543 A JP S6086543A
Authority
JP
Japan
Prior art keywords
film
photoresist
pattern
lift
deposited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19426883A
Other languages
Japanese (ja)
Inventor
Koji Yamada
宏治 山田
Michiaki Hashimoto
橋本 通晰
Nobuo Hasegawa
昇雄 長谷川
Toshihiko Tanaka
稔彦 田中
Nobuo Miyamoto
信雄 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP19426883A priority Critical patent/JPS6086543A/en
Publication of JPS6086543A publication Critical patent/JPS6086543A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/008Azides
    • G03F7/012Macromolecular azides; Macromolecular additives, e.g. binders

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Weting (AREA)

Abstract

PURPOSE:To enable formation of a micropattern of a superconductive device through a lift-off method using a pattern by forming a photoresist film having phenolic OH groups high in UV absorption in only one time on a substrate, and developing it in only one time to form a pattern. CONSTITUTION:An SiO film is vapor-deposited on a silicon wafer substrate 21 in vacuum, and after deposition of an aluminum plate on this film, a photoresist film 25 having phenolic OH groups, such as p-hydroxystyrene. The film 25 contains a equimolar condensate of 3-(azidostyryl)-5,5'-dimethyl-2-cyclohexen-1-one or the like aromatic azido compd. having an aldehyde group, and isophorone. The desired parts of this film 25 are exposed to UV light of 300-450nm wavelengths to render the exposed parts hardly soluble, and the unexposed parts are eluted with an alkaline soln. to form a pattern having an inverted trapezoid section. A superconductive thin film 24 is vapor-deposited by using this pattern as mask, and the remaining film 25 and the film 24 overlying thereon are removed by the lift-off method. As a result, a micropattern film 24 can be obtained with high- precision size.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は微細パターンの形成法に関し、詳しくは、リフ
トオフ法によって、従来よりrよるかに容易に微細パタ
ーンを高精度で形成し得る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method of forming a fine pattern, and more particularly, to a method of forming a fine pattern with high precision using a lift-off method, which is much easier than conventional methods.

〔発明の背景〕[Background of the invention]

リフトオフ法によシ形成される素子としては、超電導デ
バイス、G aAs F h T% S t L F3
 I 、磁気バブルメモリの電極および配線パターンが
ある。
Elements formed by the lift-off method include superconducting devices, GaAs F h T% S t L F3
I. There are electrodes and wiring patterns of magnetic bubble memory.

例えば、超電導デバイスを応用したスイッチング素子は
、スイッチング時間や消費電力が81半導体素子に比べ
てそれぞれ2桁優れた性能を有し、高速論理、メモリ素
子として期待されている。
For example, switching elements using superconducting devices have two orders of magnitude better switching time and power consumption than 81 semiconductor elements, and are expected to be used as high-speed logic and memory elements.

この超電導デバイスのパターン形成は、リフトオフによ
り形成される。このプロセスの形成条件は、超電導デバ
イスの特性劣下を防止するために70C以下の温度で形
成している。
The pattern of this superconducting device is formed by lift-off. The formation conditions for this process are at a temperature of 70C or lower to prevent deterioration of the characteristics of the superconducting device.

また、超電導デバイスのパターン形成をするためのリフ
トオフマスクとしては、従来、二層レジストステンシル
マスク、Atステンシルマスク、クロルベンゼン浸漬に
よるレジストステンシルマスク等が用いられている。
Furthermore, as a lift-off mask for patterning a superconducting device, a two-layer resist stencil mask, an At stencil mask, a chlorobenzene immersion resist stencil mask, etc. have been conventionally used.

第1 図(a)〜(e) K二層−レジストステンシル
マスクを用いたリフトオフ工程の一例を示す。
FIGS. 1(a) to (e) show an example of a lift-off process using a K double-layer resist stencil mask.

まず、第1図(a)に示す様に、所望パターンをその上
に形成すべき基板11の表面上に、現像液に対する溶解
度が異なるMlおよび第2のホトレジスト$12.13
ft:積層に形成する。70r。
First, as shown in FIG. 1(a), Ml and a second photoresist having different solubility in a developer are placed on the surface of a substrate 11 on which a desired pattern is to be formed.
ft: Formed in a laminated manner. 70r.

30分間のプリベーク後、ホトマスクを介して上記第2
のホトレジ膜13に選択的に露光し、現f象して第1図
(b)に示す様に第2のホトレジスト膜13の所望部分
を除去する。この際使用した現像液は、第1のホトレジ
スト膜を溶解しないので、第2のホトレジスト膜の所望
部分のみが選択的に除去される。つぎに、第1のホトレ
ジストのみに現像できる現像液を用かで、第1のホトレ
ジストJlif12の露出された部分を除去する。この
際、オーバ現像を行ってサイドエッチを生じさせ、第1
図(C)に示す様に第2のホトレジスト膜13による庇
を形成する。
After pre-baking for 30 minutes, apply the second layer through a photomask.
The second photoresist film 13 is selectively exposed to light, and a desired portion of the second photoresist film 13 is removed as shown in FIG. 1(b). Since the developer used at this time does not dissolve the first photoresist film, only desired portions of the second photoresist film are selectively removed. Next, the exposed portion of the first photoresist Jlif12 is removed using a developer capable of developing only the first photoresist. At this time, over-development is performed to cause side etching, and the first
As shown in Figure (C), an eave is formed using a second photoresist film 13.

