JP3553816B2 - Nickel electrode and method of manufacturing the same - Google Patents

Nickel electrode and method of manufacturing the same Download PDF

Info

Publication number
JP3553816B2
JP3553816B2 JP09983499A JP9983499A JP3553816B2 JP 3553816 B2 JP3553816 B2 JP 3553816B2 JP 09983499 A JP09983499 A JP 09983499A JP 9983499 A JP9983499 A JP 9983499A JP 3553816 B2 JP3553816 B2 JP 3553816B2
Authority
JP
Japan
Prior art keywords
nickel
resin
plating film
electrode
nickel electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09983499A
Other languages
Japanese (ja)
Other versions
JP2000294236A (en
Inventor
忠 清川
肇 清川
正之 高島
勇一 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kiyokawa Plating Industries Co Ltd
Original Assignee
Kiyokawa Plating Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kiyokawa Plating Industries Co Ltd filed Critical Kiyokawa Plating Industries Co Ltd
Priority to JP09983499A priority Critical patent/JP3553816B2/en
Publication of JP2000294236A publication Critical patent/JP2000294236A/en
Application granted granted Critical
Publication of JP3553816B2 publication Critical patent/JP3553816B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、アルカリ二次電池用のニッケル電極およびその製造方法に関するものである。
【0002】
【従来の技術】
ニッケル電極は、ニッケル・カドミウム電池、ニッケル・水素化物電池をはじめ、ニッケル・亜鉛電池、ニッケル・鉄電池など多くのアルカリ電池に共通の正極として用いられている。このうち、近年、急速に発展してきたニッケル・水素化物電池は、携帯電話などの小型ポータブル機器用から大型電気自動車用まで多機種の電源として使用されている。従来の焼結式水酸化ニッケル電極は、カルボニルニッケルをパンチングメタル上に焼結させた三次元多孔体基板に、ニッケル塩溶融液を含浸させて化学的または電気化学的に水酸化ニッケルに変換する方法がとられてきた。しかし、焼結式三次元多孔体基板の多孔度が約80%であることからエネルギー密度が低くなること、製造工程が複雑であることなどの問題があった。一方、ペースト式ニッケル電極は、水酸化ニッケル粉末とコバルト化合物の粉末などを混合したものか、もしくは、水酸化ニッケル表面にコバルト化合物をコーティングした粉末を多孔度が95%以上の三次元多孔体基板に充填して作製される。これにより、高エネルギー密度の電極が得られるようになった。しかし、高率放電特性は燒結式ニッケル電極よりも低い。電気自動車用途などの電池においては、さらなる高エネルギー密度化、高出力密度化が要求されているのに加えて、コバルト化合物使用などによるコスト高が問題となっている。
【0003】
【発明が解決しようとする課題】
本発明は、上記問題点に鑑みてなされたものであり、ペースト式電極、焼結式電極のそれぞれの長所である高エネルギー密度、高出力密度特性を兼ね備え、さらに低コストタイプの水酸化ニッケル粉末を用いたニッケル電極を提供しようとするものである。
【0004】
【課題を解決するための手段】
本発明のニッケル電極は、表面に熱可塑性樹脂の微粒子を包含した金属メッキ被膜を有する水酸化ニッケル粉末を含むことを特徴とする。
本発明は、表面に熱可塑性樹脂の微粒子を包含した金属メッキ被膜を有する水酸化ニッケル粉末を前記熱可塑性樹脂の熱分解温度未満の温度下で加圧成型することにより多孔性のニッケル電極を得るものである。また、本発明は、前記表面に熱可塑性樹脂の微粒子を包含した金属メッキ被膜を有する水酸化ニッケル粉末を用いて作製するペースト式電極にも関する。
