JPS61185865A - Method for manufacturing electrode for alkaline storage battery - Google Patents

Method for manufacturing electrode for alkaline storage battery

Info

Publication number
JPS61185865A
JPS61185865A JP60026693A JP2669385A JPS61185865A JP S61185865 A JPS61185865 A JP S61185865A JP 60026693 A JP60026693 A JP 60026693A JP 2669385 A JP2669385 A JP 2669385A JP S61185865 A JPS61185865 A JP S61185865A
Authority
JP
Japan
Prior art keywords
electrode
substrate
active material
active matter
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60026693A
Other languages
Japanese (ja)
Inventor
Hideki Matsui
秀樹 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP60026693A priority Critical patent/JPS61185865A/en
Publication of JPS61185865A publication Critical patent/JPS61185865A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve conductivity of an electrode and utilization ratio of active matter, cyclic characteristic and high rate electric discharge performance by rolling a porous substrate in which powder condition active matter is charged to be predetermined thickness. CONSTITUTION:In manufacturing process of an electrode, water, binder and organic hollow bulb 1 applied by metal plating on its surface are mixed to produce slurry and it is applied on a metal sheet 2 and dried, and sintered in reduction atmosphere so that the metal on the organic hollow bulb surface becomes half melted to obtain porous substrate 3 as active matter retaining body, and powder type material 4 is directly filled in the substrate and the substrate is rolled to be a predetermined thickness. Then, an electrode can be manufactured without complicated chemical impregnation as in sintered type electrode, and as conductive core and conductive matrix are provided in the electrode, conductivity is improved and current distribution in the electrode is equalized, and excellent active matter utilizing ratio, high rate electric discharge characteristic and cyclic characteristic can be obtained.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は粉末状態の活物質を活物質保持体に充填してな
るアルカリ蓄電池用電極の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a method for manufacturing an electrode for an alkaline storage battery, which comprises filling an active material holder with a powdered active material.

(ロ)従来の技術 アルカリ蓄電池用電極に、一般に焼結式電極とペースト
式電極の二種類の電極が工ぐ用いられている。焼結式電
極は例えば二・フケル粉末を主成分とするスラIJ −
t−多数のパンチ穴が形成された金属シートの表面に塗
着し友後焼結して多孔質基板を得、該基板?活物質保持
体としてその細孔に二フケル塩溶液やカドミウム塩溶液
などの金属塩溶液を含浸し、mいてアルカリによって前
記金属塩全水酸化物に置換する工うな化学含浸操作によ
り活物質を活物質保持体内に充填して製造される。
(b) Prior Art Two types of electrodes are generally used for alkaline storage batteries: sintered electrodes and paste electrodes. A sintered electrode is, for example, a slaty IJ-based electrode whose main component is difluoride powder.
t-A porous substrate is obtained by coating the surface of a metal sheet with a large number of punched holes and sintering it. The active material is activated by a chemical impregnation operation in which the pores of the active material support are impregnated with a metal salt solution such as a difluoride salt solution or a cadmium salt solution, and then the metal salt is completely replaced with an alkali. Manufactured by filling a substance holder.

ニッケル陽極は主にこの焼結式電極が用いられている。This sintered electrode is mainly used as a nickel anode.

この製造方法は活物質保持体への金属塩溶液の含浸及び
チルカリによる置換などの複雑な工程?必要とし、まt
所定量の活物質を含浸する之めには前記操作を数回繰り
返し行なわなければならない之め、コストが高い、製造
所要時間が長い等の欠点がある。これに対し、ペースト
式電極は活物質粉末を直接バインダー及び水などと混合
してペーストとし、該ペースト?前記金属シートに堕着
後乾燥するだけで製造できる之め、製造工程が簡略化で
き生産性に優れtものである。しかしながら、焼結式電
極のようにt極内に焼結金属からなる導電マトリックス
金持たない友め導電性が悪く活物質の利用率が低いとい
う欠点があり、まタサイクル劣化も大きい。
Is this manufacturing method a complicated process such as impregnating the active material support with a metal salt solution and replacing it with chilukali? I need it.
In order to impregnate a predetermined amount of active material, the above-mentioned operation must be repeated several times, which has drawbacks such as high cost and long manufacturing time. On the other hand, in a paste type electrode, the active material powder is directly mixed with a binder, water, etc. to form a paste. Since it can be manufactured by simply drying it after being deposited on the metal sheet, the manufacturing process can be simplified and productivity is excellent. However, unlike the sintered electrode, it does not have a conductive matrix made of sintered metal in the t-electrode, so it has the disadvantage of poor conductivity and low utilization of the active material, and also suffers from significant cycle deterioration.