次に、パターンを形成すべき材料、たとえば超電導膜1
4を真空蒸着法などによって全面蒸着する。
Next, the material on which the pattern is to be formed, for example, the superconducting film 1
4 is deposited on the entire surface by a vacuum deposition method or the like.

しかし、第2のホトレジスト膜13の庇が形成されてい
るので、蒸着された超電導膜1ルは、庇の裏側には到達
せず、その結果、第1図(d)に示した様に、被着され
た超電導膜14は連続した膜とは成らず、裏板11およ
び第2のホトレジ膜)I113上に、それぞれ分離して
被着される。つぎに上記第1のホトレジスト膜12をそ
の上に被着されている第2のホトレジスト膜13および
超電導膜14のみが残シ、超電導膜のパターンが得られ
る。
However, since the eaves of the second photoresist film 13 are formed, the deposited superconducting film 1 does not reach the back side of the eaves, and as a result, as shown in FIG. 1(d), The deposited superconducting film 14 does not form a continuous film, but is separately deposited on the back plate 11 and the second photoresist film I113. Next, only the second photoresist film 13 and the superconducting film 14 on which the first photoresist film 12 is deposited remain, and a superconducting film pattern is obtained.

リフトオフ法は、パターンを精度よく形成できるという
利点を有しているが、上fl+Eの様に、二種類のホト
レジスト膜を積層して被潰し、現像′t−2回行なわな
ければならないため、実用上極めて煩雑であり−よりm
便な方法が強く要求されている。
The lift-off method has the advantage of being able to form patterns with high precision, but it is not practical because it requires two types of photoresist films to be laminated and crushed, and then developed 't-2 times, as shown in fl+E above. Above all, it is extremely complicated.
A convenient method is strongly required.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記従来の問題を解決し、パター/稍
度がよく、かつ極めて容易に形成できる微細パターンの
形成方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned conventional problems and provide a method for forming a fine pattern that has good pattern/consistency and can be formed extremely easily.

本発明の他の目的は、ただ一種類のホトレジスト膜を使
用し、現像を1回行なうだけの極めて操作が容易なリフ
トオフ法を提供することである。
Another object of the present invention is to provide a lift-off method that is extremely easy to operate, using only one type of photoresist film and requiring only one development.

〔発明のa要〕[A essential point of the invention]

上記目的を達成するための本発明の構成は、紫外光(波
長300〜450ftm)の吸収が極めて大きいホトレ
ジスト膜に光を照射して現像することによって断面形状
が逆台形型のホトレジストパターンを形成し、これを用
いてリフトオフを行うものである。
The structure of the present invention for achieving the above object is to form a photoresist pattern having an inverted trapezoidal cross-sectional shape by irradiating and developing a photoresist film that has extremely high absorption of ultraviolet light (wavelength: 300 to 450 ftm). , which is used to perform lift-off.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

上記の様に、従来のりフトオフ法においては、現慮液に
対する溶解度の異なる二種類のホトレジストやAtとホ
トレジストの二層から成る。いわゆるAtステンシル、
クロルベンゼン浸漬法によるレジストステンシルマスク
等を用い、現像あるいは溶解を二回行なうなど、煩雑な
工程が必要であった。これは、残すべき金属膜と除去す
べき金属膜が連続せずに分離されて形成きれる様に庇を
形成するためである。したがって、第2図に示す様に、
上辺が下辺よシ大きい、逆台形状の断面形状を持ったホ
トレジストパターン25を、形成することが出来れば金
属膜24は連続せずに分離して形成され、ホトレジスト
1liJ25をその上の金属膜24とともに除去するこ
とによって、基板21のみに金属膜24を残することが
でき、金属膜24から成る微細パターンが形成される。
As described above, the conventional lift-off method consists of two types of photoresists having different solubility in the existing solution, or two layers of At and photoresist. So-called At stencil,
Complicated steps were required, such as using a resist stencil mask using a chlorobenzene dipping method and performing development or dissolution twice. This is to form the eaves so that the metal film to be left and the metal film to be removed can be separated and formed without being continuous. Therefore, as shown in Figure 2,
If it is possible to form a photoresist pattern 25 having an inverted trapezoidal cross-sectional shape where the upper side is larger than the lower side, the metal film 24 will not be continuous but will be formed separately, and the photoresist 1liJ25 will be separated from the metal film 24 above it. By removing the metal film 24 at the same time, the metal film 24 can be left only on the substrate 21, and a fine pattern made of the metal film 24 is formed.

従来、上記の様な逆台形の断面形状を持つホトレジスト
パターンが形成できなかつたため、溶解度の異なる二種
類の膜などを使用して庇を形成したのである。
Conventionally, it was not possible to form a photoresist pattern with an inverted trapezoidal cross-sectional shape as described above, so two types of films with different solubility were used to form the eaves.