水酸化ニッケルは、本来絶縁性物質であるが、本発明においては導電性を確保するためにその表面に金属メッキを施し、成型性を高めるために金属メッキ被膜が熱可塑性樹脂の微粒子を包含している。
【0005】
従って、本発明によれば、表面に熱可塑性樹脂の微粒子を包含した金属メッキ被膜を有する水酸化ニッケル粉末を前記熱可塑性樹脂の熱分解温度未満の温度下で加圧成型することにより多孔性の水酸化ニッケル電極を得ることができる。また、前記表面に熱可塑性樹脂の微粒子を包含した金属メッキ被膜を有する水酸化ニッケル粉末を用いてペースト式電極を作製することもできる。
前記金属メッキ被膜は、水分子及び水酸化物イオンの拡散を許容する多孔質被膜である。多孔質被膜であれば、充電反応または放電反応に必要な物質種またはイオン種を水酸化ニッケル粒子表面または内部に供給する際の妨げにはならない。
また、前記金属メッキ被膜は、エネルギー密度を低下させないため、水酸化ニッケル量に対し20重量%以下、好ましくは5〜17%が適当である。
【0006】
本発明は、表面に熱可塑性樹脂の微粒子を包含した金属メッキ被膜を有する水酸化ニッケル粉末を前記熱可塑性樹脂の熱分解温度未満の温度下で加圧成型することにより、前記水酸化ニッケル粉末が前記熱可塑性樹脂により結合された多孔体を得るニッケル電極の製造方法を提供する。
さらに、本発明は、表面に熱可塑性樹脂の微粒子を包含した金属メッキ被膜を有する水酸化ニッケル粉末を金属支持体の片面または両面に配し、前記熱可塑性樹脂の熱分解温度未満の温度下で加圧成型することにより、前記水酸化ニッケル粉末が前記熱可塑性樹脂により結合され、かつ前記金属支持体を一体に結合した多孔体を得るニッケル電極の製造方法を提供する。
【0007】
【発明の実施の形態】
水酸化ニッケル粉末を被覆するメッキ被膜の金属としては、Ni、Co、Ni−Co、Ni−P、Ni−B、Co−PおよびCo−Bからなる群より選んだものが好適に用いられる。メッキ被膜の膜厚は、0.01〜50μm、好ましくは1〜10μmが適当である。
前記メッキ被膜に包含させる可塑性樹脂粉末としては、ポリテトラフルオロエチレン、ポリエチレン、ABS樹脂、ポリアミド、ポリスルフォン、AS樹脂、ポリスチレン、塩化ビニリビデン樹脂、ポリフェニレンエーテル、メチルペンテン樹脂、およびメタクリル酸樹脂からなる群より選ばれる樹脂の粒子が適当である。樹脂粒子の粒径は、0.01〜50μm、好ましくは1〜5μmが適当である。
【0008】
【実施例】
以下、実施例により本発明を説明する。
【0009】
固溶体添加量が水酸化亜鉛6重量%、水酸化コバルト7重量%の球状水酸化ニッケル粉末粒子を用意し、以下に示す方法で無電解複合ニッケルメッキした。まず、前記球状水酸化ニッケル粉末粒子100gをイオン交換水で洗浄した後、奥野製薬株式会社製OP−113の名で販売されている脱脂剤の水溶液(60g/l)からなる浴に60℃で10分間浸漬し、次いで水洗する脱脂工程を行った。次に、30g/lの塩化第一スズおよび15ml/lの塩酸を含むセンシタイザー液に脱脂後の水酸化ニッケル粒子を25℃で3分間浸漬した後に水洗する工程と、0.2g/lの塩化パラジウムおよび4ml/lの塩酸を含むアクチベイター液に水酸化ニッケル粒子を25℃で3分間浸漬した後に水洗する活性化処理工程を行った。この活性化処理工程は2回繰り返した。
【0010】
次に、80℃の20g/lのグリシンと3g/lの粒径0.3μmのポリテトラフルオロエチレン(以下PTFEで表す)粒子と界面活性剤とを含む混合液1リットル中に活性化処理後の水酸化ニッケル粒子を投入して分散させた。この分散液を攪拌しながら、300g/lの硫酸ニッケル水溶液159mlと、282g/1の次亜リン酸ナトリウムと150g/lの水酸化ナトリウムを含む混合水溶液159mlをそれぞれ10ml/分の滴下速度で添加した。水素ガスの発生が終了するまで攪拌を続けた後、水洗、濾過、乾燥して、Ni−PTFE複合メッキ被膜を有する水酸化ニッケル粉末試料を得た。なお、濾液は無色であったので、供給したニッケルイオンは全て水酸化ニッケル粒子表面に還元析出された。
【0011】
このようにして得た試料の一部を走査型電子顕微鏡で観察したところ、水酸化ニッケル粒子はPTFEを包含した金属ニッケル皮膜で覆われていることがわかった。メッキ皮膜は水酸化ニッケル粒子全体を覆うのではなく、部分的に水酸化ニッケル粒子の表面が見える箇所が観察された。このような部分が存在するために、水分子や水酸化物イオンの水酸化ニッケル粒子への拡散が可能となる。また、ICPによるメッキ量分析の結果、メッキ量は水酸化ニッケルの10.8重量%相当であることがわかった。さらに、メッキ被膜には、ニッケルの他にリンが存在することが確認された。
【0012】