近年1発泡金属などの三次元的に連続した空孔勿有する
多孔質基板を活物質保持体とし、該活物質保持体内に活
物質粉末全直接あるいはバインダー、峻び水と混合して
ペースト状として充填してなる1!極が特開昭58−1
02463号公報及び特公昭56−37664号公報(
て於いて提案されている。この電極は活物*1粉末状態
で活物質保持体に充填できる定め調造が容易であり、′
!之活物質保持体が高多孔度で芯体全特に必要としない
ため、活物質の充tX量を増すことができエネルギー密
度が高くなるという利点?有している。しかし。
In recent years, a porous substrate having three-dimensionally continuous pores such as a foamed metal is used as an active material holder, and the active material powder is either directly placed in the active material holder or mixed with a binder and water to form a paste. Fill it up! The pole is JP-A-58-1
Publication No. 02463 and Japanese Patent Publication No. 56-37664 (
It is proposed in This electrode is easy to prepare and can be filled into an active material holder in the form of active substance*1 powder.
! The advantage is that the active material holder has high porosity and does not require the entire core, so the amount of tX filled with the active material can be increased and the energy density can be increased. have. but.

一方この1!極は芯体?持たないことから#!!電タブ
装着部の強度が弱ぐ集電性が不充分でjbり、[流分布
が集電タブ部付近に偏在化し局部的な充放電しかできな
いなどの欠点があり、ま友ハイレート放電の性能も劣っ
てい之。
On the other hand, this one! Is the pole the core? # from not having it! ! There are disadvantages such as the strength of the electric tab attachment part is weak, the current collection is insufficient, and the flow distribution is unevenly distributed near the current collecting tab, making it possible to charge and discharge only locally. It's also inferior.

し→ 発明が解決しようとする間助点 本発明は活物質保持体に活物質7粉末状態で充填して作
製する電極に於ける!極の導電性全向上させ、活物質利
用嶌、サイクル特性及びハイレート放電性能の向上kH
かろうとするものである。
→ While the invention is trying to solve the problem, the present invention relates to an electrode prepared by filling an active material holder with active material 7 in powder form! Completely improves electrode conductivity, improves active material utilization, cycle characteristics, and high rate discharge performance (kH)
It is something that we try to do.

に)問題点全解決する几めの手段 本発明のアルカリ蓄電池用電極の製造方法は、電極の製
令過穆を表わす概略的な図面に示すように、■水、バイ
ンダー及び表面に金喘メッキを施こしてなる有機表中空
球体+ll k混合してなるスラリー?、金属シーH2
1vc塗着し乾燥した後、■前記有機製中空球体表面の
金属が半溶融状態となる程度に還元雰囲気中で焼結全行
ない活物質保持体としての多孔g基板13+ k得、◎
該基板中に粉末状活物質IJ f直接充填した後、◎圧
延し所定の厚みとするものである。
(2) Elaborate means to solve all the problems The method for manufacturing electrodes for alkaline storage batteries of the present invention is as shown in the schematic diagram showing the manufacturing process of electrodes. Slurry made by mixing organic surface hollow spheres + llk? , Metal Sea H2
After applying 1vc and drying, ■ complete sintering in a reducing atmosphere to such an extent that the metal on the surface of the organic hollow sphere is in a semi-molten state to obtain a porous G substrate 13+k as an active material holder, ◎
After the powdered active material IJf is directly filled into the substrate, it is rolled to a predetermined thickness.