本発明は、フェノール性水酸基を有するポリマーic6
る種の芳香族アジド化合物を添加して形成したホトレジ
ストtネガmVシストとして使用することによって、二
種類のホトレジストを使用することがなく、ただ−回の
現@によって断面形状が逆台形型のホトレジストパター
ン(以下リフトオフマスクと呼ぶ)を形成するものであ
る。
The present invention is a polymer IC6 having a phenolic hydroxyl group.
By using a photoresist formed by adding various types of aromatic azide compounds as negative mV cysts, it is not necessary to use two types of photoresists, and a photoresist with an inverted trapezoidal cross-sectional shape can be created by simply adding different kinds of aromatic azide compounds. This is to form a pattern (hereinafter referred to as a lift-off mask).

すなわち、例えば、ヒドロキシスチレンの重合体、共重
合体等、フェノール性水酸基を有する高分子化合物に芳
香族アジド化合物を添加したホトレジストに紫外光を照
射すると、光化学反応が生じて被照部の溶解度は低下し
、上記ホトレジストはネカ型レジストとしての特性を示
す。
In other words, when UV light is irradiated on a photoresist prepared by adding an aromatic azide compound to a polymeric compound having phenolic hydroxyl groups, such as a polymer or copolymer of hydroxystyrene, a photochemical reaction occurs and the solubility of the irradiated area decreases. The photoresist exhibits characteristics as a negative type resist.

しかし、上記ホトレジストは紫外光を極めてよく吸収す
るために厚さ方向における照射光の減衰が非常に大きく
、その結果、完全に不溶化されるのは表面層のみで、深
部に成るにしたがって不溶化の程度は小さく成シ、溶解
度は大きくなる。
However, since the above-mentioned photoresist absorbs ultraviolet light extremely well, the attenuation of the irradiated light in the thickness direction is extremely large.As a result, only the surface layer is completely insolubilized, and the degree of insolubilization increases as the depth increases. The smaller the size, the greater the solubility.

この様な状態で現像を行なうと、被照射部分の表面層は
、完全に不溶化されているために溶解しないが、上記の
様に、下層になるにしたがって、溶解度が次第に大きく
なるため、現像の進行に伴って、被照射部分の下層にあ
る未反応部分が次第に除去され、第2図に示した様に、
逆台形型の断面形状を有するリフトオフマスク25が形
成される。ホトレジストの断面形状、すなわち、す7ト
オフマスクの下辺の長さは、現像処理によって制御し、
所望の値とすることができる。現像液の濃度を大にすれ
ば、下層のエッチが増して下辺の長さが小さく成シ、現
像液の濃度を一定にした場合には、現像時間か長い程、
下辺の長さは短かく成る。
If development is carried out in this state, the surface layer of the irradiated area will not dissolve because it has been completely insolubilized, but as mentioned above, the solubility gradually increases as it goes to the lower layer, so the development process will be delayed. As the process progresses, the unreacted portion beneath the irradiated area is gradually removed, as shown in Figure 2.
A lift-off mask 25 having an inverted trapezoidal cross-sectional shape is formed. The cross-sectional shape of the photoresist, that is, the length of the lower side of the photoresist mask, is controlled by the development process.
It can be any desired value. If the concentration of the developer is increased, the etch of the lower layer will increase and the length of the bottom side will become smaller.If the concentration of the developer is kept constant, the longer the development time, the longer the development time will be.
The length of the lower side becomes shorter.

本発明で使用するホトレジストは、フェノール性水酸基
を含有し、波長400〜450nmの紫外光の吸収が極
めて大きいこと、および、アルカリ水溶液系の現像液に
よって容易に現像され、鮮鋭な微細パターンが形成でき
ること、という二つの条件を満足することが必要である
The photoresist used in the present invention contains phenolic hydroxyl groups, has extremely high absorption of ultraviolet light with a wavelength of 400 to 450 nm, and can be easily developed with an alkaline aqueous developer to form a sharp fine pattern. It is necessary to satisfy the following two conditions.

この様な条件を満足する様なホトレジストとして、フェ
ノール性水酸基を持ったポリマーに、感光性組成物とし
て、アルデヒド基を有する芳香族アジド化合物としてイ
ノホロンとの等モル縮合体であるアジド化合物およびア
ルカリ可溶性高分子化合物ヲ含むことを特長とする。縮
合体であるアジド化合物の量は、高分子化合物成分に対
して10〜30重量%が好ましい。縮合体を形成する芳
香族アジド化合物としてはアジドベンズアルデヒド、ア
ジドベンズアルデヒドが用いられる。
As a photoresist that satisfies these conditions, a polymer having a phenolic hydroxyl group is used as a photosensitive composition, an aromatic azide compound having an aldehyde group, an azide compound which is an equimolar condensate with inophorone, and an alkali-soluble azide compound. It is characterized by containing a polymer compound. The amount of the azide compound, which is a condensate, is preferably 10 to 30% by weight based on the polymer compound component. As the aromatic azide compound forming the condensate, azidobenzaldehyde and azidobenzaldehyde are used.