次に、得られたNi−PTFE複合メッキ被膜を有する水酸化ニッケル粉末試料1.5gを厚さ0.06mmのパンチングメタル(穴あきの鉄板にニッケルメッキしたもの)集電基板の両側に配し、200℃において400kg/cmの成型圧で加圧成型し、直径23mm、厚さ1mmの成型体を得た。この成型体をニッケル網で包み込んで周囲をスポット溶接し、ニッケルのリード線を設けてニッケル電極を得た。これを電極Aとする。
次に、複合メッキ被膜を有する水酸化ニッケル粉末試料の代わりに、同じ固溶体組成のメッキをしていない水酸化ニッケル粉末試料を用いること以外は電極Aと同様の方法でニッケル電極を作製した。これを比較電極Bとする。さらに、比較電極Bで用いた水酸化ニッケル粉末試料に、一酸化コバルト粉末を10重量%混合、分散させた試料を用いること、および加圧成型を常温で行うこと以外は電極Aと同様の方法でニッケル電極を作製した(高温で加圧すると一酸化コバルトが酸化されて四三酸化コバルトに変化してしまうため)。これを比較電極Cとする。
電極A、比較電極Bおよび比較電極Cの成型体の多孔度は、いずれも約30%であった。
【0013】
また、Ni−PTFE複合メッキ被膜を有する水酸化ニッケル粉末試料に増粘剤を加えてペースト状にし、三次元多孔体基板に充填して乾燥、プレスしてニッケル電極を得た。これを電極Dとする。
さらに、比較電極Bで用いた水酸化ニッケル粉末試料に一酸化コバルト粉末を10重量%混合、分散させた試料を用いること以外は電極Dと同様の方法でニッケル電極を作製した。これを従来電極Eとする。
【0014】
これらの電極と水素吸蔵合金電極を組み合わせて開放型電池を作製し、20℃で充放電試験を行った。充電は0.1Cで150%、放電は0.2Cで終止電圧を1.0Vとし、充放電を10サイクル行った。いずれの電極も放電容量が安定したので、10サイクル目の電極重量および電極体積あたりの放電容量と活物質利用率を表1に示す。
【0015】
【表1】

Figure 0003553816
【0016】
表1から明らかなとおり、比較電極B以外は、電極重量および電極体積あたりの放電容量が従来電極Eよりも向上した。これは活物質利用率による影響が大きい。活物質利用率とは、放電容量の実測値と計算値の比を表したものである。本発明による電極Aおよび電極Dは、活物質利用率が向上したため、電極重量および電極体積あたりの放電容量が増大した。また、比較電極Cは、活物質利用率の向上は見られなかったが、電極に三次元多孔体を用いていないので、見かけの電極重量および電極体積あたりの放電容量が増大した。本発明の電極Aが最大容量を示しているのは、これらの相乗効果による。一方、比較電極Bは、金属メッキ被膜やコバルト化合物が存在しないので、反応性が悪くなり、活物質利用率が極端に低下した。
【0017】
次に、前記開放型電池を用いて高率放電試験を行った。放電のレートは1C〜20Cまでさまざまに行った。それぞれの放電レートにおいて、放電開始から10秒目の電池電圧を測定し、横軸に放電レート、縦軸に電池電圧をプロットした結果を図1に示す。図1から明らかなとおり、本発明による電極Aおよび電極Dは、良好な導電性ネットワークを持つため、従来電極Eに比べ優れた高率放電特性を示した。比較電極Bは、導電性ネットワークを全く持たないので、粒子間接触抵抗が大きく、いずれの放電レートでも大きな電圧降下を示した。また、比較電極Cは、コバルト化合物からなる導電性ネットワークを持つが、ニッケルの三次元多孔体を用いていないので、大電流放電時には導電性が不十分となるため、電圧降下が著しくなる。
【0018】
図2に15C放電時の放電曲線を示す。終止電圧は0.8Vとした。従来電極Eの28秒(利用率11.7%)に対し、本発明の電極Aは52秒(利用率21.7%)、電極Dは62秒(利用率25.8%)の放電が可能であった。終止電圧を0.8Vより低く設定すれば、さらに大きな放電容量を得ることもできる。
特に、電極Aにおいては、個々の水酸化ニッケル粒子表面に備えた導電性金属メッキ被膜が大電流に耐えうる三次元的な導電性ネットワークを形成しているので、高価な三次元多孔体、コバルト化合物などの材料を用いる必要がなく、大幅なコスト削減効果も兼ね備えている。
【0019】
【発明の効果】
上記のように本発明は、粒子表面に熱可塑性樹脂を包含した金属メッキ皮膜を有する水酸化ニッケル粉末を用いるので、高エネルギー密度、高出力密度を有し、かつ、安価なニッケル電極を提供することが可能となった。
【図面の簡単な説明】
【図1】各種ニッケル電極と水素吸蔵合金電極を組み合わせた開放型電池の放電レートと電池電圧の関係を示す図である。
【図2】同電池の放電時間と電池電圧の関係を示す図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a nickel electrode for an alkaline secondary battery and a method for producing the same.