(ホ)作 用 表面に金属メッキ金施し定有機製中空球体を前記金屑メ
ッキが半溶融状態となる程度に還元雰囲気中に於いて5
00〜900′cで焼結すると、内部の有機製中空球体
が分解し、前記金属メッキを破り外部に放出され除去さ
れる。また、このとき金属メッキは半溶融状態でめる之
め隣接する金属メッキ同志で結合すると共にそれらが金
属シートに結合し、比較的大きな径の孔を有する多孔質
基板となる。こうして作製される基板には化学含浸操作
の工うな複雑な操作7行なうことなしに、活物質全粉末
状態で直接充填することができる。また、該基板に粉末
状活物*r充填した後圧延すると、基板中の余分な空間
全取り除くことができると共に活物質會基板内に強固に
保持することができる。
(e) Operation: A hollow sphere made of organic material whose surface is plated with metal is placed in a reducing atmosphere for 55 minutes to the extent that the gold plated metal is in a semi-molten state.
When sintered at 00 to 900'c, the internal organic hollow spheres decompose, break the metal plating, and are discharged to the outside and removed. Further, at this time, since the metal plating is in a semi-molten state, adjacent metal platings are bonded to each other and bonded to the metal sheet, forming a porous substrate having pores with a relatively large diameter. The substrate thus prepared can be directly filled with the active material in its entire powder state without performing any complicated chemical impregnation operations. Furthermore, by filling the substrate with powdered active material *r and then rolling it, all excess space in the substrate can be removed and the active material can be firmly held within the substrate.

したがって、上記手段によるアルカリ蓄電池用電極の復
遣方法は焼結式電極の製造方法に比べ非常に簡単に行な
うことが可能なものであV%また作製された電極は前記
金属シートから構成される芯体と金属メッキで半溶融状
態で結合してなる導電マドIJウクス?有する之め、電
極内部の導電性が向上すると共に芯体の存在にエリ電極
の機械的強度が向上するう 尚、前記有機製中空球体表面の金属メッキは5〜50μ
が好1しく、有機表中空球体の球径に活物質全スムーズ
に充填できるような径の孔を有する基板?得るために5
0〜200μであることが望まれる。ま友、前記基板中
に活物質を保持固定するときに用いるバインダーとして
は耐アルカリ性のものが工<、ポリテトラフルオロエチ
レンやポリビニルアルコールが効果的である。
Therefore, the method for recycling electrodes for alkaline storage batteries using the above means is much simpler than the method for manufacturing sintered electrodes. Is it a conductive IJ ux made by combining the core body and metal plating in a semi-molten state? Therefore, the conductivity inside the electrode is improved, and the presence of the core improves the mechanical strength of the electrode. Furthermore, the metal plating on the surface of the organic hollow sphere has a thickness of 5 to 50 μm.
Preferably, a substrate having pores with a diameter such that the active material can be completely filled smoothly into the sphere diameter of the organic surface hollow sphere. 5 to get
It is desired that the thickness is 0 to 200μ. As a binder for holding and fixing the active material in the substrate, an alkali-resistant binder is effective, such as polytetrafluoroethylene or polyvinyl alcohol.

(へ)実施例 低沸点戻化水素全内但する球径10〜100μの有機製
中空球体(商品名マイクロスフェア−1松本油脂裂)の
表面に厚み15μのニッケルメツ化 キを施し、このニッケルメッキが施されr機裂中空球体
20重葉部、メチルセルロース3重量部及び水100重
量部?混合してスラIJ −7作製する。
(f) Example Low-boiling point regenerated hydrogen All inside: The surface of an organic hollow sphere with a diameter of 10 to 100 μm (trade name Microsphere-1 Matsumoto Yushiki) was coated with nickel plating with a thickness of 15 μm. 20 parts by weight of hollow spheres, 3 parts by weight of methylcellulose and 100 parts by weight of water. Mix and prepare sura IJ-7.