これらの化合物として得られる縮合体としては、3−(
4’−アシドスチリル)−5,5−ジメチル−2−シク
ロヘキセンー1−オン及び3−(4−p−アジドフェニ
ル−1,3−ブタジェニル)−5,5−シナメチル−2
−シクロヘキセンー1−オンから成る群から、少なくと
も一種の縮合体が含有していること’t%長とする。高
分子成分としては、フェノール性水酸基を有するものが
好ましく、例工ば、ヒドロキシスチレンの重合体、共重
合体が用いられる。
The condensates obtained as these compounds include 3-(
4'-acidostyryl)-5,5-dimethyl-2-cyclohexen-1-one and 3-(4-p-azidophenyl-1,3-butadienyl)-5,5-cinnamethyl-2
-Contains at least one condensate from the group consisting of cyclohexen-1-one. The polymer component preferably has a phenolic hydroxyl group, such as a hydroxystyrene polymer or copolymer.

現像液としては、たとえば、ケイ酸ナトリウム水溶液、
水酸化テトラメチルアンモニウム、リン酸三ナトリウム
水溶液、水酸化ナトリウム水溶液などが用いられる。
As the developer, for example, a sodium silicate aqueous solution,
Tetramethylammonium hydroxide, trisodium phosphate aqueous solution, sodium hydroxide aqueous solution, etc. are used.

これらの現像液の液温および現像時間は、使用された現
像液の種類、ホトレジストの種類や膜厚など、多くの因
子によって著しく異なることはい−うまでもないが、そ
れぞれ、elぼlO〜40Cおよび10〜600秒程度
であシ、濃度は、はぼ0.1〜10重量%程度である。
It goes without saying that the temperature and development time of these developers vary significantly depending on many factors such as the type of developer used, the type and film thickness of the photoresist, but The time is about 10 to 600 seconds, and the concentration is about 0.1 to 10% by weight.

ホトレジストの膜厚は、使用されるホトレジストの種類
や目的に応じて異なるが、#1ぼ0.5〜3μm程度の
範囲に選ばれる。
The film thickness of the photoresist varies depending on the type of photoresist used and the purpose, but it is selected in the range of about 0.5 to 3 μm for #1.

これらのホトレジスドノ漠に対する露光量は、ホトレジ
ストの種類や、形成すべきホトレジストの断面形状によ
って適宜選択される。一般に露光量は、はぼ5〜100
mJ/cIn2の範囲から選ばれ、露光時間は、はぼ1
〜60秒である。
The amount of exposure to these photoresists is appropriately selected depending on the type of photoresist and the cross-sectional shape of the photoresist to be formed. Generally, the exposure amount is about 5 to 100
The exposure time was selected from the range of mJ/cIn2.
~60 seconds.

以下には、実施例について詳細に説明する。Examples will be described in detail below.

〔発明の実施例〕[Embodiments of the invention]

実施例工 高分子成分p−ヒドロキステレンのホモ重合体、(丸善
石油製マルゼンM)樹脂20gと3−(4−p −7シ
)’フェニルー1.3−ブタジェニル)−5,5−ヅメ
ルー2−シクロヘキセン−1−オン4gt−シクロヘキ
サノン80g1c溶解してホトレジスト溶液を調合作製
した。
Example: Polymer component p-hydroxysterene homopolymer, (Maruzen M manufactured by Maruzen Oil Co., Ltd.) resin 20g and 3-(4-p-7)'phenyl-1,3-butadienyl)-5,5-dumeru A photoresist solution was prepared by dissolving 4 g of 2-cyclohexen-1-one and 80 g of t-cyclohexanone and 1 c.

シリコンウェー八基板上に真空蒸着によりsi。Si was deposited on a silicon wafer substrate by vacuum evaporation.

全膜厚2QQnm被着し、この上にカップリング材とし
てA4を膜厚5m被着し、この後ホトレジスト溶液を回
転塗布して厚さ1μmの厚さに形成しプリベーク処理を
70C,30分間で行った後、出力300Wの高圧水銀
ランプを光源に用い、波長436nm(g−目ne )
光強度7 m W /cm ”で15秒間所望パターン
の露光を行った。露光された上記ホトレジスト膜を水酸
化テトラメチルアンモニウムの4%水溶液で90秒間現
像した。この結果、上辺および下辺の長さが、それぞれ
ほぼ5μmおよび3μmの◇断面形状が逆台形であるホ
トレジストパターンを得た。これをリフトオフマスクと
して厚さ0.3μmの超電導膜を真空蒸着法によって、
第2図に示したように被着した後、アセトン中にvaし
て、上記リフトオフマスクを、その上に被着されている
超電導膜とともに除去した結果、線幅2μmのストライ
プ状の超電導膜パターンが良好な精度で形成された。ま
た、リフトオフはきわめて容易に処理することができた
A total film thickness of 2QQnm was deposited, and on top of this a 5m thick film of A4 was deposited as a coupling material. After this, a photoresist solution was spin-coated to a thickness of 1 μm, and a prebaking process was performed at 70C for 30 minutes. After that, a high-pressure mercury lamp with an output of 300 W was used as a light source, and the wavelength was 436 nm (g-eye).
A desired pattern was exposed for 15 seconds at a light intensity of 7 mW/cm''.The exposed photoresist film was developed for 90 seconds with a 4% aqueous solution of tetramethylammonium hydroxide.As a result, the lengths of the top and bottom sides were However, photoresist patterns with a cross section of approximately 5 μm and 3 μm and an inverted trapezoid were obtained.Using this as a lift-off mask, a 0.3 μm thick superconducting film was deposited by vacuum evaporation.
After being deposited as shown in Figure 2, the lift-off mask was removed together with the superconducting film deposited on it by evaporation in acetone, resulting in a striped superconducting film pattern with a line width of 2 μm. was formed with good accuracy. Also, lift-off could be handled very easily.