[0002]
[Prior art]
The nickel electrode is used as a common positive electrode in many alkaline batteries such as a nickel-cadmium battery, a nickel-hydride battery, a nickel-zinc battery, a nickel-iron battery, and the like. Of these, nickel-hydride batteries, which have been rapidly developed in recent years, are used as power sources for various types of devices, from small portable devices such as mobile phones to large electric vehicles. Conventional sintered nickel hydroxide electrodes are chemically or electrochemically converted into nickel hydroxide by impregnating a three-dimensional porous substrate obtained by sintering carbonyl nickel on a punching metal with a nickel salt melt. The way has been taken. However, since the porosity of the sintered three-dimensional porous substrate is about 80%, there are problems such as a low energy density and a complicated manufacturing process. On the other hand, the paste-type nickel electrode is made of a mixture of nickel hydroxide powder and a cobalt compound powder, or a powder obtained by coating a nickel compound with a cobalt compound on the surface of a three-dimensional porous substrate having a porosity of 95% or more. It is made by filling. As a result, an electrode having a high energy density can be obtained. However, the high rate discharge characteristics are lower than those of the sintered nickel electrode. Batteries for use in electric vehicles and the like are required to have higher energy density and higher output density, and also have a problem of high cost due to the use of a cobalt compound.
[0003]
[Problems to be solved by the invention]
The present invention has been made in view of the above problems, and has both high energy density and high output density characteristics, which are advantages of a paste type electrode and a sintered type electrode, and furthermore, a low cost type nickel hydroxide powder. And a nickel electrode using the same.
[0004]
[Means for Solving the Problems]
The nickel electrode of the present invention is characterized by including a nickel hydroxide powder having a metal plating film containing thermoplastic resin fine particles on the surface.
The present invention provides a porous nickel electrode by pressure-molding a nickel hydroxide powder having a metal plating film containing thermoplastic resin fine particles on the surface thereof at a temperature lower than the thermal decomposition temperature of the thermoplastic resin. Things. The present invention also relates to a paste-type electrode manufactured using a nickel hydroxide powder having a metal plating film containing thermoplastic resin fine particles on the surface.
Nickel hydroxide is originally an insulating substance, but in the present invention, metal plating is applied to the surface to secure conductivity, and the metal plating film contains fine particles of a thermoplastic resin to enhance moldability. ing.
[0005]
Therefore, according to the present invention, a nickel hydroxide powder having a metal plating film containing thermoplastic resin fine particles on the surface thereof is press-molded at a temperature lower than the thermal decomposition temperature of the thermoplastic resin to form a porous layer. A nickel hydroxide electrode can be obtained. In addition, a paste-type electrode can be produced using nickel hydroxide powder having a metal plating film containing thermoplastic resin fine particles on the surface.
The metal plating film is a porous film that allows diffusion of water molecules and hydroxide ions. The porous coating does not hinder the supply of the material species or ionic species necessary for the charge or discharge reaction to the surface or inside of the nickel hydroxide particles.
In order to prevent the energy density of the metal plating film from lowering, the amount is preferably 20% by weight or less, preferably 5 to 17% with respect to the amount of nickel hydroxide.