次いで多数のバンチ穴を有し表面にニッケルメッキが施
された鉄板から構成される長さ10crIL、111M
401!、厚み0.09−の金属シートの両面に前記ス
ラリー?コーティングし乾燥する。このとき金属シート
とその両面にスラリーをコーティング及び乾燥して得た
層の厚みの和は5Mである。しかるのち、これを還元雰
囲気中に於いて600 ’cで2分間焼結し、有機物を
分解除去して空間体積が9396である多孔質基板7!
−得た。
Next, a steel plate with a length of 10crIL and 111M was constructed with a large number of bunch holes and a nickel-plated surface.
401! , the above slurry is applied to both sides of a metal sheet with a thickness of 0.09mm. Coat and dry. At this time, the sum of the thicknesses of the layers obtained by coating and drying the slurry on the metal sheet and both sides thereof was 5M. Thereafter, this was sintered at 600'C for 2 minutes in a reducing atmosphere to decompose and remove organic matter, resulting in a porous substrate 7 with a spatial volume of 9396!
-I got it.

こうして傅た多孔質基板を、活物質としての水酸化二・
ンケル扮末100F、水200ダ及びポリビニk 7 
k :+−ル1opt−混合してなる粘度的1000c
psのスラリーに2分間浸漬した後9゜Cで20分間乾
燥して、充填しfCスラリーを完全に乾燥するという操
作+40繰り返し、基板内に活物質上充填し、その後圧
延を行なって厚み1gの本発明電極を得友。
The porous substrate prepared in this way was treated with dihydroxide as an active material.
100F, water 200 da, and polyvinyl k 7
k: +-ru 1opt- viscosity 1000c mixed
The process of immersing the active material in the ps slurry for 2 minutes, drying it at 9°C for 20 minutes, filling it, and completely drying the fC slurry was repeated 40 times to fill the active material into the substrate, and then rolling it to a thickness of 1 g. A friend of the electrode of the present invention.

また比較として水酸化ニッケル粉末10F、ヒドロキシ
10ビルセルロースを混練してなるベースト?!−前記
金4シートの両面に塗着し乾燥して比較電極會傅友。
Also, for comparison, BASTO is made by kneading nickel hydroxide powder 10F and hydroxyl 10-vinyl cellulose. ! - Apply the gold to both sides of the gold sheet and dry it to use as a reference electrode.

これら電極の各撞注能試験の結果を下表に示す。The results of each injection ability test for these electrodes are shown in the table below.

表から明らかなように本発明電極は比較電極に比べて活
物質利用率が大幅に向上しており、サイクル劣化及びハ
イレート放電特性に優れている。
As is clear from the table, the electrode of the present invention has a significantly improved active material utilization rate compared to the comparative electrode, and is excellent in cycle deterioration and high rate discharge characteristics.

(ト)  発明の効果 本発明のアルカリ蓄電池用電極の製造方法は。(g) Effects of the invention A method for manufacturing an electrode for an alkaline storage battery according to the present invention.

水、バイングー及び表面に金属メッキを施し几有機製中
空球体金混合してなるスラリー?1金属シートに塗着し
乾燥した後還元雰囲気中で焼結全行ない多孔質基板?得
、該基板中に粉末状態の活物質全充填した後圧延し所定
の厚みとするものであるから、焼結式電極のlうに複雑
な化学含浸操作を行なうことなしに電極を作製すること
ができ製造が容易であり、まt、こうして作製された電
極は内部に導電性芯体及び導電マドI)ックス全有して
いる定め電極内の導電性が向上すると共に、電流は芯体
を介して導電マトリ、ンクスに流れる几め電極内の電流
分孔が均一化し、活物質利用率、ノ・イレート放1を特
性及びサイクル特性に優れる。更に電極内に芯体勿有し
ているので電極の機械的強度も大きいという利点全行す
るものである。
A slurry made by mixing water, banhgu, and organic hollow sphere gold with metal plating on the surface? 1. A porous substrate that is coated on a metal sheet, dried, and then sintered in a reducing atmosphere? Since the substrate is fully filled with powdered active material and then rolled to a predetermined thickness, the electrode can be manufactured without the need for complicated chemical impregnation operations unlike sintered electrodes. It is easy to manufacture, and the electrode made in this way has a conductive core and a conductive matrix inside, which improves the conductivity within the electrode and allows current to pass through the core. This makes the current pores flowing through the conductive matrix and the narrow electrode uniform, resulting in excellent active material utilization, no-ylate release characteristics, and cycle characteristics. Furthermore, since the electrode does not contain a core, it has the advantage that the mechanical strength of the electrode is high.