実施例2 実施例1と同じ組成のホトレジストを用いて線幅2.5
μmの制御線から成る超電導論理デバイスのパターニン
グを行った。
Example 2 Using a photoresist with the same composition as in Example 1, the line width was 2.5.
We patterned a superconducting logic device consisting of micrometer control lines.

第3図に、その断面図を示す。FIG. 3 shows its cross-sectional view.

基板には、直径50mmφ、厚さ350μm。The substrate has a diameter of 50 mmφ and a thickness of 350 μm.

(100)のSi基板31を用いた。なお、si基板上
には(50Qnmの熱酸化膜が形成しである。
A (100) Si substrate 31 was used. Note that a thermal oxide film of 50 Qnm was formed on the Si substrate.

このSi基板31上にNb膜をDC高速スパッタ法によ
シ膜厚300nm被着しグランドプレーン32とした。
A 300 nm thick Nb film was deposited on this Si substrate 31 by DC high speed sputtering to form a ground plane 32.

次に陽極酸化法にょシNbの表面にNbzOs 33を
膜厚150 nmに形成し、次に、層間絶縁膜として5
ioa4を膜厚200nm被着し、1絖いて、カップリ
ング相としてAtを膜厚5nmに被着した。次に下部t
li4Mパターン形成用のリフトオンマスクの作製条件
について述べる。
Next, NbzOs 33 was formed to a thickness of 150 nm on the surface of the Nb by anodization, and then 55 nm was formed as an interlayer insulating film.
IOA4 was deposited to a thickness of 200 nm, and after one layer, At as a coupling phase was deposited to a thickness of 5 nm. Next, the bottom t
The manufacturing conditions of a lift-on mask for forming a li4M pattern will be described.

実施例1と同じ組成のホトレジストヲ下地34上に1μ
mの厚さに形成し、次に、空気中において70G、30
分間のプリベーク処理を行った。次に、波長436nm
(g−1ine)、光強度7mW//m2で15秒間所
望パターンの露光を行った。露光後の現像は、水酸化テ
トラメチルアンモニウムの4%水溶液で90秒間現像し
た。形成されたレジストリフトオフマスクのアンダカッ
ト幅(上辺のパターンエツジに対して下辺のパターンの
くい込み量は1μmであった。次に、リフトオフマスク
を形成したSI基板31を真空槽内に挿入し5iOs4
の表面に吸着した水分や汚れを除去するためv:、Ar
でスパッククリーニングを行った。
A photoresist having the same composition as in Example 1 was applied on the base layer 34 at a thickness of 1 μm.
m thickness, and then heated at 70G and 30cm in air.
A pre-bake process was performed for 1 minute. Next, the wavelength is 436 nm.
(g-1ine), and a desired pattern was exposed for 15 seconds at a light intensity of 7 mW//m2. Development after exposure was carried out for 90 seconds using a 4% aqueous solution of tetramethylammonium hydroxide. The undercut width of the formed resist lift-off mask (the amount of penetration of the pattern on the lower side with respect to the pattern edge on the upper side was 1 μm. Next, the SI substrate 31 on which the lift-off mask was formed was inserted into a vacuum chamber and 5iOs4
v:, Ar to remove moisture and dirt adsorbed on the surface of
I did some spack cleaning.

この時の条件はrf出力5W%Ar圧力3Xi Q−”
porr、スパッタ時間3分である。次に、真空槽内の
真空度を5X10−’TorrK減圧した後に、抵抗加
熱ヒータによ、DAul Pb、Inの順に積層蒸着を
行った。膜厚はそれぞれ4nm。
The conditions at this time are rf output 5W% Ar pressure 3Xi Q-"
porr, sputtering time is 3 minutes. Next, after reducing the degree of vacuum in the vacuum chamber to 5×10 −' TorrK, DAul Pb and In were deposited in this order using a resistance heater. The thickness of each film is 4 nm.