[0006]
The present invention is that the nickel hydroxide powder is formed by press-molding a nickel hydroxide powder having a metal plating film containing thermoplastic resin fine particles on the surface thereof at a temperature lower than the thermal decomposition temperature of the thermoplastic resin. A method of manufacturing a nickel electrode for obtaining a porous body bonded by the thermoplastic resin is provided.
Furthermore, the present invention provides a nickel hydroxide powder having a metal plating film containing thermoplastic resin fine particles on one or both surfaces of a metal support, at a temperature lower than the thermal decomposition temperature of the thermoplastic resin. The present invention provides a method for producing a nickel electrode, in which the nickel hydroxide powder is bonded by the thermoplastic resin by pressure molding to obtain a porous body in which the metal support is integrally bonded.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
As the metal of the plating film for coating the nickel hydroxide powder, a metal selected from the group consisting of Ni, Co, Ni-Co, Ni-P, Ni-B, Co-P and Co-B is preferably used. The thickness of the plating film is suitably 0.01 to 50 μm, preferably 1 to 10 μm.
Examples of the plastic resin powder included in the plating film include a group consisting of polytetrafluoroethylene, polyethylene, ABS resin, polyamide, polysulfone, AS resin, polystyrene, vinylidene chloride resin, polyphenylene ether, methylpentene resin, and methacrylic acid resin. The resin particles selected from the above are suitable. The particle size of the resin particles is suitably 0.01 to 50 μm, preferably 1 to 5 μm.
[0008]
【Example】
Hereinafter, the present invention will be described with reference to examples.
[0009]
Spherical nickel hydroxide powder particles having a solid solution addition amount of 6% by weight of zinc hydroxide and 7% by weight of cobalt hydroxide were prepared, and electroless composite nickel plating was performed by the following method. First, 100 g of the spherical nickel hydroxide powder particles were washed with ion-exchanged water, and then placed at 60 ° C. in a bath made of an aqueous solution (60 g / l) of a degreasing agent sold under the name of OP-113 manufactured by Okuno Pharmaceutical Co., Ltd. A degreasing step of immersing for 10 minutes and then washing with water was performed. Next, the degreased nickel hydroxide particles are immersed in a sensitizer solution containing 30 g / l of stannous chloride and 15 ml / l of hydrochloric acid at 25 ° C. for 3 minutes, and then washed with water. An activation treatment step of immersing nickel hydroxide particles in an activator solution containing palladium chloride and 4 ml / l hydrochloric acid at 25 ° C. for 3 minutes and then washing with water was performed. This activation step was repeated twice.
[0010]
Then, after activation treatment in 1 liter of a mixed solution containing 20 g / l glycine, 3 g / l polytetrafluoroethylene (hereinafter referred to as PTFE) particles having a particle size of 0.3 μm and a surfactant at 80 ° C. Of nickel hydroxide particles was added and dispersed. While stirring the dispersion, 159 ml of a 300 g / l aqueous solution of nickel sulfate and 159 ml of a mixed aqueous solution containing 282 g / 1 of sodium hypophosphite and 150 g / l of sodium hydroxide were added at a dropping rate of 10 ml / min. did. After stirring was continued until the generation of hydrogen gas was completed, washing with water, filtration and drying were performed to obtain a nickel hydroxide powder sample having a Ni-PTFE composite plating film. Since the filtrate was colorless, all the supplied nickel ions were reduced and precipitated on the surface of the nickel hydroxide particles.
[0011]
When a part of the sample thus obtained was observed with a scanning electron microscope, it was found that the nickel hydroxide particles were covered with a metallic nickel film containing PTFE. The plating film did not cover the entire nickel hydroxide particles, but a portion where the surface of the nickel hydroxide particles was partially observed was observed. The presence of such a portion enables water molecules and hydroxide ions to diffuse into the nickel hydroxide particles. Further, as a result of plating amount analysis by ICP, it was found that the plating amount was equivalent to 10.8% by weight of nickel hydroxide. Furthermore, it was confirmed that phosphorus was present in the plating film in addition to nickel.
[0012]
Next, 1.5 g of the obtained nickel hydroxide powder sample having the Ni-PTFE composite plating film was placed on both sides of a punching metal (nickel-plated perforated iron plate) current collecting substrate having a thickness of 0.06 mm, Pressure molding was performed at 200 ° C. with a molding pressure of 400 kg / cm 2 to obtain a molded body having a diameter of 23 mm and a thickness of 1 mm. The molded body was wrapped in a nickel net and the periphery was spot-welded, and a nickel lead wire was provided to obtain a nickel electrode. This is electrode A.