【図面の簡単な説明】[Brief explanation of drawings]

図面に本発明のアルカリ蓄電池用電極の製造方法に於け
る電極の製造過程を表わすtjIJ、略図である。 +21・・・金h1シート、ll+・・・表面に金属メ
ッキを施した有機製中空球体、(31・・・多孔質基板
、(41・・・粉末状活物質。
The drawings are schematic diagrams showing the electrode manufacturing process in the method for manufacturing electrodes for alkaline storage batteries of the present invention. +21... Gold h1 sheet, ll+... Organic hollow sphere with metal plating on the surface, (31... Porous substrate, (41... Powdered active material).

Claims (1)

【特許請求の範囲】[Claims] (1)水、バインダー及び表面に金属メッキを施した有
機製中空球体を混合してなるスラリーを、金属シートに
塗着し乾燥した後、還元雰囲気中で焼結を行ない多孔質
基板を得、該基板中に粉末状態の活物質を充填した後圧
延し所定の厚みとすることを特徴とするアルカリ蓄電池
用電極の製造方法。
(1) A slurry made by mixing water, a binder, and organic hollow spheres with metal plating on the surface is applied to a metal sheet, dried, and then sintered in a reducing atmosphere to obtain a porous substrate. A method for manufacturing an electrode for an alkaline storage battery, comprising filling the substrate with an active material in powder form and then rolling the substrate to a predetermined thickness.
JP60026693A 1985-02-14 1985-02-14 Method for manufacturing electrode for alkaline storage battery Pending JPS61185865A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60026693A JPS61185865A (en) 1985-02-14 1985-02-14 Method for manufacturing electrode for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60026693A JPS61185865A (en) 1985-02-14 1985-02-14 Method for manufacturing electrode for alkaline storage battery

Publications (1)

Publication Number Publication Date
JPS61185865A true JPS61185865A (en) 1986-08-19

Family

ID=12200465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60026693A Pending JPS61185865A (en) 1985-02-14 1985-02-14 Method for manufacturing electrode for alkaline storage battery

Country Status (1)

Country Link
JP (1) JPS61185865A (en)

Similar Documents

Publication Publication Date Title
US3926671A (en) Method of manufacturing positive nickel hydroxide electrodes
JPS6327823B2 (en)
JPS63102165A (en) Electrode structure for chemical battery which is mainly composed of nickel hydroxide and is doped with cobalt
JPS61185865A (en) Method for manufacturing electrode for alkaline storage battery
JP3553816B2 (en) Nickel electrode and method of manufacturing the same
JPH07320742A (en) Electrode for alkaline storage battery and manufacture thereof
JPS6329450A (en) Manufacture of electrode for cell
JPS6123706A (en) Production of sintered substrate for battery
JPH09265991A (en) Metal porous body, manufacture thereof, and battery
JPS5851669B2 (en) Manufacturing method of battery electrode substrate
JP3781058B2 (en) Battery electrode substrate and manufacturing method thereof
JP5164412B2 (en) Alkaline storage battery and method for manufacturing sintered substrate
JPH04359864A (en) Non-sintering nickel positive electrode and its manufacture
JPS61208756A (en) Electrode for alkaline secondary battery
JPH0132633B2 (en)
JPH10334899A (en) Manufacture of alkaline storage battery and its electrode
JPH10162835A (en) Electrode for alkaline storage battery and manufacture thereof
JPS6134861A (en) Manufacture of sintered substrate for alkaline storage battery
JPH0982334A (en) Electrode substrate for battery
JPS63266766A (en) Manufacture of nickel electrode for battery
JPS62229763A (en) Nonsintered nickel positive electrode
JPH0388270A (en) Electrode for nickel-cadmium storage battery
JPH0917432A (en) Electrode substrate for battery and manufacture thereof
JPH08315829A (en) Electrode plate for battery and manufacture thereof
JPH0992292A (en) Manufacture of metal porous body