160nm、36nmである。蒸着後、表面保護膜を形
成するために、真空槽内に02カスを導入し1気圧にし
てから、真空槽内の温度を60Cに保持し60分間の酸
化処理を行った。次に、真空槽よシ基板31を取シ出し
て、アセトン中でリフトオフを行った。この処理によっ
て表面に保膿膜が形成された下部電極35のみが残され
リフトオフマスクおよびその上に被着された蒸着膜は完
全に除去された。次に、ウィンド孔37用のレジストマ
スクを下部電極パターンと同様に形成し、再び、真空槽
においてArスパッタクリーニングを行ツタ後、SlO
を膜厚250 n m被/11シ、連続してAtを膜厚
5nm被着した。リフトオフは前述した下部電極と同様
な方法で処理しウィンドウ孔37を形成した。次に上部
電極用のリフトオフマスクを下部電極と同様に形成し真
空槽において、下t[極35面上を02カスによるスパ
ッタクリーニングを行った。諸条件はベース電極と同様
である。引続いて、トンネルバリアを形成するために0
2ガスを導入し、0□ガス圧力2X10−2Torr、
 r f出力5W、rf酸化時間15分間を行ないトン
ネルバリア層36を形成した。次に、真空槽内の真空度
5X1(V7Torrに減圧した後、抵抗加熱ヒータに
よシPb−AU−Pbt同時蒸着によシ膜厚をそれぞれ
200nm、lQnm。
160 nm and 36 nm. After the vapor deposition, in order to form a surface protective film, 02 scum was introduced into the vacuum chamber and the pressure was raised to 1 atmosphere, and then the temperature inside the vacuum chamber was maintained at 60 C and oxidation treatment was performed for 60 minutes. Next, the substrate 31 was taken out of the vacuum chamber and lifted off in acetone. As a result of this treatment, only the lower electrode 35 on which the purulent-retaining film was formed was left, and the lift-off mask and the vapor deposited film deposited thereon were completely removed. Next, a resist mask for the window hole 37 is formed in the same manner as the lower electrode pattern, and Ar sputter cleaning is performed again in the vacuum chamber.
At a thickness of 250 nm/11 times, At was continuously deposited to a thickness of 5 nm. Lift-off was performed in the same manner as for the lower electrode described above to form window holes 37. Next, a lift-off mask for the upper electrode was formed in the same manner as for the lower electrode, and sputter cleaning was performed on the lower t[pole 35 surface with 02 residue in a vacuum chamber. Conditions are the same as for the base electrode. Subsequently, 0 to form a tunnel barrier.
2 gases were introduced, 0□ gas pressure 2X10-2 Torr,
The tunnel barrier layer 36 was formed using an rf output of 5 W and an rf oxidation time of 15 minutes. Next, after reducing the pressure in the vacuum chamber to a degree of vacuum of 5×1 (V7 Torr), Pb-AU-Pbt were simultaneously vapor-deposited using a resistance heater to give film thicknesses of 200 nm and 1Q nm, respectively.

200nm被着し、引続いて、仁の上に連続してSiO
を保護膜として膜厚1100r1被着した。
200 nm deposited, followed by continuous SiO on top of the layer.
A film thickness of 1100 r1 was deposited as a protective film.

リフトオフ処理は前述の下部電極と同様な方法で行ない
上部電極38と保護膜5iO39を形成した。次に、層
間絶縁膜用のリフトオフマスクを下部電極パターンと同
様な方法で形成し、再び、Arによるスパッタクリーニ
ングを行った後、S10を膜厚600nm被着し、連続
してAtを膜厚5nm被着した。リフトオフは前述した
下部電極と同様な方法で形成し眉間絶縁膜40を形成し
た。
The lift-off process was performed in the same manner as for the lower electrode described above to form the upper electrode 38 and the protective film 5iO39. Next, a lift-off mask for the interlayer insulating film was formed in the same manner as the lower electrode pattern, and after sputter cleaning with Ar again, S10 was deposited to a thickness of 600 nm, and At was continuously deposited to a thickness of 5 nm. It was covered. The lift-off was formed in the same manner as the lower electrode described above, and the glabellar insulating film 40 was formed.

次に、制御線のリフトオフマスクを膜厚1.5μmK設
定し、塗布後、空気中において70C。
Next, a lift-off mask for the control line was set to a film thickness of 1.5 μmK, and after coating, it was heated at 70C in air.

30分間のプリベークを行った。次に、最小線幅2.5
μmのラインベアから成る制御線パターンを、波長43
5nmにおける光強度7 m W / cm ” T2
5秒間露光を行った。露光後の現像処理は下部電極のリ
フトオフマスクの形成と同じ組成を用いて120秒間の
現@を行った。形成されたリフトオフマスクのアンダー
カット幅は、上辺のエラ/に対して下辺のエツジのくい
込み量は、0.5μmでおった。再び、真空槽内へ挿入
し、Arによるスパッタクリーニング後、5 X 10
−’ l’orr以下で、Pb、ALII Inの順で
積層蒸着を行った。
Prebaking was performed for 30 minutes. Next, the minimum line width is 2.5
A control line pattern consisting of a line conductor with a wavelength of 43 μm is
Light intensity at 5 nm 7 m W/cm” T2
Exposure was performed for 5 seconds. The development process after exposure was carried out for 120 seconds using the same composition as for forming the lift-off mask of the lower electrode. The undercut width of the formed lift-off mask was such that the amount of penetration of the edge on the bottom side was 0.5 μm with respect to the gill/edge on the top side. Insert it into the vacuum chamber again, and after sputter cleaning with Ar, 5 x 10
-'l'orr or less, Pb and ALII In were deposited in this order.

膜厚はそれぞれ540J1m% 1(1111% 25
0nmである。被着後、真壁槽から取り出して前述の下
部電極、上部電極と同様な方法でアセトン中でリフトオ
フを行ない制御線41を形成した。最後に、保護膜とし
てSiOと膜厚1.3μmの厚さに被着しリフトオフ法
によ多形成した。
The film thickness is 540J1m% 1 (1111% 25
It is 0 nm. After the deposition, it was taken out from the Makabe tank and lifted off in acetone in the same manner as the lower and upper electrodes described above to form a control line 41. Finally, SiO was deposited as a protective film to a thickness of 1.3 μm and formed by a lift-off method.