Next, a nickel electrode was prepared in the same manner as for the electrode A, except that a nickel hydroxide powder sample having the same solid solution composition but not plated was used instead of the nickel hydroxide powder sample having the composite plating film. This is referred to as Comparative electrode B. Further, a method similar to that of electrode A was used except that a sample in which 10% by weight of cobalt monoxide powder was mixed and dispersed in the nickel hydroxide powder sample used in comparative electrode B was used, and pressure molding was performed at room temperature. To produce a nickel electrode (because cobalt monoxide is oxidized and changed to cobalt trioxide when pressurized at high temperature). This is referred to as reference electrode C.
The porosity of each of the molded bodies of the electrode A, the comparative electrode B and the comparative electrode C was about 30%.
[0013]
Further, a thickener was added to a nickel hydroxide powder sample having a Ni-PTFE composite plating film to form a paste, which was filled in a three-dimensional porous substrate, dried and pressed to obtain a nickel electrode. This is electrode D.
Further, a nickel electrode was prepared in the same manner as for the electrode D except that a sample in which 10% by weight of cobalt monoxide powder was mixed and dispersed in the nickel hydroxide powder sample used for the comparative electrode B was used. This is referred to as a conventional electrode E.
[0014]
An open type battery was fabricated by combining these electrodes and a hydrogen storage alloy electrode, and a charge / discharge test was performed at 20 ° C. Charging was performed at 0.1% at 150%, discharging was performed at 0.2C at a final voltage of 1.0 V, and charging and discharging were performed for 10 cycles. Since the discharge capacity was stable for all the electrodes, Table 1 shows the discharge capacity per 10 electrode cycles and the discharge capacity per electrode volume, and the active material utilization rate.
[0015]
[Table 1]
Figure 0003553816
[0016]
As is clear from Table 1, except for the comparative electrode B, the discharge capacity per electrode weight and electrode volume was improved as compared with the conventional electrode E. This is largely affected by the active material utilization. The active material utilization expresses a ratio between a measured value and a calculated value of the discharge capacity. In the electrodes A and D according to the present invention, since the active material utilization rate was improved, the discharge capacity per electrode weight and electrode volume was increased. In Comparative electrode C, no improvement in the active material utilization was observed, but the apparent electrode weight and discharge capacity per electrode volume increased because no three-dimensional porous body was used for the electrode. It is due to these synergistic effects that the electrode A of the present invention shows the maximum capacity. On the other hand, in the comparative electrode B, since the metal plating film and the cobalt compound were not present, the reactivity was deteriorated, and the active material utilization rate was extremely reduced.
[0017]
Next, a high-rate discharge test was performed using the open-type battery. The discharge rate varied from 1C to 20C. At each discharge rate, the battery voltage at 10 seconds after the start of discharge was measured, and the discharge rate was plotted on the horizontal axis and the battery voltage was plotted on the vertical axis, and the results are shown in FIG. As is clear from FIG. 1, the electrodes A and D according to the present invention have a good conductive network, and thus exhibited high rate discharge characteristics superior to the conventional electrode E. Since the comparative electrode B had no conductive network at all, the contact resistance between the particles was large, and a large voltage drop was shown at any discharge rate. Further, although the comparative electrode C has a conductive network made of a cobalt compound, it does not use a three-dimensional porous body of nickel, and therefore has insufficient conductivity at the time of large-current discharge, so that the voltage drop is remarkable.
[0018]
FIG. 2 shows a discharge curve at the time of 15C discharge. The end voltage was set to 0.8V. The electrode A of the present invention discharges for 52 seconds (21.7% utilization) and the electrode D discharges for 62 seconds (25.8% utilization), compared to 28 seconds (11.7% utilization) of the conventional electrode E. It was possible. If the cutoff voltage is set lower than 0.8 V, a larger discharge capacity can be obtained.
In particular, in the electrode A, since the conductive metal plating film provided on the surface of each nickel hydroxide particle forms a three-dimensional conductive network capable of withstanding a large current, an expensive three-dimensional porous material, cobalt There is no need to use materials such as compounds, and a significant cost reduction effect is also achieved.
[0019]
【The invention's effect】
As described above, the present invention uses a nickel hydroxide powder having a metal plating film containing a thermoplastic resin on the particle surface, so that it has a high energy density, a high output density, and provides an inexpensive nickel electrode. It became possible.
[Brief description of the drawings]
FIG. 1 is a diagram showing a relationship between a discharge rate and a battery voltage of an open battery in which various nickel electrodes and a hydrogen storage alloy electrode are combined.
FIG. 2 is a diagram showing a relationship between a discharge time and a battery voltage of the battery.

Claims (11)

表面に熱可塑性樹脂の微粒子を包含した金属メッキ被膜を有する水酸化ニッケル粉末を含むことを特徴とするニッケル電極。A nickel electrode comprising a nickel hydroxide powder having a metal plating film containing thermoplastic resin particles on its surface. 前記メッキ被膜が水分子および水酸化物イオンの拡散を許容する多孔質被膜である請求項1記載のニッケル電極。The nickel electrode according to claim 1, wherein the plating film is a porous film that allows diffusion of water molecules and hydroxide ions. 前記メッキ被膜量が水酸化ニッケル量の20重量%以下である請求項1記載のニッケル電極。The nickel electrode according to claim 1, wherein the amount of the plating film is not more than 20% by weight of the amount of the nickel hydroxide. 前記金属メッキ被膜がNi、Co、Ni−Co、Ni−P、Ni−B、Co−PおよびCo−Bからなる群より選ばれる請求項1記載のニッケル電極。The nickel electrode according to claim 1, wherein the metal plating film is selected from the group consisting of Ni, Co, Ni-Co, Ni-P, Ni-B, Co-P and Co-B. 前記可塑性樹脂が、ポリテトラフルオロエチレン、ポリエチレン、ABS樹脂、ポリアミド、ポリスルフォン、AS樹脂、ポリスチレン、塩化ビニリビデン樹脂、ポリフェニレンエーテル、メチルペンテン樹脂、およびメタクリル酸樹脂からなる群より選ばれる請求項1記載のニッケル電極。2. The plastic resin is selected from the group consisting of polytetrafluoroethylene, polyethylene, ABS resin, polyamide, polysulfone, AS resin, polystyrene, vinylidene chloride resin, polyphenylene ether, methylpentene resin, and methacrylic acid resin. Nickel electrode. 表面に熱可塑性樹脂の微粒子を包含した金属メッキ被膜を有する水酸化ニッケル粉末を前記熱可塑性樹脂の熱分解温度未満の温度下で加圧成型することにより、前記水酸化ニッケル粉末が前記熱可塑性樹脂により結合された多孔体を得ることを特徴とするニッケル電極の製造方法。By press-molding a nickel hydroxide powder having a metal plating film containing fine particles of a thermoplastic resin on the surface thereof at a temperature lower than the thermal decomposition temperature of the thermoplastic resin, the nickel hydroxide powder is formed of the thermoplastic resin. A method for producing a nickel electrode, characterized in that a porous body bonded by a method is obtained. 表面に熱可塑性樹脂の微粒子を包含した金属メッキ被膜を有する水酸化ニッケル粉末を金属支持体の片面または両面に配し、前記熱可塑性樹脂の熱分解温度未満の温度下で加圧成型することにより、前記水酸化ニッケル粉末が前記熱可塑性樹脂により結合され、かつ前記金属支持体を一体に結合した多孔体を得ることを特徴とするニッケル電極の製造方法。By disposing nickel hydroxide powder having a metal plating film containing thermoplastic resin fine particles on one or both surfaces of a metal support, and press-molding at a temperature lower than the thermal decomposition temperature of the thermoplastic resin. A method for producing a nickel electrode, wherein the nickel hydroxide powder is bonded by the thermoplastic resin and a porous body is integrally bonded to the metal support. 前記メッキ被膜が水分子および水酸化物イオンの拡散を許容する多孔質被膜である請求項6または7記載のニッケル電極の製造方法。8. The method for manufacturing a nickel electrode according to claim 6, wherein the plating film is a porous film that allows diffusion of water molecules and hydroxide ions. 前記メッキ被膜量が水酸化ニッケル量の20重量%以下である請求項6または7記載のニッケル電極の製造方法。8. The method for producing a nickel electrode according to claim 6, wherein the plating film amount is 20% by weight or less of the nickel hydroxide amount. 前記金属メッキ被膜がNi、Co、Ni−P、Ni−B、Co−P、およびCo−Bからなる群より選ばれる請求項6または7記載のニッケル電極の製造方法。The method for manufacturing a nickel electrode according to claim 6, wherein the metal plating film is selected from the group consisting of Ni, Co, Ni-P, Ni-B, Co-P, and Co-B. 前記可塑性樹脂が、ポリテトラフルオロエチレン、ポリエチレン、ABS樹脂、ポリアミド、ポリスルフォン、AS樹脂、ポリスチレン、塩化ビニリデン樹脂、ポリフェニレンエーテル、メチルペンテン樹脂、およびメタクリル酸樹脂からなる群より選ばれる請求項6または7記載のニッケル電極の製造方法。7. The plastic resin is selected from the group consisting of polytetrafluoroethylene, polyethylene, ABS resin, polyamide, polysulfone, AS resin, polystyrene, vinylidene chloride resin, polyphenylene ether, methylpentene resin, and methacrylic acid resin. 8. The method for producing a nickel electrode according to 7.