〔発明の効果〕〔Effect of the invention〕

以上、本実施例で述べた様に、本発明によるホトレジス
トをリフトオフマスクとして用いることによシ超電導論
理デバイスを形成した結果、最小パターン寸法2.5μ
mのラインベアからなる制御線パターンが段差上でもほ
とんど細シが見られず、きわめて寸法精度の高い超電導
電極パターンが再現性よく得られた。
As described above in this example, as a result of forming a superconducting logic device by using the photoresist according to the present invention as a lift-off mask, the minimum pattern size was 2.5 μm.
A superconducting electrode pattern with extremely high dimensional accuracy was obtained with good reproducibility, with almost no fine lines observed even on steps in the control line pattern consisting of line bears of m.

また、本発明のホトレジパターンをリフトオフ用のマス
クとして用いれば最小パターン寸法1μmnのライ/ベ
アも作製することがリノらかとなり低温プロセスにおけ
る微細パターンの形成が安定に出来る様に成った。さら
に、本発明のホトレジストは下地(反射率の異なるパタ
ーン構成)の影響を受けず、前述した様に微細パターン
が形成できること、および70Cのグリベーク処理下で
も下地との接着性がきわめて良好であることが明らかと
なった。また、ホトマスク基板もソーダライムガラスが
使用出来るため、マスク化のコストも低減した。さらに
、本発明のプロセスは、10:1縮小投影露光装置(a
PA)、5 : 1の縮小投影露光装置(R,PA)、
および1:1の投影露光装置(PA)にも適用した結果
、前述と同様に段差上でも細クリない、かつ、寸法精度
の高い微細パターンが形成を形成することが出来た。
Furthermore, if the photoresist pattern of the present invention is used as a mask for lift-off, it becomes possible to fabricate a lie/bare with a minimum pattern size of 1 μm, making it possible to stably form a fine pattern in a low-temperature process. Furthermore, the photoresist of the present invention is not affected by the substrate (pattern configurations with different reflectances), can form fine patterns as described above, and has extremely good adhesion to the substrate even under 70C Gribake treatment. became clear. Furthermore, since soda lime glass can be used for the photomask substrate, the cost of making a mask has been reduced. Furthermore, the process of the present invention can be applied to a 10:1 reduction projection exposure apparatus (a
PA), 5:1 reduction projection exposure apparatus (R,PA),
As a result of applying the method to a 1:1 projection exposure apparatus (PA), it was possible to form a fine pattern with high dimensional accuracy and no narrow holes even on steps, as described above.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(e)は従来のリフトオフ法の工程を示
す断面図、第2図は本発明の詳細な説明するための断面
図、第3図は本発明の一実施例における超電導デバイス
の断面図を示す。 11.21・・・基板、12,13,25・・・ホトレ
ジスト膜、14.24・・・超電導膜、31・・・基板
(siウェーハ、熱酸化膜も含む)、32・・・Nbグ
ランドブレーン、33・・・NbzOs 膜、34・・
・層間絶縁膜、35・・・下部電極(A u−P b−
I n )、36・・・トンネルバリア層、37川ウイ
ンド孔sio膜、38−・・上部電極(Pb−AU−P
b)、39・・・保腹膜(上部電極用)、4o・・・層
間絶縁膜sio。 41 ・・・制御線(P b−A u−P b )、4
2−・・保護光 1 口 第Z 図 第1頁の続き [相]発 明 者 1)中 稔 彦 国分寺市東恋ケ窪
1央研究所内 丁目28幡地 株式会社日立製作所中 丁目28幡地 株式会社日立製作所中
FIGS. 1(a) to (e) are cross-sectional views showing the steps of the conventional lift-off method, FIG. 2 is a cross-sectional view for explaining the present invention in detail, and FIG. 3 is a superconductor in one embodiment of the present invention. A cross-sectional view of the device is shown. 11.21...Substrate, 12,13,25...Photoresist film, 14.24...Superconducting film, 31...Substrate (including Si wafer and thermal oxide film), 32...Nb ground Brane, 33...NbzOs film, 34...
・Interlayer insulating film, 35...lower electrode (A u-P b-
I n ), 36... Tunnel barrier layer, 37 River window hole sio film, 38-... Upper electrode (Pb-AU-P
b), 39...peritoneal membrane (for upper electrode), 4o... interlayer insulating film sio. 41...Control line (Pb-Au-Pb), 4
2-...Protective light 1 Entrance Z Continuation of figure 1 page [Phase] Inventor 1) Minoru Naka Kokubunji City Higashikoigakubo 1 Central Research Institute Uchi-28 Hata Hitachi, Ltd. Naka-chome 28 Hata Hitachi, Ltd. Inside the factory

Claims (1)

【特許請求の範囲】 111) 微細ヘターンを形成すべき基板表面上に、フ
ェノール性水酸基を有するホトレジスト膜を形成させる
工程、 (2) 上記ホトレジスト膜の所望部に300〜450
0mの紫外光を照射して、被照射部分の溶解度を低下さ
せる工程、 (3)上記ホトレジスト膜を現像して非照射部分を除去
し、断面形状が逆台形であるホトレジパターンを形成す
る工程、 (4)微細パターンを形成すべき材料である蒸着膜を被
着させる工程、 (57上記ホトレジパターンをその上に被着されである
上記材料の膜とともに除去する工程、全含む微細パター
ン形成方法。 2、上記ホトレジストの感光成分は、アルデヒド基を有
する芳香族アジド化合物とインホロンとの等モル縮合体
であるアジド化合物及びアルカリ可溶性高分子化合物を
含むことを特徴とし、縮合体としては3−(アジドスチ
リル)−5゜5−ジメチル−2〜シクロへキセノ−1−
オン及び3−(4−アジドフェニル−1,3−(4−ア
ジドフエニルー1.3−ブタジェニル)−5,5−ジメ
チル−2−シクロヘキセンー1オンから成る群から選ば
れた少なくとも一種の縮3、高分子化合物であるフェノ
ール性水酸基に対し、感光性成分であるアジド化合物の
量は104、上記工程(υにおいて、60〜80Cでプ
リベは超電導薄膜であることを特徴とした微細パターン
形成方法。
[Claims] 111) A step of forming a photoresist film having phenolic hydroxyl groups on the surface of the substrate on which fine heternes are to be formed;
(3) developing the photoresist film to remove the non-irradiated areas to form a photoresist pattern having an inverted trapezoidal cross-sectional shape; , (4) a step of depositing a vapor deposited film of the material on which a fine pattern is to be formed, (57) a step of removing the photoresist pattern along with a film of the material deposited thereon; Method. 2. The photosensitive component of the photoresist is characterized in that it contains an azide compound that is an equimolar condensate of an aromatic azide compound having an aldehyde group and inholon, and an alkali-soluble polymer compound, and the condensate is a 3- (azidostyryl)-5゜5-dimethyl-2-cyclohexeno-1-
at least one condensed 3-one selected from the group consisting of A method for forming a fine pattern, characterized in that the amount of the azide compound, which is a photosensitive component, is 104 with respect to the phenolic hydroxyl group, which is a polymer compound, and the privet is a superconducting thin film at 60 to 80 C in the above step (υ).
JP19426883A 1983-10-19 1983-10-19 Formation of micropattern Pending JPS6086543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19426883A JPS6086543A (en) 1983-10-19 1983-10-19 Formation of micropattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19426883A JPS6086543A (en) 1983-10-19 1983-10-19 Formation of micropattern

Publications (1)

Publication Number Publication Date
JPS6086543A true JPS6086543A (en) 1985-05-16

Family

ID=16321796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19426883A Pending JPS6086543A (en) 1983-10-19 1983-10-19 Formation of micropattern

Country Status (1)

Country Link
JP (1) JPS6086543A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6286200B1 (en) * 1999-07-23 2001-09-11 International Business Machines Corporation Dual mask process for making second pole piece layer of write head with high resolution narrow track width second pole tip
KR100382754B1 (en) * 1996-10-31 2003-07-22 삼성전자주식회사 Memory device
CN114479020A (en) * 2022-02-22 2022-05-13 中国科学院化学研究所 Polymer semiconductor photoresist with side chain containing azide group, and preparation method and application thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100382754B1 (en) * 1996-10-31 2003-07-22 삼성전자주식회사 Memory device
US6286200B1 (en) * 1999-07-23 2001-09-11 International Business Machines Corporation Dual mask process for making second pole piece layer of write head with high resolution narrow track width second pole tip
US6655009B2 (en) * 1999-07-23 2003-12-02 International Business Machines Corporation Dual mask process for making second pole piece layer of multiple write heads with high resolution narrow track width second pole tip
CN114479020A (en) * 2022-02-22 2022-05-13 中国科学院化学研究所 Polymer semiconductor photoresist with side chain containing azide group, and preparation method and application thereof

Similar Documents

Publication Publication Date Title
US4692205A (en) Silicon-containing polyimides as oxygen etch stop and dual dielectric coatings
US7960097B2 (en) Methods of minimizing etch undercut and providing clean metal liftoff
CA1173689A (en) Electron beam exposed positive resist mask process
US6420271B2 (en) Method of forming a pattern
US4791046A (en) Process for forming mask patterns of positive type resist material with trimethylsilynitrile
JPH08203929A (en) Manufacture of semiconductor device
US5139922A (en) Method of making resist pattern
JPS6086543A (en) Formation of micropattern
JPH06267843A (en) Pattern forming method
US6797456B1 (en) Dual-layer deep ultraviolet photoresist process and structure
EP1166182B1 (en) Method for producing a pattern suitable for forming sub-micron width metal lines
US6015640A (en) Mask fabrication process
JP2610402B2 (en) Method of manufacturing T-shaped gate by double exposure
JPH0334053B2 (en)
JPH09167733A (en) Formation of pattern
JPH08272107A (en) Forming method for resist pattern
JPH02156244A (en) Pattern forming method
KR20010011000A (en) Forming method of capacitor pattern using double exposure
KR100274149B1 (en) Metal thin film patterning method
JPH03104113A (en) Formation of resist pattern
KR19980028359A (en) Manufacturing method of fine pattern of semiconductor device
Ong et al. A two‐layer photoresist process for patterning high‐reflectivity substrates
JPS646448B2 (en)
KR101037491B1 (en) Method for Forming Three-layered Photoresist Pattern of Semiconductor Device
JPH042183B2 (en)