JP09983499A 1999-04-07 1999-04-07 Nickel electrode and method of manufacturing the same Expired - Fee Related JP3553816B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09983499A JP3553816B2 (en) 1999-04-07 1999-04-07 Nickel electrode and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09983499A JP3553816B2 (en) 1999-04-07 1999-04-07 Nickel electrode and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2000294236A JP2000294236A (en) 2000-10-20
JP3553816B2 true JP3553816B2 (en) 2004-08-11

Family

ID=14257855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09983499A Expired - Fee Related JP3553816B2 (en) 1999-04-07 1999-04-07 Nickel electrode and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3553816B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4128064B2 (en) * 2002-10-21 2008-07-30 正之 高島 Metal resin composite and production method thereof
JP3871653B2 (en) 2003-04-18 2007-01-24 清川メッキ工業株式会社 Method for producing conductive fine particles
US10128492B2 (en) * 2013-12-10 2018-11-13 Panasonic Intellectual Property Management Co., Ltd. Positive electrode for alkaline storage batteries and alkaline storage battery
WO2019181787A1 (en) * 2018-03-20 2019-09-26 株式会社田中化学研究所 Compound for positive electrode
WO2019181788A1 (en) * 2018-03-20 2019-09-26 株式会社田中化学研究所 Compound for positive electrode

Also Published As

Publication number Publication date
JP2000294236A (en) 2000-10-20

Similar Documents

Publication Publication Date Title
JP5119577B2 (en) Nickel metal hydride battery
JPS6110855A (en) Electrode for cell and its manufacturing method
JP3553816B2 (en) Nickel electrode and method of manufacturing the same
Hermann et al. Metal hydride batteries research using nanostructured additives
JPS5937667A (en) Metal oxide-hydrogen battery
JPH07320742A (en) Electrode for alkaline storage battery and manufacture thereof
JP3253476B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3472489B2 (en) Hydrogen storage electrode and method for producing the same
JPH1186852A (en) Nickel electrode for alkaline secondary battery
JP2000285922A (en) Alkaline storage battery, and manufacture of its electrode
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JPH1167194A (en) Hydrogen storage alloy electrode and manufacture thereof
JP3825612B2 (en) Hydrogen storage alloy powder for hydrogen storage alloy electrode, hydrogen storage alloy electrode, and alkaline storage battery
JP2005038730A (en) Non-sintered nickel electrode and alkaline storage battery
JPH04359864A (en) Non-sintering nickel positive electrode and its manufacture
JPH1140148A (en) Alkaline storage battery and manufacture of electrode thereof
JPH10162835A (en) Electrode for alkaline storage battery and manufacture thereof
JP3542501B2 (en) Hydrogen storage electrode
JPH10214619A (en) Manufacture of unsintered nickel electrode for alkaline storage battery
JP2000182619A (en) Positive electrode for alkaline secondary battery and manufacture of the same
JPH11102698A (en) Alkaline storage battery and manufacture of electrode thereof
JPH10334898A (en) Alkaline storage battery, its electrode and manufacture thereof
JPH10302802A (en) Storage battery electrode and manufacture thereof
JPH10334902A (en) Alkaline storage battery and manufacture of its electrode
JP2000106177A (en) Manufacture of negative electrode material for alkaline secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040430

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20170514

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees